ZHANG Weijie, XIE Xingfei, YAN He. Effect of a Compound Chinese Herbal Medicine on Cognitive Dysfunction and Gut Microbiota in the Model Mouse with Alzheimer’s Disease[J]. Science and Technology of Food Industry, 2021, 42(13): 345−350. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080074.
Citation: ZHANG Weijie, XIE Xingfei, YAN He. Effect of a Compound Chinese Herbal Medicine on Cognitive Dysfunction and Gut Microbiota in the Model Mouse with Alzheimer’s Disease[J]. Science and Technology of Food Industry, 2021, 42(13): 345−350. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080074.

Effect of a Compound Chinese Herbal Medicine on Cognitive Dysfunction and Gut Microbiota in the Model Mouse with Alzheimer’s Disease

More Information
  • Received Date: August 09, 2020
  • Available Online: May 12, 2021
  • In this study, the model of transgenic mouse with Alzheimer’s disease (AD) was used to explore the potential mechanism of Compound Chinese Herbal Medicine (CCHM) based on Xiaoyaosan in alleviating the symptoms of AD. The effects of CCHM on cognitive dysfunction and fecal microbiota structure, composition and function in AD model mouse was investigated by using behavioral tests (including escaped latency and number of crossing the target platformin Morris water maze experiment) and 16S rRNA gene sequencing. Compared with AD group, the behavioral tests results showed that CCHM could improve the cognitive function of mouse, including shorten escaped latency and increased the number of crossing the platform (P<0.05). After CCHM treatment, the Alpha diversity of fecal microbiota increased, and the fecal bacterial profiles of the CCHM group deviated from those of the AD group, and the microbial communities of the CCHM group were close to those of the wild-type (WT) normal mouse. Furthermore, compared with WT group, the relative abundance of OTU345, OTU380 and OTU264 significantly decreased in AD group (P<0.05), while it was obviously enhanced after CCHM intervention (P<0.05), in which OTU345 and OTU380 belonged to Lachnospiraceae, a butyrate-producing bacterium. In addition, by analyzing the level of intestinal microflora in mice, it was also found that, compared with WT group, the relative abundance of Lachnospiraceae in AD group decreased significantly (P<0.05), while the relative abundance of Lachnospiraceae increased significantly after CCHM intervention (P<0.05).Finally, the 16S rRNA gene function prediction results showed that CCHM had a certain regulatory effect on gut microbial dysfunction in AD model mice. Therefore, CCHM could improve the symptoms of AD mice and affected their intestinal flora, providing a theoretical basis for the identification of its potential mechanism of action.
  • [1]
    Hu X, Wang T, Jin F. Alzheimer’s disease and gut microbiota[J]. Science China-Life Sciences,2016,59(10):1006−1023. doi: 10.1007/s11427-016-5083-9
    [2]
    郑妍鹏, 何金生, 洪涛. 阿尔茨海默病体液生物学标记物研究进展[J]. 中国科学C辑,2009,39(9):821−829.
    [3]
    Martin P, Anders W, Maelenn G, et al. World alzheimer disease report[R]. London: Alzheimer’s disease international, 2015.
    [4]
    Sampson T R, Debelius J W, Thron T, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of parkinson's disease[J]. Cell,2016,167(6):1469−1480. doi: 10.1016/j.cell.2016.11.018
    [5]
    Vogt N M, Kerby R L, Harding S, et al. Gut microbiome alterations in alzheimer’s disease and the relationship with csf biomarkers[J]. Alzheimer’s & Dementia,2017,13(7):563.
    [6]
    Ng A, Tam W W, Zhang M W, et al. IL-1beta, IL-6, TNF- alpha and CRP in elderly patients with depression or alzheimer's disease: Systematic review and meta-analysis[J]. Scientific Reports,2018,8(1):12050. doi: 10.1038/s41598-018-30487-6
    [7]
    Cattaneo A, Cattane N, Galluzzi S, et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly[J]. Neurobiology of Aging,2017,49:60−68. doi: 10.1016/j.neurobiolaging.2016.08.019
    [8]
    Zhang R, Miller R G, Gascon R, et al. Circulating endotoxin and systemic immune activation in sporadic amyotrophic lateral sclerosis (sALS)[J]. Journal of Neuroimmunology,2009,206(1−2):121−124. doi: 10.1016/j.jneuroim.2008.09.017
    [9]
    Montagne A, Zhao Z, Zlokovic B V. Alzheimer’s disease: A matter of blood-brain barrier dysfunction[J]. Journal of Experimental Medicine,2017,214(11):3151−3169. doi: 10.1084/jem.20171406
    [10]
    Carrano A, Hoozemans J J, Rozemuller A J, et al. Amyloid beta induces oxidative stress-mediated blood-brain barrier changes in capillary amyloid angiopathy[J]. Antioxidants & Redox Signaling,2011,15(5):1167−1178.
