LIU Qian, JIN Wenhui, JIAO Haotian, et al. Optimization of Extraction Process and Analysis of Monosaccharide Composition of β-1,3-xylan from Caulerpa lentillifera[J]. Science and Technology of Food Industry, 2023, 44(16): 210−217. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100086.
Citation: LIU Qian, JIN Wenhui, JIAO Haotian, et al. Optimization of Extraction Process and Analysis of Monosaccharide Composition of β-1,3-xylan from Caulerpa lentillifera[J]. Science and Technology of Food Industry, 2023, 44(16): 210−217. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100086.

Optimization of Extraction Process and Analysis of Monosaccharide Composition of β-1,3-xylan from Caulerpa lentillifera

More Information
  • Received Date: October 11, 2022
  • Available Online: June 22, 2023
  • This study screened several common economic algae to optimize the extraction process of β-1,3-xylan and analyze its monosaccharide composition. The extraction process of crude xylan was optimized by alkaline extraction method, and the monosaccharide composition of crude xylan was identified by a specific enzymatic method using Caulerpa lentillifera as the main raw material. The effect of extraction time, solid-liquid ratio and NaOH concentration on the yield of crude xylan was optimized with a single factor tests followed by three-three level orthogonal experiment to study the optimal extraction conditions of crude xylan. The results showed that the extraction rate of crude xylan was influenced by the following factors: Extraction time>material-to-liquid ratio>NaOH concentration. The optimum extraction process was: Extraction time of 3 h, NaOH concentration of 2.5 mol·L−1, feed-to-liquid ratio of 1:100 g·mL−1, and the yield of crude xylan was 28.1%±0.6%. The enzymatic products were determined by thin-layer chromatography, which showed that the crude xylan extracted from Caulerpa lentillifera was β-1,3-xylan and the monosaccharide fraction was β-1,3-xylose.
  • [1]
    KONISHI T, NAKATA I, MIYAGI Y, et al. Extraction of β-1, 3 xylan from green algae, Caulerpa lentillifera[J]. Journal of Applied Glycoscience,2012,59(4):161−163. doi: 10.5458/jag.jag.JAG-2011_025
    [2]
    MENDEZ-LITER J A, DE EUGENIO L I, NIETO-DOMÍNGUEZ M, et al. Hemicellulases from Penicillium and Talaromyces for lignocellulosic biomass valorization: A review[J]. Bioresource Technology,2021,324:124623. doi: 10.1016/j.biortech.2020.124623
    [3]
    SAMANTA A K, JAYAPAL N, JAYARAM C, et al. Xylooligosaccharides as prebiotics from agricultural by-products: Production and applications[J]. Bioactive Carbohydrates and Dietary Fibre,2015,5(1):62−71. doi: 10.1016/j.bcdf.2014.12.003
    [4]
    赵芳. 海洋细菌Polaribacter sp. Q13对1, 3/1, 4-木聚糖的降解作用及新型海洋木聚糖酶AlCMCase和XynB的表征[D]. 济南: 山东大学, 2020

    ZHAO F. Degradation of 1, 3/1, 4-xylan by marine bacteria Polaribacter sp. Q13 and characterization of novel marine xylanase AlCMCase and XynB[D]. Jinan: Shandong University, 2020.
    [5]
    SYAKILLA N, GEORGE R, CHYE F Y, et al. A review on nutrients, phytochemicals, and health benefits of green seaweed, Caulerpa lentillifera[J]. Foods,2022,11(18):2832. doi: 10.3390/foods11182832
    [6]
    SUN H N, YU C M, FU H H, et al. Diversity of marine 1, 3-Xylan-Utilizing bacteria and characters of their extracellular 1, 3-Xylanases[J]. Front Microbiol,2021,12:721422. doi: 10.3389/fmicb.2021.721422
    [7]
    KOBAYASHI K, KIMURA S, HEUX L, et al. Crystal transition between hydrate and anhydrous β-1, 3-D-xylan from Penicillus dumetosus[J]. Carbohydrate Polymers,2013,97(1):105−110. doi: 10.1016/j.carbpol.2013.04.035
    [8]
    CAI Z W, GE H H, YI Z W, et al. Characterization of a novel psychrophilic and halophilic β-1, 3-xylanase from deep-sea bacterium, Flammeovirga pacifica strain WPAGA1[J]. International Journal of Biological Macromolecules,2018,118:2176−2184. doi: 10.1016/j.ijbiomac.2018.07.090
    [9]
    CAI L, CHU Y, LIU X, et al. A novel all-in-one strategy for purification and immobilization of β-1, 3-xylanase directly from cell lysate as active and recyclable nanobiocatalyst[J]. Microb Cell Fact,2021,20(1):37. doi: 10.1186/s12934-021-01530-5
    [10]
    童艳梅, 马华威, 胡庭俊, 等. 长茎葡萄蕨藻的组成成分及功能特性研究进展[J]. 食品工业科技,2022,43(7):400−406. [TONG Y M, MA H W, HU T J, et al. Research progress on components and functional characteristics of Caulerpa lentillifera[J]. Science and Technology of Food Industry,2022,43(7):400−406.

