YAN Tao, YANG Minmin, SHI Lin, et al. Metabonomics Analysis of Different Extracts from Chrysanthemum morifolium and Screening of Its Antioxidant Active Components[J]. Science and Technology of Food Industry, 2021, 42(16): 8−19. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021010248.
Citation: YAN Tao, YANG Minmin, SHI Lin, et al. Metabonomics Analysis of Different Extracts from Chrysanthemum morifolium and Screening of Its Antioxidant Active Components[J]. Science and Technology of Food Industry, 2021, 42(16): 8−19. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021010248.

Metabonomics Analysis of Different Extracts from Chrysanthemum morifolium and Screening of Its Antioxidant Active Components

More Information
  • Received Date: January 31, 2020
  • Available Online: June 20, 2021
  • To explore differences in chemical components of Chrysanthemum morifolium extracted by four different methods, i.e. boiling water extract (BWE), reflux water extract (RWE), ultrasonic assisted water extract (UWE) and ultrasonic assisted ethanol extract (UEE) and to identify key compounds reflective of antioxidant activity of Chrysanthemum morifolium extracts, the high-throughput liquid chromatography-mass spectrometry metabolomics was applied. A total of 776 compounds were detected including alcohols and polyols, amino acids, carbohydrates, flavonoid glycosides, etc., contents of total phenols and flavonoids of Chrysanthemum extracts were determined by spectrophotometry. The antioxidant activity of different extracts was evaluated by ABTS+ and DPPH free radical scavenging rate. The key antioxidant compounds were identified using supervised machine learning. Results showed that chemical components of Chrysanthemum morifolium significantly differed between four extracts: Relative contents of 33 and 35 metabolites greatly discriminated BWE, RWE and UWE, or UWE and UEE, respectively (P<0.05 after Bonferroni correction). The contents of total phenols of BWE, RWE, UWE and UEE were 13.858%, 10.708%, 16.644%, 20.160%, respectively; the contents of total flavonoids were 26.401%, 15.984%, 27.299%, 40.769%, respectively. The EC50 of ABTS free radical scavenging rate was respectively 0.048, 0.036, 0.055, 0.056; the EC50 of DPPH free radical scavenging rate was respectively 0.048, 0.053, 0.059, 0.047. No correlation was found between contents of total phenols or total flavonoids with the antioxidant activity indicated by EC50 of ABTS and DPPH free radical scavenging rate. Of note, glycitein, serine, 1, 3-dicaffeoylquinic acid as well as ergothioneine, apigenin, phosphatidylcholines were identified, which could optimally characterize the antioxidant activity of the water extracts of Chrysanthemum morifolium, respectively. Using metabolomics and machine learning, key compounds characterizing antioxidant activity of the Chrysanthemum morifolium water extracts were identified, providing novel insights and theoretical basis for optimizing extraction processes targeting functional components of Chrysanthemum morifolium.
  • [1]
    金建忠, 闻鸣, 申屠超. 杭白菊化学成分最新研究进展[J]. 食品工业科技,2014,35(15):386−389, 394.
    [2]
    雷康藤, 龙娟娟, 杨琳妹, 等. 菊花黄酮化合物组成、抗氧化活性及相关性分析[J]. 山东化工,2020,49(1):53−55. doi: 10.3969/j.issn.1008-021X.2020.01.024
    [3]
    杨璐齐, 陈冠林, 俞憬, 等. 6种菊花抗氧化活性及总酚含量的研究[J]. 食品研究与开发,2017,38(18):6−10.
    [4]
    Hong J, Yang L T, Zhang D B, et al. Plant metabolomics: an indispensable system biology tool for plant science[J]. International journal of molecular sciences,2016,17(6):767. doi: 10.3390/ijms17060767
    [5]
    Yang M M, Yan T, Yu M, et al. Advances in understanding of health-promoting benefits of medicine and food homology using analysis of gut microbiota and metabolomics[J]. Food Frontiers,2020,1(4):398−419. doi: 10.1002/fft2.49