    [11]
    Richard E, Carrano A, Hoozemans JJ, et al. Characteristics of dyshoric capillary cerebral amyloid angiopathy[J]. Journal of Neuropathology and Experimental Neurology,2010,69(11):1158−1167. doi: 10.1097/NEN.0b013e3181fab558
    [12]
    Erickson M A, Banks W A. Blood-brain barrier dysfunction as a cause and consequence of Alzheimer's disease[J]. Journal of Cerebral Blood Flow and Metabolism,2013,33(10):1500−1513. doi: 10.1038/jcbfm.2013.135
    [13]
    Kowalski K, Mulak A. Brain-gut-microbiota axis in alzheimer's disease[J]. Journal of Neurogastroenterology and Motility,2019,25(1):48−60. doi: 10.5056/jnm18087
    [14]
    Petra A I, Panagiotidou S, Hatziagelaki E, et al. Gut-microbiota-brain axis and its effect on neuropsychiatric disorders with suspected immune dysregulation[J]. Clinical Therapeutics,2015,37(5):984−995. doi: 10.1016/j.clinthera.2015.04.002
    [15]
    Akbari E, Asemi Z, Daneshvar K R, et al. Effect of probiotic supplementation on cognitive function and metabolic status in alzheimer’s disease: A randomized, double-blind and controlled trial[J]. Frontiers in Aging Neuroscience,2016,8:256.
    [16]
    黄玉芳, 卞慧敏, 刘涛, 等. 开心散对记忆障碍小鼠脑组织一氧化氮、胆碱酯酶含量的影响[J]. 北京中医药大学学报,2001,24(4):40−41. doi: 10.3321/j.issn:1006-2157.2001.04.015
    [17]
    陈辉扬, 刘志承. 益智汤对老年性痴呆模型神经元RNA和Nissl体影响的研究[J]. 现代预防医学,2005,32(8):949−951. doi: 10.3969/j.issn.1003-8507.2005.08.041
    [18]
    王虎平, 邢喜平, 张雯娟, 等. 逍遥散对阿尔茨海默病模型小鼠学习记忆及神经递质的影响[J]. 中国老年学杂志,2014,34(9):2468−2470. doi: 10.3969/j.issn.1005-9202.2014.09.073
    [19]
    沈小丽, 彭国茳, 孙海峰, 等. 16S rRNA基因的PCR-DGGE技术分析逍遥散干预抑郁模型大鼠盲肠菌群的变化[J]. 山西医科大学学报,2015,46(3):240−245.
    [20]
    刘伟. 逍遥散干预慢性温和性不可预知应激大鼠盲肠菌群及组织研究[D]. 太原: 山西大学, 2011.
    [21]
    Cheng M, Zhang X, Zhu J, et al. A metagenomics approach to the intestinal microbiome structure and function in high fat diet-induced obesity mice fed with oolong tea polyphenols[J]. Food & Function,2018,9(2):1079−1087.
    [22]
    Qu W, Liu S, Zhang W, et al. Impact of traditional Chinese medicine treatment on chronic unpredictable mild stress-induced depression-like behaviors: Intestinal microbiota and gut microbiome function[J]. Food & Function,2019,10(9):5886−5897.
    [23]
    Zahedi M, Hojjati M R, Fathpour H, et al. Effect of rheum ribes hydro-alcoholic extract on memory impairments in rat model of Alzheimer’s disease[J]. Iranian Journal of Pharmaceutical Research,2015,14(4):1197−1206.