    TONG Y M, MA H W, HU T J, et al. Research progress on components and functional characteristics of Caulerpa lentillifera[J]. Science and Technology of Food Industry, 2022, 43(7): 400-406.
    [11]
    IRIKI Y, SUZUKI T, NISIZAWA K, et al. Xylan of siphonaceous green algae[J]. Nature,1960,187(4731):82−83. doi: 10.1038/187082a0
    [12]
    OKAZAKI F, NAKASHIMA N, OGINO C, et al. Biochemical characterization of a thermostable β-1, 3-xylanase from the hyperthermophilic eubacterium, Thermotoga neapolitana strain DSM 4359[J]. Appl Microbiol Biotechnol,2013,97(15):6749−6757. doi: 10.1007/s00253-012-4555-5
    [13]
    YAICH H, AMIRA A B, ABBES F, et al. Effect of extraction procedures on structural, thermal and antioxidant properties of ulvan from Ulva lactuca collected in Monastir coast[J]. International Journal of Biological Macromolecules,2017,105:1430−1439. doi: 10.1016/j.ijbiomac.2017.07.141
    [14]
    SUN Y, LIU Z, SONG S, et al. Anti-inflammatory activity and structural identification of a sulfated polysaccharide CLGP4 from Caulerpa lentillifera[J]. International Journal of Biological Macromolecules,2020,146:931−938. doi: 10.1016/j.ijbiomac.2019.09.216
    [15]
    TABARSA M, KARNJANAPRATUM S, CHO M L, et al. Molecular characteristics and biological activities of anionic macromolecules from Codium fragile[J]. International Journal of Biological Macromolecules,2013,59:1−12. doi: 10.1016/j.ijbiomac.2013.04.022
    [16]
    方再光. 海葡萄: 海南海水养殖产业发展的新引擎与助推器[J]. 中国农村科技, 2020: 25−27

    FANG Z G. Caulerpa lentillifera: a new engine and booster for the development of mariculture industry in Hainan[J]. China Rural Science and Technology, 2020: 25−27.
    [17]
    HUANG H, MO K, LI S, et al. Alteromonas portus sp. nov., an alginate lyase-excreting marine bacterium[J]. International Journal of Systematic and Evolutionary Microbiology,2020,70(3):1516−1521. doi: 10.1099/ijsem.0.003884
    [18]
    龙海珊, 谭彩军, 冯献真, 等. 海葡萄主要营养成分的比较分析[J]. 中国中医药现代远程教育,2020,18(17):124−127. [LONG H S, TAN C J, FENG X Z, et al. Comparative analysis of main nutritional components of Caulerpa lentillifera[J]. Modern Distance Education of Chinese Traditional Medicine,2020,18(17):124−127.

    LONG H S, TAN C J, FENG X Z, et al. Comparative analysis of main nutritional components of Caulerpa lentillifera [J]. Modern Distance Education of Chinese Traditional Medicine, 2020, 18(17): 124-127.
    [19]
    YAP W F, TAY V, TAN S H, et al. Decoding antioxidant and antibacterial potentials of Malaysian green seaweeds: Caulerpa racemosa and Caulerpa lentillifera[J]. Antibiotics,2019,8(3):152. doi: 10.3390/antibiotics8030152
    [20]
    张媚健, 马钰荣, 车馨怡, 等. 海南长茎葡萄蕨藻营养成分分析及其免疫刺激活性研究[J]. 食品科技,2019,44(5):90−96. [ZHANG M J, MA Y R, CHE X Y, et al. Study on nutrient composition and immunostimulative activity of Pteropteris longstem in Hainan[J]. Food Science and Technology,2019,44(5):90−96.

