CHEN Yang, WANG Peng, PAN Kaijin, et al. Optimization of the Extraction Process of Highland Barley β-glucan by Three-phase Partitioning and Its Molecular Weight Distribution[J]. Science and Technology of Food Industry, 2023, 44(14): 220−228. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100064.
Citation: CHEN Yang, WANG Peng, PAN Kaijin, et al. Optimization of the Extraction Process of Highland Barley β-glucan by Three-phase Partitioning and Its Molecular Weight Distribution[J]. Science and Technology of Food Industry, 2023, 44(14): 220−228. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100064.

Optimization of the Extraction Process of Highland Barley β-glucan by Three-phase Partitioning and Its Molecular Weight Distribution

More Information
  • Received Date: October 09, 2022
  • Available Online: May 11, 2023
  • Ultrasonic combined with enzymatic pretreatment-assisted three-phase partitioning (UCWEPATPP) was utilized to simultaneously extract the β-glucan, protein and oil from highland barley (Hordeum vulgare L.var.nudum Hook.f.). Based on the single-factor experiments, the extraction process conditions of UCWEPATPP were optimized by response surface methodology (RSM) with the extraction rate of highland barley β-glucan as the index. Scanning electron microscope (SEM) was used to observe the change of surface structure during the extraction of highland barley, and the extraction mechanism of UCWEPATPP was preliminarily analyzed. Finally, the molecular weight range of the obtained highland barley β-glucan was determined using a high performance gel size exclusion chromatography. The results showed that the optimal UCWEPATPP process conditions were as follows: Enzyme addition was 1.0%, ultrasonic time was 9 min, ultrasonic power was 140 W, ammonium sulfate addition was 0.5 g/mL, three-phase extraction temperature was 35 ℃, three-phase extraction time was 1.5 h, the liquid ratio was 1:14 g/mL, the volume ratio of tert-butanol to aqueous phase was 1.3:1, the enzymatic hydrolysis time was 2.0 h. Under the optimal conditions, the extraction rate of highland barley β-glucan was 66.96%±0.05%, the extraction rate of highland barley oil was 81.42%±0.15%, and the extraction rate of highland barley protein was 50.31%±0.23%. Scanning electron microscope results showed that UCWEPATPP made the surface tissue structure of highland barley become transparent and porous. UCWEPATPP not only could extract highland barley β-glucan, protein and oil at the same time, but also could reduce the production cost and improve the utilization of highland barley resources. The actual value of the extraction process and the predicted value had a high degree of fit, which was used to predict the extraction of highland barley β-glucan. In addition, the obtained highland barley β-glucan had a relatively concentrated molecular weight distribution (1.7×105~3.0×105 Da).
  • [1]
    BAI Y P, ZHOU H M, ZHU K R, et al. Effect of thermal processing on the molecular, structural, and antioxidant characteristics of highland barley β-glucan[J]. Carbohydrate Polymers,2021,271:118416. doi: 10.1016/j.carbpol.2021.118416
    [2]
    贾福晨, 辜雪冬, 薛洁, 等. 青稞原料与青稞酒风味物质相关性分析[J]. 食品与发酵工业,2020,46(4):92−98. [JIA F C, GU X D, XUE J, et al. Correlation analysis of flavor components between barley liquor and highland barley[J]. Food and Fermentation Industries,2020,46(4):92−98. doi: 10.13995/j.cnki.11-1802/ts.022312

    JIA F C, GU X D, XUE J, et al. Correlation analysis of flavor components between barley liquor and highland barley[J]. Food and Fermentation Industries, 2020, 46(4): 92-98. doi: 10.13995/j.cnki.11-1802/ts.022312
    [3]
    OBADI M, SUN J, XU B. Highland barley: Chemical composition, bioactive compounds, health effects, and applications[J]. Food Research International,2021,140:110065. doi: 10.1016/j.foodres.2020.110065
    [4]
    LI M J, WANG H R, TONG L T, et al. A comparison study of three heating assisted enzyme inactivation pretreatments on the physicochemical properties and edible quality of highland barley grain and flour[J]. Journal of Cereal Science,2022,104:103404. doi: 10.1016/j.jcs.2021.103404
    [5]
    胡辉, 刘鹏, 程佩佩, 等. 小分子青稞β-葡聚糖辅助降血糖功能研究[J]. 食品研究与开发,2018,39(21):33−37,99. [HU H, LIU P, CHENG P P, et al. Study on the auxiliary hypoglycemic function of small molecule β-glucan from hull-less barley[J]. Food Research and Development,2018,39(21):33−37,99.