    [6]
    Beale D J, Pinu F R, Kouremenos K A, et al. Review of recent developments in GC-MS approaches to metabolomics-based research[J]. Metabolomics,2018,14(11):152. doi: 10.1007/s11306-018-1449-2
    [7]
    Deborde C, Moing A, Roch L, et al. Plant metabolism as studied by NMR spectroscopy[J]. Progress in Nuclear Magnetic Resonance Spectroscopy,2017,102-103(5):61−97.
    [8]
    T’kindt R, Morreel K, Deforce D, et al. Joint GC-MS and LC-MS platforms for comprehensive plant metabolomics: Repeatability and sample pre-treatment[J]. Journal of Chromatography B,2009,877(29):3572−3580. doi: 10.1016/j.jchromb.2009.08.041
    [9]
    刘贤青, 罗杰. 植物代谢组学技术研究进展[J]. 科技导报,2015,33(16):33−38. doi: 10.3981/j.issn.1000-7857.2015.16.004
    [10]
    Ning Z C, Lu C, Zhang Y X, et al. Application of plant metabonomics in quality assessment for large-scale production of traditional Chinese medicine[J]. Planta Medica,2013,79(11):897−908. doi: 10.1055/s-0032-1328656
    [11]
    于淼, 王长远, 王霞. 代谢组学在植物多酚类物质检测分析中的应用[J]. 食品与发酵工业,2020,46(13):280−285.
    [12]
    Fraige K, Pereira-Filho E R, Carrilho E. Fingerprinting of anthocyanins from grapes produced in Brazil using HPLC-DAD–MS and exploratory analysis by principal component analysis[J]. Food Chemistry,2014,145(8):395−403.
    [13]
    Hellal K, Maulidiani M, Ismail I S, et al. Antioxidant, α-glucosidase, and nitric oxide inhibitory activities of six algerian traditional medicinal plant extracts and 1H-NMR-based metabolomics study of the active extract[J]. Molecules,2020,25(5):1247. doi: 10.3390/molecules25051247
    [14]
    Kim M O, Lee S U, Yuk H J, et al. Metabolomics approach to identify the active substances influencing the antidiabetic activity of Lagerstroemia species[J]. Journal of Functional Foods,2020,64:103684. doi: 10.1016/j.jff.2019.103684
    [15]
    Zou Q J, Wang T, Guo Q S, et al. Combined metabolomic and transcriptomic analysis reveals redirection of the phenylpropanoid metabolic flux in different colored medicinal Chrysanthemum morifolium[J]. Industrial Crops and Products,2021,164:113343. doi: 10.1016/j.indcrop.2021.113343
    [16]
    韩正洲, 杨勇, 贾红梅, 等. 基于植物代谢组学的栽培型与野生型野菊花的化学成分比较及定量分析[J]. 药物分析杂志,2017,37(7):1196−1206.
    [17]
    冯静, 张斐然, 杨晓华, 等. 3种富硒菊花的化学成分及其对α-葡萄糖苷酶活力的影响[J]. 分子植物育种,2019,17(7):2341−2349.
    [18]
    李雪晖. 菊花多糖与黄酮提取及抗氧化活性的研究[D]. 福州: 福建农林大学, 2014.
    [19]
    Smith C A, Want E J, O'maille G, et al. XCMS: Processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification[J]. Analytical Chemistry,2006,78(3):779−787. doi: 10.1021/ac051437y
    [20]
    国家市场监督管理总局, 中国国家标准化管理委员会. GB/T 8313-2018 茶叶中茶多酚和儿茶素类含量的检测方法[S]. 北京: 中国标准出版社, 2018.
    [21]
    深圳市市场和质量监督管理委员会. SZDB/Z 349-2019 食品中总黄酮的测定 分光光度法[S]. 深圳: 深圳市市场和质量监督管理委员会, 2019.
    [22]
    李璐, 姚美, 张华峰, 等. 3种葱属蔬菜水提物、醇提物与多糖的抗氧化活性研究[J]. 陕西师范大学学报(自然科学版),2015,43(3):98−103.
    [23]
    Shi L, Westerhuis J A, Rosén J, et al. Variable selection and validation in multivariate modelling[J]. Bioinformatics,2019,35(6):972−980. doi: 10.1093/bioinformatics/bty710
    [24]
    Rohart F, Gautier B, Singh A, et al. Mixomics: An R package for ‘omics feature selection and multiple data integration[J]. PLoS Computational Biology,2017,13(11):e1005752. doi: 10.1371/journal.pcbi.1005752
    [25]
    Ginestet C. ggplot2: Elegant graphics for data analysis[J]. Journal of the Royal Statistical Society: Series A (Statistics in Society),2011,174(1):245−246. doi: 10.1111/j.1467-985X.2010.00676_9.x
    [26]
    李孟, 张靖柯, 石静亚, 等. 怀菊花及其茎叶脂溶性成分GC-MS分析及其抗氧化活性研究[J]. 中国医药科学,2020,10(19):78−82. doi: 10.3969/j.issn.2095-0616.2020.19.018
    [27]
    郑璐璐, 张贵君, 王晶娟, 等. 野菊花药效组分抗炎的生物效应研究[J]. 天津中医药,2011,28(3):251−253.
    [28]