    ZHANG M J, MA Y R, CHE X Y, et al. Study on nutrient composition and immunostimulative activity of Pteropteris longstem in Hainan[J]. Food Science and Technology, 2019, 44 (5): 90-96.
    [21]
    ZHANG M J, MA Y R, CHE X Y, et al. Comparative analysis of nutrient composition of Caulerpa lentillifera from different regions[J]. Journal of Ocean University of China,2020,19(2):439−445. doi: 10.1007/s11802-020-4222-x
    [22]
    LE B, DO D T, NGUYEN H M, et al. Preparation, characterization, and anti-adhesive activity of sulfate polysaccharide from Caulerpa lentillifera against Helicobacter pylori[J]. Polymers,2022,14(22):4993. doi: 10.3390/polym14224993
    [23]
    KIYOHARA M, HAMA Y, YAMAGUCHI K, et al. Structure of β-1,3-xylooligosaccharides generated from Caulerpa racemosa var. laete-virens β-1,3-xylan by the action of β-1,3-xylanase[J]. J Biochem,2006,140(3):369−373. doi: 10.1093/jb/mvj173
    [24]
    YOU Y, SONG H, WANG L, et al. Structural characterization and SARS-CoV-2 inhibitory activity of a sulfated polysaccharide from Caulerpa lentillifera[J]. Carbohydrate Polymers,2022,280:119006. doi: 10.1016/j.carbpol.2021.119006
    [25]
    张顺琦, 陈文, 王湘君, 等. 醇提海菖蒲粗多糖工艺研究[J]. 内江科技,2020,41(2):96−97. [ZHANG S Q, CHEN W, WANG X J, et al. Study on extraction of crude polysaccharide from Acorus calamus by alcohol[J]. Neijiang Science and Technology,2020,41(2):96−97.

    ZHANG S Q, CHEN W, WANG X J, et al. Study on extraction of crude polysaccharide from Acorus calamus by alcohol[J]. Neijiang Science and Technology, 2020, 41(2): 96-97.
    [26]
    田淑雨. 灵芝活性成分的提取分离纯化及抗氧化活性研究[D]. 聊城: 聊城大学, 2019

    TIAN S Y. Study on extraction, purification and antioxidant activity of active components of Ganoderma lucidum[D]. Liaocheng: Liaocheng University, 2019.
    [27]
    叶春苗, 李莉峰, 韩艳秋. 水浸提法提取紫菜多糖生产工艺优化[J]. 农产品加工,2022(20):33−35,38. [YE C M, LI L F, HAN Y Q. Optimization of production process of polysaccharide from laver by water extraction[J]. Agricultural Products Processing,2022(20):33−35,38.

    YE C M, LI L F, HAN Y Q. Optimization of production process of polysaccharide from laver by water extraction[J]. Agricultural Products Processing, 2022(20): 33-35, 38
    [28]
    钱玺丞, 张新卓, 马瑞, 等. 微波辅助提取黔产党参多糖及其含量分析[J]. 云南化工,2022,49(9):40−42. [QIAN X C, ZHANG X Z, MA R, et al. Microwave-assisted extraction of polysaccharides from Ginseng of Guizhou Province and its content analysis[J]. Yunnan Chemical Industry,2022,49(9):40−42.

    QIAN X C, ZHANG X Z, MA R, et al. Microwave-assisted extraction of polysaccharides from Ginseng of Guizhou Province and its content analysis [J]. Yunnan Chemical Industry, 2022, 49(9): 40-42.
    [29]
    罗光宏, 王海蓉, 崔晶, 等. 微波辅助低共熔溶剂提取、部分纯化螺旋藻多糖及其体外生物学活性研究[J]. 食品与发酵工业,2022,48(11):107−113. [LUO G H, WANG H R, CUI J, et al. Microwave assisted extraction and partial purification of polysaccharide from Spirulina sp. and its biological activity in vitro[J]. Food and Fermentation Industry,2022,48(11):107−113.