    HU H, LIU P, CHENG P P, et al. Study on the auxiliary hypoglycemic function of small molecule β-glucan from hull-less barley[J]. Food Research and Development, 2018, 39(21): 33-37, 99.
    [6]
    DU Y, CHEN Z X, LIANG F, et al. Effects of salidroside on functional and structural changes in highland barley proteins[J]. LWT-Food Science and Technology,2022,160:113310. doi: 10.1016/j.lwt.2022.113310
    [7]
    朱颖秋, 蒋思萍, 包善飞, 等. 超临界CO2萃取青稞麸皮油对高血脂症大鼠降脂作用研究[J]. 四川动物,2013,32(2):272−275. [ZHU Y Q, JIANG S P, BAO S F, et al. Lipid-lowering effects of supercritical CO2 extraction hulless barley bran oil on the hyperlipidemia rats[J]. Sichuan Journal of Zoology,2013,32(2):272−275. doi: 10.3969/j.issn.1000-7083.2013.02.026

    ZHU Y Q, JIANG S P, BAO S F, et al. Lipid-lowering effects of supercritical CO2 extraction hulless barley bran oil on the hyperlipidemia rats[J]. Sichuan Journal of Zoology, 2013, 32(2): 272-275. doi: 10.3969/j.issn.1000-7083.2013.02.026
    [8]
    陈晨, 何蒙蒙, 吴泽蓉, 等. 青稞β-葡聚糖的研究现状与展望[J]. 中国食品添加剂,2020,31(2):172−177. [CHEN C, HE M M, WU Z R, et al. Research status and prospect of highland barley beta-glucan[J]. China Food Additives,2020,31(2):172−177.

    CHEN C, HE M M, WU Z R, et al. Research status and prospect of highland barley beta-glucan[J]. China Food Additives, 2020, 31(2): 172-177.
    [9]
    谢昊宇, 何思宇, 贾冬英, 等. 青稞β-葡聚糖的分离纯化及理化特性研究[J]. 食品科技,2016,41(1):142−146. [XIE H Y, HE S Y, JIA D Y, et al. Isolation, purification and physico-chemical properties of highland barley β-glucan[J]. Food Science and Technology,2016,41(1):142−146.

    XIE H Y, HE S Y, JIA D Y, et al. Isolation, purification and physico-chemical properties of highland barley β-glucan[J]. Food Science and Technology, 2016, 41(1): 142-146.
    [10]
    罗燕平, 李家林, 张雪飞. 微波辅助提取青稞β-葡聚糖工艺优化[J]. 农产品加工,2016,14:35−38. [LUO Y P, LI J L, ZHANG X F. Optimization of microwave-assisted extraction technology of β-glucan from barleys[J]. Farm Products Processing,2016,14:35−38.

    LUO Y P, LI J L, ZHANG X F. Optimization of microwave-assisted extraction technology of β-glucan from barleys[J]. Farm Products Processing, 2016, 14: 35-38.
    [11]
    王谦, 董海丽. 超高压提取青稞β-葡聚糖工艺优化[J]. 粮食与油脂,2016,29(5):79−81. [WANG Q, DONG H L. Optimization of β-glucan extraction from barleys by ultra high pressure method[J]. Cereals & Oils,2016,29(5):79−81.

    WANG Q, DONG H L. Optimization of β-glucan extraction from barleys by ultra high pressure method[J]. Cereals & Oils, 2016, 29(5): 79-81.
    [12]
    WATRELOT A A, BOUSKA L. Optimization of the ultrasound-assisted extraction of polyphenols from Aronia and grapes[J]. Food Chemistry,2022,386:132703. doi: 10.1016/j.foodchem.2022.132703
    [13]
    WANG H, GENG H Y, CHEN J, et al. Three phase partitioning for simultaneous extraction of oil, protein and polysaccharide from rice bran[J]. Innovative Food Science and Emerging Technologies,2020,65:102447. doi: 10.1016/j.ifset.2020.102447
    [14]
    邓俊琳, 朱永清, 陈建, 等. 青稞萌动过程中β-葡聚糖、γ-氨基丁酸和多酚的含量研究[J]. 中国粮油学报,2018,33(7):19−25. [DENG J L, ZHU Y Q, CHEN J, et al. Contents of β-glucan, γ-aminobutyric acid and polyphenol in highland barley during germination[J]. Journal of the Chinese Cereals and Oils Association,2018,33(7):19−25.

    DENG J L, ZHU Y Q, CHEN J, et al. Contents of β-glucan, γ-aminobutyric acid and polyphenol in highland barley during germination[J]. Journal of the Chinese Cereals and Oils Association, 2018, 33(7): 19-25.
    [15]
    姚思含, 廖敏和, 康佳欣, 等. 酶辅助三相分离法同时提取亚麻籽油、亚麻籽蛋白和亚麻籽胶工艺优化[J]. 中国油脂,2022,47(3):11−17. [YAO S H, LIAO M H, KANG J X, et al. Optimization of simultaneous extraction of oil, protein and gum from flaxseed by enzyme-assisted three phase partitioning[J]. China Oils and Fats,2022,47(3):11−17.

