YANG Yang, ZOU Dong, JI Jian, et al. Optimization of Conditions for Biological Removal of Patulin from Apple Pomace Feed and Evaluation of Nutrients in the Feed Before and After Removal of Patulin[J]. Science and Technology of Food Industry, 2021, 42(9): 129−135. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110093.
Citation: YANG Yang, ZOU Dong, JI Jian, et al. Optimization of Conditions for Biological Removal of Patulin from Apple Pomace Feed and Evaluation of Nutrients in the Feed Before and After Removal of Patulin[J]. Science and Technology of Food Industry, 2021, 42(9): 129−135. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110093.

Optimization of Conditions for Biological Removal of Patulin from Apple Pomace Feed and Evaluation of Nutrients in the Feed Before and After Removal of Patulin

More Information
  • Received Date: November 10, 2020
  • Available Online: March 15, 2021
  • In order to reduce patulin content in apple pomace, a strain of Aspergillus miger FS10, which had the ability to degrade patulin, was used as fermentation strain to ferment patulin contaminated apple pomace for detoxification. The condition of inoculation quantity, material to water ratio, fermentation time and temperature were optimized by single-factor experiment and the analysis of response surface methodology determined the optimum fermentation conditions. Nutritional status was evaluated with the treatment of Aspergillus niger inoculation in apple pomace. The results indicated that the optimal treatment conditions in Aspergillus niger fermentative degradation were: Inoculation volume 10%, 31 ℃ for fermentation temperature, 4 d for fermentation time, and 1: 3.2 (g/mL) for the ratio of material to water. Patulin in apple pomace could be completely removed. The relative error between the verification result and the theoretical value was 1.67%, indicating that the optimized parameters were feasible and had practical application value. Evaluation of nutrients in apple pomace before and after fermentation indicated that the crude fiber content in apple pomace decreased from 20.26% to 17.32%, the crude protein content increased from 8.16% to 10.08%, the crude fat content increased from 3.32% to 4.06%, total amino acid content increased from 64.43 mg/g to 73.78 mg/g. In short, the research illustrated that the Aspergillus niger fermentation could not only remove patulin from contaminated apple pomace, but also effectively improve the nutritional value of apple pomace. These findings provided strong technical support for the development of safe and nutritious apple pomace feed.
  • [1]
    Alvarez A, Gelezoglo R, Garmendia G, et al. Role of Antarctic yeast in biocontrol of Penicillium expansum and patulin reduction of apples[J]. Environmental Sustainability,2019,2(3):277−283. doi: 10.1007/s42398-019-00081-1
    [2]
    Boussabbeh M, Ben S I, Belguesmi F, et al. Tissue oxidative stress induced by patulin and protective effect of crocin[J]. Neurotoxicology,2016,53:343−349. doi: 10.1016/j.neuro.2015.11.005
    [3]
    张欣怡, 王威浩, 邓丽莉, 等. 水果及其制品中展青霉素的研究进展[J]. 食品工业科技,2017,38(11):379−384.
    [4]
    Song E, Su C, Fu J, et al. Selenium supplementation shows protective effects against patulin-induced brain damage in mice via increases in GSH-related enzyme activity and expression[J]. Life Sciences,2014,109(1):37−43. doi: 10.1016/j.lfs.2014.05.022
    [5]
    Assuncao R, Alvito P, Kleiveland C R, et al. Characterization of in vitro effects of patulin on intestinal epithelial and immune cells[J]. Toxicol Lett,2016,250-251(1):47−56.