    [24]
    Qu Z Q, Zhou Y, Zeng Y S, et al. Pretreatment with Rhodiola rosea extract reduces cognitive impairment induced by intracerebroventricular streptozotocin in rats: Implication of anti-oxidative and neuroprotective effects[J]. Biomedical and Environmental Sciences,2009,22(4):318−326. doi: 10.1016/S0895-3988(09)60062-3
    [25]
    Strati F, Cavalieri D, Albanese D, et al. Altered gut microbiota in Rett syndrome[J]. Microbiome,2016,4(1):41. doi: 10.1186/s40168-016-0185-y
    [26]
    Zhuang Z Q, Shen L L, Li W W, et al. Gut microbiota is altered in patients with Alzheimer’s disease[J]. Journal of Alzheimer’s Disease,2018,63(4):1337−1346. doi: 10.3233/JAD-180176
    [27]
    Minter M R, Hinterleitner R, Meisel M, et al. Antibiotic-induced perturbations in microbial diversity during post-natal development alters amyloid pathology in an aged APPSWE/PS1ΔE9 murine model of Alzheimer’s disease[J]. Scientific Reports,2017,7(1):10411. doi: 10.1038/s41598-017-11047-w
    [28]
    Li H, Sun J, Wang F, Ding G, et al. Sodium butyrate exerts neuroprotective effects by restoring the blood-brain barrier in traumatic brain injury mice[J]. Brain Research,2016,1642:70−78. doi: 10.1016/j.brainres.2016.03.031
    [29]
    Govindarajan N, Agis-Balboa R C, Walter J, et al. Sodium butyrate improves memory function in an Alzheimer's disease mouse model when administered at an advanced stage of disease progression[J]. Journal of Alzhmers Disease Jad,2011,26(1):187−197.
    [30]
    Kilgore M, Miller C A, Fass D M, et al. Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer’s disease[J]. Neuropsychopharmacology: Official publication of the American College of Neuropsychopharmacology,2009,35(4):870−880.
    [31]
    Strati F, Cavalieri D, Albanese D, et al. New evidences on the altered gut microbiota in autism spectrum disorders[J]. Microbiome,2017,5(1):24. doi: 10.1186/s40168-017-0242-1
    [32]
    Zheng P, Zeng B, Zhou C, et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host's metabolism[J]. Mol Psychiatry,2016,21(6):786−796. doi: 10.1038/mp.2016.44
  • Cited by

    Periodical cited type(11)

    1. 裘一婧,贾彦博,江海,孙岚,陈美春,陈丽芳,余菁,林舒忆. UPLC-MS/MS测定凉果类酵素食品中的致泻类非法添加物. 发酵科技通讯. 2024(01): 1-7 .
    2. 赵一萌,索晓雄,刘彩霞,尚彩玲,杜晨晖,闫艳,裴香萍. 药用植物蛋白提取方法及生物活性研究进展. 食品安全质量检测学报. 2024(15): 119-126 .
    3. 丘梓慧,陈梓雅,陈爽,王琴,肖更生,彭进明. 超微粉碎果蔬粉的活性成分、物理特性与食品开发研究进展. 现代食品科技. 2024(11): 398-409 .
    4. 周勤文. 酸枣仁蛋白的提取工艺优化分析. 中国食品工业. 2023(02): 95-97+46 .
    5. 孟楠,秦令祥,曹源,高愿军. 超微冷冻前处理协同渗漉法提取食叶草黄酮工艺优化及其抗氧化、降血糖活性研究. 食品安全质量检测学报. 2023(13): 249-257 .
    6. 谭力铭,曹妍,裴海生,郝建雄,李慧颖. 酶法制备酸枣仁ACE抑制肽理化性质研究. 食品工业科技. 2022(02): 84-92 . 本站查看
    7. 任晓婵,常婧瑶,马晓丽,孔保华,辛莹,胡公社,刘骞. 超微粉碎后粒径对大麦全粉品质特性的影响. 食品工业科技. 2022(10): 80-86 . 本站查看
    8. 赵学旭,武蕊,衣春敏,武安琪,马培轩,单良. 沙棘果渣粉的超微冷冻粉碎制备及其理化性质与结构特性. 现代食品科技. 2022(05): 87-95 .
    9. 易佳,刘昆仑. 超微联合超声波优化提取米糠蛋白及其对米糠蛋白溶解性的影响. 食品研究与开发. 2022(19): 117-123 .
    10. 王士佳,张璐,葛善赢,李佳宸,吴学智,张佰清. 两种粉碎机型式对鹰嘴豆芽超微粉食用品质的影响. 食品安全质量检测学报. 2022(20): 6699-6705 .
    11. 刘晖,李光哲,肖凤琴,杨亦柳,韩荣欣,张红印,严铭铭. 酸枣仁蛋白的分离纯化及体外免疫活性. 食品科技. 2022(12): 214-220 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (375) PDF downloads (62) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return