    LUO G H, WANG H R, CUI J, et al. Microwave assisted extraction and partial purification of polysaccharide from Spirulina sp. and its biological activity in vitro[J]. Food and Fermentation Industry, 2022, 48(11): 107-113.
    [30]
    姚瑞祺, 胡家栋, 王锋, 等. 多频超声波辅助提取山茱萸多糖工艺研究[J]. 湖北农业科学,2022,61(16):155−158,163. [YAO R Q, HU J D, WANG F, et al. Study on multi-frequency ultrasonic assisted extraction of polysaccharide from Fructus officinalis[J]. Hubei Agricultural Sciences,2022,61(16):155−158,163.

    YAO R Q, HU J D, WANG F, et al. Study on multi-frequency ultrasonic assisted extraction of polysaccharide from Fructus officinalis [J]. Hubei Agricultural Sciences, 2022, 61(16): 155-158, 163.
    [31]
    葛智超. 裸藻多糖的分离纯化及活性研究[D]. 上海: 上海海洋大学, 2020

    GE Z C. Separation, purification and activity of polysaccharides from Psilaceous algae[D]. Shanghai: Shanghai Ocean University, 2020.
    [32]
    LIANG W S, LIU T C, CHANG C J, et al. Bioactivity of β-1,3-xylan extracted from Caulerpa lentillifera by using Escherichia coli clear coli BL21 (DE3)-β-1,3-xylanase XYLII[J]. Journal of Food and Nutrition Research,2015,3:437−444.
    [33]
    刘婷. 新型木聚糖酶及其Ca2+依赖型碳水化合物结合模块的结构与功能[D]. 厦门: 华侨大学, 2020

    LIU T. Structure and function of novel xylanase and its Ca2+-dependent carbohydrate binding module[D]. Xiamen: Huaqiao University, 2020.
    [34]
    MILLER G L. Use of dinitrosalicylic acid reagent for determination of reducing sugar[J]. Analytical Chemistry,1959,31(3):426−428. doi: 10.1021/ac60147a030
    [35]
    BAILEY R, BOURNE E. Colour reactions given by sugars and diphenylamine-aniline spray reagents on paper chromatograms[J]. Journal of Chromatography A,1960,4:206−213. doi: 10.1016/S0021-9673(01)98394-3
    [36]
    董喆. 海葡萄(Caulerpa lentillifera)多糖的结构和生物活性的研究[D]. 舟山: 浙江海洋大学, 2020

    DONG Z. Study on structure and biological activity of Caulerpa lentillifera polysaccharide[D]. Zhoushan: Zhejiang Ocean University, 2020.
    [37]
    ZHANG M, ZHAO M, QING Y, et al. Study on immunostimulatory activity and extraction process optimization of polysaccharides from Caulerpa lentillifera[J]. International Journal of Biological Macromolecules,2020,143:677−684. doi: 10.1016/j.ijbiomac.2019.10.042
    [38]
    颜茜, 汪超凡, 朱康伟, 等. 醋糟阿拉伯木聚糖的提取工艺优化及其对馒头品质的影响[J]. 食品工业科技,2023,44(10):211−218. [YAN Q, WANG C F, ZHU K W, et al. Optimization of the extraction process of arabinoxylan from vinegar grains and its effect on the quality of steamed bread[J]. Science and Technology of Food Industry,2023,44(10):211−218.

    YAN Q, WANG C F, ZHU K W, et al. Optimization of the extraction process of arabinoxylan from vinegar grains and its effect on the quality of steamed bread[J]. Science and Technology of Food Industry, 2023, 44(10): 211-218.
    [39]
    鲁振杰, 李娟, 陈正行, 等. 碱提条件对麸皮阿拉伯木聚糖组成、理化性质、流变学特性的影响[J]. 食品科学,2020,41(12):22−27. [LU Z J, LI J, CHEN Z X, et al. Effect of alkaline extraction conditions on the composition, physicochemical properties and rheological characteristics of bran arabinoxylan[J]. Food Science,2020,41(12):22−27.