    [6]
    Lu X, Zhang E, Yin S, et al. Methylseleninic acid prevents patulin-induced hepatotoxicity and nephrotoxicity via the inhibition of oxidative stress and inactivation of p53 and mapks[J]. J Agric Food Chem,2017,65(26):5299−5305. doi: 10.1021/acs.jafc.7b01338
    [7]
    沈友明, 聂继云, 李志霞, 等. 果品中真菌毒素的污染、毒性、生物合成及影响因素研究进展[J]. 食品科学,2018,39(9):294−304. doi: 10.7506/spkx1002-6630-201809044
    [8]
    张洪芳. 解析《食品中真菌毒素限量》新标准[J]. 食品安全导刊,2013(1):46−47.
    [9]
    Puel O, Galtier P, Oswald I P. Biosynthesis and toxicological effects of patulin[J]. Toxins,2010,2(4):613−631. doi: 10.3390/toxins2040613
    [10]
    Guo W, Pi F, Zhang H, et al. A novel molecularly imprinted electrochemical sensor modified with carbon dots, chitosan, gold nanoparticles for the determination of patulin[J]. Biosensors and Bioelectronics,2017,98(15):299−304.
    [11]
    Luo Y, Zhou Z, Yue T. Synthesis and characterization of nontoxic chitosan-coated Fe3O4 particles for patulin adsorption in a juice-pH simulation aqueous[J]. Food Chem,2017,221:317−323. doi: 10.1016/j.foodchem.2016.09.008
    [12]
    岳志鹏, 黄彩平, 张菡, 等. 二氧化钛纳米管光催化降解苹果汁中展青霉素的工艺优化[J]. 食品工业科技,2020,41(17):212−218.
    [13]
    张晓敏. 二氧化氯(ClO2)对扩展青霉致病力及其产毒能力的影响[D]. 济南: 齐鲁工业大学, 2019.
    [14]
    Zoghi A, Khosravi-darani K, Sohrabvandi S, et al. Effect of probiotics on patulin removal from synbiotic apple juice[J]. J Sci Food Agric,2017,97(8):2601−2609. doi: 10.1002/jsfa.8082
    [15]
    杨其亚. 胶红酵母控制苹果展青霉素及降解的应答调控机制[D]. 镇江: 江苏大学, 2017.
    [16]
    Kokkinidou S, Floros J D, Laborde L F. Kinetics of the thermal degradation of patulin in the presence of ascorbic acid[J]. J Food Sci,2014,79(1):T108−114. doi: 10.1111/1750-3841.12316
    [17]
    Ji C, Fan Y, Zhao L. Review on biological degradation of mycotoxins[J]. Anim Nutr,2016,2(3):127−133. doi: 10.1016/j.aninu.2016.07.003
    [18]
    龚雪, 田丰伟, 翟齐啸, 等. 高效降解展青霉素乳酸菌的分离鉴定及去除机理研究[J]. 食品工业科技,2015,36(22):179−183.
    [19]
    张放. 2018年我国主要水果生产统计简析[J]. 中国果业信息,2020,37(7):32−33. doi: 10.3969/j.issn.1673-1514.2020.07.006
    [20]
    王正荣, 阮夏青, 马文涛, 等. 苹果渣结合预乳化稻米油对低脂猪肉丸品质的影响[J]. 食品科学,2020,41(12):54−59. doi: 10.7506/spkx1002-6630-20181130-353
    [21]
    Dhillon G S, Kaur S, Brar S K, et al. Potential of apple pomace as a solid substrate for fungal cellulase and hemicellulase bioproduction through solid-state fermentation[J]. Industrial Crops and Products,2012:38; 6−13.
    [22]
    王金明, 霍丽娟. 常见植物性饲料中抗营养因子的危害分析[J]. 国外畜牧学,2011,31(1):77−79.
    [23]
    Snini S P, Tannous J, Heuillard P, et al. Patulin is a cultivar-dependent aggressiveness factor favouring the colonization of apples by Penicillium expansum[J]. Mol Plant Pathol,2016,17(6):920−930. doi: 10.1111/mpp.12338
    [24]
    袁惠君, 袁毅君, 刘左军, 等. 不同平菇菌种发酵对苹果渣营养成分的影响[J]. 食品工业科技,2010,31(4):186−187.
    [25]
    庄童琳, 李虎, 郭凤霞, 等. 黑曲霉固态混菌发酵苹果渣生产多酶生物饲料[J]. 食品工业科技,2010,31(12):171−175.
    [26]
    徐丹. 酿造酱油中黄曲霉毒素B1的产生及其控制研究[D]. 无锡: 江南大学, 2012.
    [27]
    Qiu T Y, Wang H, Yang Y, et al. Exploration of biodegradation mechanism by AFB1-degrading strain Aspergillus niger FS10 and its metabolic feedback[J]. Food Control,2021,12(1107609).
    [28]
    Sun X, He X, Xue K, et al. Biological detoxification of zearalenone by Aspergillus niger strain FS10[J]. Food Chem Toxicol,2014:72: 76−82.
    [29]
    刘倩男. 苹果皮渣菌体蛋白饲料的制备及饲用有效性研究[D]. 北京: 中国农业科学院, 2016.
    [30]
    杜瑾, 张晓青, 张爱君, 等. 响应面法优化酿酒酵母中S-腺苷甲硫氨酸的提取工艺[J]. 食品科学,2019,40(18):295−301. doi: 10.7506/spkx1002-6630-20181010-075
    [31]
    蔡辉益. 中国生物发酵饲料研究与应用技术发展趋势[J]. 中国畜牧业,2019(16):81−83. doi: 10.3969/j.issn.2095-2473.2019.21.038
  • Related Articles