    Maralani M N, Movahedian A, Javanmard S H. Antioxidant and cytoprotective effects of L-serine on human endothelial cells[J]. Research in Pharmaceutical Sciences,2012,7(4):209.
    [29]
    Danino O, Gottlieb H E, Grossman S, et al. Antioxidant activity of 1, 3-dicaffeoylquinic acid isolated from Inula viscosa[J]. Food Research International,2009,42(9):1273−1280. doi: 10.1016/j.foodres.2009.03.023
    [30]
    Zhao C C, Kim P H, Eun J B. Influence of high-intensity ultrasound application on the physicochemical properties, isoflavone composition, and antioxidant activity of tofu whey[J]. LWT,2020,117:108618. doi: 10.1016/j.lwt.2019.108618
    [31]
    Kushairi N, Phan C W, Sabaratnam V, et al. Dietary amino acid ergothioneine protects HT22 hippocampal neurons against H2O2-induced neurotoxicity via antioxidative mechanism[J]. Pharma Nutrition,2020,13:100214. doi: 10.1016/j.phanu.2020.100214
    [32]
    Begum N, Prasad N R. Apigenin, a dietary antioxidant, modulates gamma radiation-induced oxidative damages in human peripheral blood lymphocytes[J]. Biomedicine & Preventive Nutrition,2012,2(1):16−24.
    [33]
    Zhao Q Y, Wang M M, Zhang W B, et al. Impact of phosphatidylcholine and phosphatidylethanolamine on the oxidative stability of stripped peanut oil and bulk peanut oil[J]. Food Chemistry,2020,311:125962. doi: 10.1016/j.foodchem.2019.125962
    [34]
    Rincón-Cervera M Á, Valenzuela R, Hernandez-Rodas M C, et al. Vegetable oils rich in alpha linolenic acid increment hepatic n-3 LCPUFA, modulating the fatty acid metabolism and antioxidant response in rats[J]. Prostaglandins, Leukotrienes and Essential Fatty Acids,2016,111(2):25−35.
    [35]
    Alirezaei M, Jelodar G, Ghayemi Z. Antioxidant defense of betaine against oxidative stress induced by ethanol in the rat testes[J]. International Journal of Peptide Research and Therapeutics,2012,18(3):239−247. doi: 10.1007/s10989-012-9297-9
    [36]
    Wang D D, Zhang L X, Huang X R, et al. Identification of nutritional components in black sesame determined by widely targeted metabolomics and traditional Chinese medicines[J]. Molecules,2018,23(5):1180. doi: 10.3390/molecules23051180
    [37]
    Wang D D, Zhang L X, Xu Y Q, et al. Optimization of an ultrasound-assisted extraction for simultaneous determination of antioxidants in sesame with response surface methodology[J]. Antioxidants,2019,8(8):321. doi: 10.3390/antiox8080321
    [38]
    Yilmaz Ö, Özkan Y, Yildirim M, et al. Effects of alpha lipoic acid, ascorbic acid-6-palmitate, and fish oil on the glutathione, malonaldehyde, and fatty acids levels in erythrocytes of streptozotocin induced diabetic male rats[J]. Journal of Cellular Biochemistry,2002,86(3):530−539. doi: 10.1002/jcb.10244
    [39]
    谢占芳, 张倩倩, 朱凌佳, 等. 菊花化学成分及药理活性研究进展[J]. 河南大学学报(医学版),2015,34(4):290−300.
    [40]
    Beninger C W, Abou-Zaid M M, Kistner A L, et al. A flavanone and two phenolic acids fromChrysanthemum morifolium with phytotoxic and insect growth regulating activity[J]. Journal of Chemical Ecology,2004,30(3):589−606. doi: 10.1023/B:JOEC.0000018631.67394.e5
    [41]
    Liu Y H, Mou X, Zhou D Y, et al. Extraction of flavonoids from Chrysanthemum morifolium and antitumor activity in vitro[J]. Experimental and Therapeutic Medicine,2018,15(2):1203−1210.
    [42]
    Li Y F, Yang P Y, Luo Y H, et al. Chemical compositions of chrysanthemum teas and their anti-inflammatory and antioxidant properties[J]. Food Chemistry,2019,286(2):8−16.
    [43]
    Gong J Y, Chu B Q, Gong L X, et al. Comparison of phenolic compounds and the antioxidant activities of fifteen Chrysanthemum morifolium Ramat cv. ‘Hangbaiju’in China[J]. Antioxidants,2019,8(8):325. doi: 10.3390/antiox8080325
  • Cited by