    LU Z J, LI J, CHEN Z X, et al. Effect of alkaline extraction conditions on the composition, physicochemical properties and rheological characteristics of bran arabinoxylan[J]. Food Science, 2020, 41(12): 22-27.
    [40]
    贾志飞. 决明子低聚糖的制备及其对双歧杆菌的增殖作用[D]. 马鞍山: 安徽工程大学, 2020

    JIA Z F. Preparation of cassia oligosaccharides and their proliferative effect on bifidobacteria[D]. Maanshan: Anhui University of Technology, 2020.
    [41]
    杨静, 李博, 张延妮. 拐枣多糖的反复冻融回流工艺优化及抗氧化活性研究[J]. 食品工业科技,2022,43(19):273−279. [YANG J, LI B, ZHANG Y N. Optimization of repeated freeze-thaw reflux process and antioxidant activity of jujube polysaccharide[J]. Science and Technology of Food Industry,2022,43(19):273−279.

    YANG J, LI B, ZHANG Y N. Optimization of repeated freeze-thaw reflux process and antioxidant activity of jujube polysaccharide[J]. Science and Technology of Food Industry, 2022, 43(19): 273-279.
    [42]
    ZENG B, ZHOU Y, YI Z, et al. Highly thermostable and promiscuous β-1,3-xylanasen designed by optimized ancestral sequence reconstruction[J]. Bioresource Technology,2021,340:125732. doi: 10.1016/j.biortech.2021.125732
  • Cited by

    Periodical cited type(13)

    1. 成圆,王宇加,王婷婷,丁淼,樊梓鸾. 几种典型天然甜味剂的功能活性及食品加工应用. 现代食品科技. 2023(08): 326-333 .
    2. 安悦嘉,曹雪妍,杨梅,陶冬冰,张旋,张琦,潘松,岳喜庆. pH值对酪蛋白-木糖醇复合物功能和结构特性的影响. 农产品加工. 2023(15): 24-28 .
    3. 陈鑫,赵抒娜,王晨,孟庆佳,陈然,王黎明. 新型复配食糖对小鼠血糖影响的研究. 中国糖料. 2023(04): 81-87 .
    4. 高飞,李艳如,杨畅,季慧苹,李洪亮. 甜味物质应用进展及风险评价. 农产品加工. 2022(01): 57-61 .
    5. 任敏,李志国,闫清泉,边燕飞,司阔林,宗学醒. 基于响应面法优化无糖益生菌牛奶片配方. 食品工业. 2022(02): 79-83 .
    6. 邢耿佳,黄仪友,张黎,陈强,张旭光. 质量源于设计理念在维生素E咀嚼片开发中的应用. 食品工业. 2022(05): 120-124 .
    7. 徐杭蓉,马中媛,于鹏. 低糖冰淇淋的研究进展. 食品工业. 2021(06): 366-367 .
    8. 高蕾蕾,刘峰,栾庆民,贾慧慧,熊小兰,裴疆森,张倩,李克文. 赤藓糖醇生产与应用研究进展. 精细与专用化学品. 2020(03): 1-4 .
    9. 计红芳,李莎莎,张令文,王雪菲,陈复生,马汉军. 豌豆蛋白对猪肉盐溶蛋白理化性质的影响. 食品工业科技. 2019(08): 31-36 . 本站查看
    10. 计红芳,李莎莎,王雪菲,张令文,陈复生,马汉军. 豌豆蛋白对牛肉盐溶蛋白理化性质及二级结构的影响. 食品与发酵工业. 2019(07): 109-115 .
    11. 计红芳,李莎莎,张令文,王雪菲,陈复生,马汉军. 豌豆蛋白对牛肉盐溶蛋白共混凝胶特性的影响. 食品与发酵工业. 2019(09): 89-95 .
    12. 计红芳,李莎莎,张令文,王雪菲,陈复生,马汉军. 豌豆蛋白的添加对猪肉盐溶蛋白凝胶特性的影响. 食品工业科技. 2019(14): 31-36+41 . 本站查看
    13. 李俊霖,郭传庄,王松江,王建彬,隋松森. 赤藓糖醇的特性及其应用研究进展. 中国食品添加剂. 2019(10): 169-172 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (117) PDF downloads (10) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return