    [1]PEI Yubo, YU Miao, ZHANG Guofang, LI Chun. Research Status of Nutrients and Products of Buffalo Milk[J]. Science and Technology of Food Industry, 2024, 45(18): 344-354. DOI: 10.13386/j.issn1002-0306.2023060170
    [2]LAI Si-tong, LIU Jin-long, LIU Jun-li, SUN Deng, CUI Qing-liang. Effects of Particle Size on Nutrients and Functional Properties of Stems and Leaves in Different Parts of Alfalfa[J]. Science and Technology of Food Industry, 2020, 41(2): 27-32. DOI: 10.13386/j.issn1002-0306.2020.02.005
    [3]FAN Xin-yi, TAO Ning-ping, WANG Xi-chang. Research Progress on the Dissolution,Migration of Substance and Formation of Micro/nanoparticles in Soup[J]. Science and Technology of Food Industry, 2019, 40(17): 355-359. DOI: 10.13386/j.issn1002-0306.2019.17.058
    [4]ZHANG Xin-yi, WANG Wei-hao, DENG Li-li, YAO Shi-xiang, ZENG Kai-fang. Research progress in patulin of fruits and its products[J]. Science and Technology of Food Industry, 2017, (11): 379-384. DOI: 10.13386/j.issn1002-0306.2017.11.065
    [5]FANG Fang, WANG Feng-zhong. Effects of UV-B radiation on nutrients and bioactive substances in plants[J]. Science and Technology of Food Industry, 2017, (05): 390-396. DOI: 10.13386/j.issn1002-0306.2017.05.066
    [6]HU Jie, CHEN Shu-jun, PANG Zhen-peng, LIU Xiao-juan, XU Xiao-xia, YI Xin, SHI Yue, LI Le. Study on the nutrients change rules during germination of quinoa and quinoa malted milk pulping process[J]. Science and Technology of Food Industry, 2016, (19): 136-142. DOI: 10.13386/j.issn1002-0306.2016.19.018
    [7]YU Xue, HU Wen-zhong, JIANG Ai-li, CHEN Yan-zhu, LIU Xing-bo. Research progress of nutrient elements and the efficacy of Aronia melanocarpa[J]. Science and Technology of Food Industry, 2016, (10): 396-400. DOI: 10.13386/j.issn1002-0306.2016.10.074
    [8]XU Ming- yue, LI Hong- jun, WANG Shan, XIANG Yi, YUAN Lu, HE Zhi- fei. Research advances in detection and removal of Patulin in foods[J]. Science and Technology of Food Industry, 2015, (01): 375-380. DOI: 10.13386/j.issn1002-0306.2015.01.071
    [9]Dynamic changes of some nutrients in the fruits of color pepper during maturation[J]. Science and Technology of Food Industry, 2013, (15): 348-350. DOI: 10.13386/j.issn1002-0306.2013.15.029
    [10]Applications of Nano-carriers in nutrient delivery system[J]. Science and Technology of Food Industry, 2013, (11): 396-399. DOI: 10.13386/j.issn1002-0306.2013.11.040
  • Cited by

    Periodical cited type(10)

    1. 严辉,郭盛,张振宇,赵秋龙,周桂生,杨健,段金廒. 药食两用资源姜的产业发展现状与提质增效策略. 中国中药杂志. 2024(11): 2853-2862 .
    2. 吴萍,蒯梦妮,李乐,张志国,周逸群. 干姜化学成分和药理作用研究进展. 亚太传统医药. 2024(11): 242-246 .
    3. 黄韵霖,谭凯燕,雷向荣,蒋才斌. ICP-MS法测定姜中铅含量及其污染评价与膳食风险评估. 现代食品. 2023(09): 198-201 .
    4. 郭杰,蒋姗,王悦,樊佳,刘晓谦,闫利华,王智民,匡艳辉,王德勤,罗文英. 经典名方中生姜的本草考证及其质量评价. 中国实验方剂学杂志. 2022(02): 27-37 .
    5. 陈巧. 嫩姜和老姜中重金属铅元素和6种农药残留检测及分析. 福建农业科技. 2022(02): 58-62 .
    6. 徐桐,丛竹凤,贺梦媛,董萍,代龙,高鹏. 干姜的研究进展及质量标志物分析. 山东中医杂志. 2022(05): 569-575 .
    7. 黄莉,金凯,蔡嘉洛,戴冰,杨磊,马杰,肖望重. 湘产黄精中24种矿质元素含量测定及主成分分析. 中国药业. 2022(14): 79-83 .
    8. 余代鑫,郭盛,张霞,严辉,张振宇,李海洋,杨健,段金廒. 近红外光谱技术结合化学计量学和机器学习算法的干姜产地溯源研究. 中国中药杂志. 2022(17): 4583-4592 .
    9. 贾妙婷,孙天雄,汪莉,冯慧敏,李玥,强正泽,何军刚,陈晖,李成义. 不同生长期红芪无机元素动态特征探究. 中成药. 2021(05): 1249-1252 .
    10. 贾妙婷,孙天雄,汪莉,冯慧敏,李玥,强正泽,何军刚,王明伟,李成义. 基于熵权TOPSIS模型的无机元素对红芪品质影响的综合评价. 时珍国医国药. 2021(08): 1980-1983 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (205) PDF downloads (16) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return