Citation: | ZHANG Weijie, XIE Xingfei, YAN He. Effect of a Compound Chinese Herbal Medicine on Cognitive Dysfunction and Gut Microbiota in the Model Mouse with Alzheimer’s Disease[J]. Science and Technology of Food Industry, 2021, 42(13): 345−350. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080074. |
[1] |
Hu X, Wang T, Jin F. Alzheimer’s disease and gut microbiota[J]. Science China-Life Sciences,2016,59(10):1006−1023. doi: 10.1007/s11427-016-5083-9
|
[2] |
郑妍鹏, 何金生, 洪涛. 阿尔茨海默病体液生物学标记物研究进展[J]. 中国科学C辑,2009,39(9):821−829.
|
[3] |
Martin P, Anders W, Maelenn G, et al. World alzheimer disease report[R]. London: Alzheimer’s disease international, 2015.
|
[4] |
Sampson T R, Debelius J W, Thron T, et al. Gut microbiota regulate motor deficits and neuroinflammation in a model of parkinson's disease[J]. Cell,2016,167(6):1469−1480. doi: 10.1016/j.cell.2016.11.018
|
[5] |
Vogt N M, Kerby R L, Harding S, et al. Gut microbiome alterations in alzheimer’s disease and the relationship with csf biomarkers[J]. Alzheimer’s & Dementia,2017,13(7):563.
|
[6] |
Ng A, Tam W W, Zhang M W, et al. IL-1beta, IL-6, TNF- alpha and CRP in elderly patients with depression or alzheimer's disease: Systematic review and meta-analysis[J]. Scientific Reports,2018,8(1):12050. doi: 10.1038/s41598-018-30487-6
|
[7] |
Cattaneo A, Cattane N, Galluzzi S, et al. Association of brain amyloidosis with pro-inflammatory gut bacterial taxa and peripheral inflammation markers in cognitively impaired elderly[J]. Neurobiology of Aging,2017,49:60−68. doi: 10.1016/j.neurobiolaging.2016.08.019
|
[8] |
Zhang R, Miller R G, Gascon R, et al. Circulating endotoxin and systemic immune activation in sporadic amyotrophic lateral sclerosis (sALS)[J]. Journal of Neuroimmunology,2009,206(1−2):121−124. doi: 10.1016/j.jneuroim.2008.09.017
|
[9] |
Montagne A, Zhao Z, Zlokovic B V. Alzheimer’s disease: A matter of blood-brain barrier dysfunction[J]. Journal of Experimental Medicine,2017,214(11):3151−3169. doi: 10.1084/jem.20171406
|
[10] |
Carrano A, Hoozemans J J, Rozemuller A J, et al. Amyloid beta induces oxidative stress-mediated blood-brain barrier changes in capillary amyloid angiopathy[J]. Antioxidants & Redox Signaling,2011,15(5):1167−1178.
|
[11] |
Richard E, Carrano A, Hoozemans JJ, et al. Characteristics of dyshoric capillary cerebral amyloid angiopathy[J]. Journal of Neuropathology and Experimental Neurology,2010,69(11):1158−1167. doi: 10.1097/NEN.0b013e3181fab558
|
[12] |
Erickson M A, Banks W A. Blood-brain barrier dysfunction as a cause and consequence of Alzheimer's disease[J]. Journal of Cerebral Blood Flow and Metabolism,2013,33(10):1500−1513. doi: 10.1038/jcbfm.2013.135
|
[13] |
Kowalski K, Mulak A. Brain-gut-microbiota axis in alzheimer's disease[J]. Journal of Neurogastroenterology and Motility,2019,25(1):48−60. doi: 10.5056/jnm18087
|
[14] |
Petra A I, Panagiotidou S, Hatziagelaki E, et al. Gut-microbiota-brain axis and its effect on neuropsychiatric disorders with suspected immune dysregulation[J]. Clinical Therapeutics,2015,37(5):984−995. doi: 10.1016/j.clinthera.2015.04.002
|
[15] |
Akbari E, Asemi Z, Daneshvar K R, et al. Effect of probiotic supplementation on cognitive function and metabolic status in alzheimer’s disease: A randomized, double-blind and controlled trial[J]. Frontiers in Aging Neuroscience,2016,8:256.
|
[16] |
黄玉芳, 卞慧敏, 刘涛, 等. 开心散对记忆障碍小鼠脑组织一氧化氮、胆碱酯酶含量的影响[J]. 北京中医药大学学报,2001,24(4):40−41. doi: 10.3321/j.issn:1006-2157.2001.04.015
|
[17] |
陈辉扬, 刘志承. 益智汤对老年性痴呆模型神经元RNA和Nissl体影响的研究[J]. 现代预防医学,2005,32(8):949−951. doi: 10.3969/j.issn.1003-8507.2005.08.041
|
[18] |
王虎平, 邢喜平, 张雯娟, 等. 逍遥散对阿尔茨海默病模型小鼠学习记忆及神经递质的影响[J]. 中国老年学杂志,2014,34(9):2468−2470. doi: 10.3969/j.issn.1005-9202.2014.09.073
|
[19] |
沈小丽, 彭国茳, 孙海峰, 等. 16S rRNA基因的PCR-DGGE技术分析逍遥散干预抑郁模型大鼠盲肠菌群的变化[J]. 山西医科大学学报,2015,46(3):240−245.
|
[20] |
刘伟. 逍遥散干预慢性温和性不可预知应激大鼠盲肠菌群及组织研究[D]. 太原: 山西大学, 2011.
|
[21] |
Cheng M, Zhang X, Zhu J, et al. A metagenomics approach to the intestinal microbiome structure and function in high fat diet-induced obesity mice fed with oolong tea polyphenols[J]. Food & Function,2018,9(2):1079−1087.