    Periodical cited type(17)

    1. 吕欣然,王淑娟,张丹,朱婷婷,孙翔宇,马婷婷. 不同剂量电子束辐照杀菌处理对黑果腺肋花楸果汁品质的影响. 食品科学. 2025(05): 272-280 .
    2. 兰天,赵沁雨,王家琪,孙翔宇,马婷婷. 益生菌发酵猕猴桃果汁的贮藏特性及货架期预测. 食品工业科技. 2024(05): 301-308 . 本站查看
    3. 张海军,李媛媛,钟祥静. 超高压灭菌技术在食品加工中的应用探讨. 粮油与饲料科技. 2024(02): 10-12 .
    4. 李媛媛,张海军,钟祥静. 基于超高压灭菌技术的农产品加工过程质量控制研究. 南方农机. 2024(17): 170-173 .
    5. 赵佳宇,易宗伟,蔡文超,马佳佳,王玉荣,单春会,郭壮. 动态超高压微射流技术对红枣酒品质的影响. 中国酿造. 2024(09): 147-151 .
    6. 程婧祺,秦雪,邱月,关宁,廖江,余志宝,裴晓燕,杨鑫焱,姜毓君,满朝新. 预测微生物学模型在乳及乳制品中的应用. 中国乳品工业. 2024(09): 50-55 .
    7. 张丽娟,邹波,肖更生,徐玉娟,余元善,吴继军,李璐. 不同打浆及杀菌处理对荔枝浆品质的影响. 食品工业科技. 2023(07): 329-336 . 本站查看
    8. 朱卫芳,黄兰淇,张颂函,马琳,陈建波,方朝阳. 25%吡唑醚菌酯悬浮剂在蓝莓中的残留行为及膳食风险评估. 农药科学与管理. 2023(01): 47-53 .
    9. 马琳,赵颖,陈建波,赵莉. 基于胶体金免疫层析法快速检测蓝莓中的百菌清残留. 农药学学报. 2023(02): 435-443 .
    10. 高惠颖,宋娟,景缘,于泳渤,张瑞,刘静,胡雨晴,吕长鑫,马志恒. NFC冻梨苹果汁配方优化及其贮藏品质. 食品研究与开发. 2023(11): 93-99 .
    11. 武正芳,马意龙,金诺,胡飞,章建国,魏兆军. 臭氧对食品加工中多酚影响的研究进展. 农产品加工. 2023(18): 79-82+92 .
    12. 赵倩,谢彦纯,赵冲. 百香果红茶饮料的研制. 中国果菜. 2023(12): 7-13 .
    13. 马琳,朱卫芳,占绣萍,陈建波,赵莉. 嘧霉胺在蓝莓中的残留行为及膳食风险评估. 农药学学报. 2022(04): 884-889 .
    14. 任博文,董璇,何珊. 超高压技术在食品应用中的研究进展. 农产品加工. 2022(16): 61-63+67 .
    15. 黄丽萍,靳学远,谭演清,陈涛,王华民. 超高压微射流处理对火龙果汁微生物指标及理化特性的影响. 食品安全质量检测学报. 2022(20): 6563-6568 .
    16. 宣晓婷,陈思媛,乐耀元,尚海涛,曾昊溟,凌建刚,张文媛. 高水分南美白对虾虾干货架期预测模型的构建. 农产品加工. 2022(19): 78-82+90 .
    17. 张丽娟,邹波,肖更生,徐玉娟,余元善,吴继军,温靖,李璐. 枸杞原浆低氧打浆联合不同杀菌技术的比较分析. 现代食品科技. 2022(11): 158-165 .

    Other cited types(18)

Catalog

    Article Metrics

    Article views (461) PDF downloads (78) Cited by(35)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return