|
[22] |
Qu W, Liu S, Zhang W, et al. Impact of traditional Chinese medicine treatment on chronic unpredictable mild stress-induced depression-like behaviors: Intestinal microbiota and gut microbiome function[J]. Food & Function,2019,10(9):5886−5897.
|
[23] |
Zahedi M, Hojjati M R, Fathpour H, et al. Effect of rheum ribes hydro-alcoholic extract on memory impairments in rat model of Alzheimer’s disease[J]. Iranian Journal of Pharmaceutical Research,2015,14(4):1197−1206.
|
[24] |
Qu Z Q, Zhou Y, Zeng Y S, et al. Pretreatment with Rhodiola rosea extract reduces cognitive impairment induced by intracerebroventricular streptozotocin in rats: Implication of anti-oxidative and neuroprotective effects[J]. Biomedical and Environmental Sciences,2009,22(4):318−326. doi: 10.1016/S0895-3988(09)60062-3
|
[25] |
Strati F, Cavalieri D, Albanese D, et al. Altered gut microbiota in Rett syndrome[J]. Microbiome,2016,4(1):41. doi: 10.1186/s40168-016-0185-y
|
[26] |
Zhuang Z Q, Shen L L, Li W W, et al. Gut microbiota is altered in patients with Alzheimer’s disease[J]. Journal of Alzheimer’s Disease,2018,63(4):1337−1346. doi: 10.3233/JAD-180176
|
[27] |
Minter M R, Hinterleitner R, Meisel M, et al. Antibiotic-induced perturbations in microbial diversity during post-natal development alters amyloid pathology in an aged APPSWE/PS1ΔE9 murine model of Alzheimer’s disease[J]. Scientific Reports,2017,7(1):10411. doi: 10.1038/s41598-017-11047-w
|
[28] |
Li H, Sun J, Wang F, Ding G, et al. Sodium butyrate exerts neuroprotective effects by restoring the blood-brain barrier in traumatic brain injury mice[J]. Brain Research,2016,1642:70−78. doi: 10.1016/j.brainres.2016.03.031
|
[29] |
Govindarajan N, Agis-Balboa R C, Walter J, et al. Sodium butyrate improves memory function in an Alzheimer's disease mouse model when administered at an advanced stage of disease progression[J]. Journal of Alzhmers Disease Jad,2011,26(1):187−197.
|
[30] |
Kilgore M, Miller C A, Fass D M, et al. Inhibitors of class 1 histone deacetylases reverse contextual memory deficits in a mouse model of Alzheimer’s disease[J]. Neuropsychopharmacology: Official publication of the American College of Neuropsychopharmacology,2009,35(4):870−880.
|
[31] |
Strati F, Cavalieri D, Albanese D, et al. New evidences on the altered gut microbiota in autism spectrum disorders[J]. Microbiome,2017,5(1):24. doi: 10.1186/s40168-017-0242-1
|
[32] |
Zheng P, Zeng B, Zhou C, et al. Gut microbiome remodeling induces depressive-like behaviors through a pathway mediated by the host's metabolism[J]. Mol Psychiatry,2016,21(6):786−796. doi: 10.1038/mp.2016.44
|
1. |
裘一婧,贾彦博,江海,孙岚,陈美春,陈丽芳,余菁,林舒忆. UPLC-MS/MS测定凉果类酵素食品中的致泻类非法添加物. 发酵科技通讯. 2024(01): 1-7 .
![]() | |
2. |
赵一萌,索晓雄,刘彩霞,尚彩玲,杜晨晖,闫艳,裴香萍. 药用植物蛋白提取方法及生物活性研究进展. 食品安全质量检测学报. 2024(15): 119-126 .
![]() | |
3. |
丘梓慧,陈梓雅,陈爽,王琴,肖更生,彭进明. 超微粉碎果蔬粉的活性成分、物理特性与食品开发研究进展. 现代食品科技. 2024(11): 398-409 .
![]() | |
4. |
周勤文. 酸枣仁蛋白的提取工艺优化分析. 中国食品工业. 2023(02): 95-97+46 .
![]() | |
5. |
孟楠,秦令祥,曹源,高愿军. 超微冷冻前处理协同渗漉法提取食叶草黄酮工艺优化及其抗氧化、降血糖活性研究. 食品安全质量检测学报. 2023(13): 249-257 .
![]() | |
6. |
谭力铭,曹妍,裴海生,郝建雄,李慧颖. 酶法制备酸枣仁ACE抑制肽理化性质研究. 食品工业科技. 2022(02): 84-92 .
![]() | |
7. |
任晓婵,常婧瑶,马晓丽,孔保华,辛莹,胡公社,刘骞. 超微粉碎后粒径对大麦全粉品质特性的影响. 食品工业科技. 2022(10): 80-86 .
![]() | |
8. |
赵学旭,武蕊,衣春敏,武安琪,马培轩,单良. 沙棘果渣粉的超微冷冻粉碎制备及其理化性质与结构特性. 现代食品科技. 2022(05): 87-95 .
![]() | |
9. |
易佳,刘昆仑. 超微联合超声波优化提取米糠蛋白及其对米糠蛋白溶解性的影响. 食品研究与开发. 2022(19): 117-123 .
![]() | |
10. |
王士佳,张璐,葛善赢,李佳宸,吴学智,张佰清. 两种粉碎机型式对鹰嘴豆芽超微粉食用品质的影响. 食品安全质量检测学报. 2022(20): 6699-6705 .
![]() | |
11. |
刘晖,李光哲,肖凤琴,杨亦柳,韩荣欣,张红印,严铭铭. 酸枣仁蛋白的分离纯化及体外免疫活性. 食品科技. 2022(12): 214-220 .
![]() |