    YAO S H, LIAO M H, KANG J X, et al. Optimization of simultaneous extraction of oil, protein and gum from flaxseed by enzyme-assisted three phase partitioning[J]. China Oils and Fats, 2022, 47(3): 11-17.
    [16]
    WANG Y Y, QIU W Y, WANG Z B, et al. Extraction and characterization of anti-oxidative polysaccharide-protein complexes from Corbicula fluminea through three-phase partitioning[J]. RSC Advances,2017,7(18):11067−11075. doi: 10.1039/C7RA00117G
    [17]
    弘子姗, 陆挎仙, 黄文豪, 等. 紫蓝草紫色素提取工艺优化及其对糯米染色的表观性能研究[J]. 食品与发酵工业,2021,47(20):180−187. [HONG Z S, LU K X, HUANG W H, et al. The optimization of extraction method of pigment from Peristrophe roxburghiana and its dyeing on glutinous rice[J]. Food and Fermentation Industries,2021,47(20):180−187.

    HONG Z S, LU K X, HUANG W H, et al. The optimization of extraction method of pigment from Peristrophe roxburghiana and its dyeing on glutinous rice[J]. Food and Fermentation Industries, 2021, 47(20): 180-187.
    [18]
    HU J L, WU Y, XIE H F, et al. Purification, preliminary structural characterization, and in vitro inhibitory effect on digestive enzymes by β-glucan from Qingke (Tibetan Hulless Barley)[J]. Advances in Polymer Technology,2020,2709536:8−15.
    [19]
    何伟. 青稞全粉营养成分分析及青稞脆片制备工艺优化[J]. 食品与机械,2020,36(7):201−205. [HE W. Nutritive composition analysis of highland barley flour and optimization of processing parameters for highland barley chips[J]. Food & Machinery,2020,36(7):201−205.

    HE W. Nutritive composition analysis of highland barley flour and optimization of processing parameters for highland barley chips[J]. Food & Machinery, 2020, 36(7): 201-205.
    [20]
    阎莹莹, 孟胜亚, 张文会. 剥皮率对藏青27青稞粉营养成分、抗氧化能力及面条品质的影响[J]. 食品与机械,2021,37(10):50−55,118. [YAN Y Y, MENG S Y, ZHANG W H. The effect of peeling rate on the nutrimental composition, antioxidant capacity and noodle quality of Tibetan No. 27 highland barley fiour[J]. Food & Machinery,2021,37(10):50−55,118.

    YAN Y Y, MENG S Y, ZHANG W H. The effect of peeling rate on the nutrimental composition, antioxidant capacity and noodle quality of Tibetan No. 27 highland barley fiour[J]. Food & Machinery, 2021, 37(10): 50-55, 118.
    [21]
    LIU Y, LI S M. Extraction optimization and antioxidant activity of Phyllanthus urinaria polysaccharides[J]. Food Science and Technology,2020,41:91−97.
    [22]
    GAGAOUA M, HAFID K. Three phase partitioning system, an emerging non-chromatographic tool for proteolytic enzymes recovery and purification[J]. Biosensors Journal,2016,5(1):100134.
    [23]
    张杨洋, 朱肖月, 仁增措姆, 等. 超声辅助酶法提取银杏叶总黄酮的研究[J]. 中国食品添加剂,2020,31(3):70−75. [ZHANG Y Y, ZHU X Y, REN Z C M, et al. Ultrasonic assisted enzymatic extraction of total flavonoids from Ginkgo biloba leaves[J]. China Food Additives,2020,31(3):70−75. doi: 10.19804/j.issn1006-2513.2020.03.006

    ZHANG Y Y, ZHU X Y, REN Z C M, et al. Ultrasonic assisted enzymatic extraction of total flavonoids from Ginkgo biloba leaves[J]. China Food Additives, 2020, 31(3): 70-75. doi: 10.19804/j.issn1006-2513.2020.03.006
    [24]
    ANWAR N, JIANG Q X, YAN S X, et al. Effects of ultrasonic, microwave, and combined ultrasonic-microwave pretreatments on the enzymatic hydrolysis process and protein hydrolysate properties obtained from Chinese sturgeon (Acipenser sinensis)[J]. Journal of Food Biochemistry,2020,44(8):e13292.
    [25]
    ZHANG Y, YU L, JIN W, et al. Simultaneous optimization of the ultrasonic extraction method and determination of the antioxidant activities of hydroxysafflor yellow A and anhydrosafflor yellow B from safflower using a response surface methodology[J]. Molecules,2020,25(5):1226. doi: 10.3390/molecules25051226
    [26]
    TAN Z J, WANG C Y, YI Y J, et al. Three phase partitioning for simultaneous purification of aloe polysaccharide and protein using a single-step extraction[J]. Process Biochemistry,2015,50(3):482−486. doi: 10.1016/j.procbio.2015.01.004
    [27]
    LIAO N, ZHONG J, YE X, et al. Ultrasonic-assisted enzymatic extraction of polysaccharide from Corbicula fluminea: Characterization and antioxidant activity[J]. LWT-Food Science and Technology,2015,60(2):1113−1121. doi: 10.1016/j.lwt.2014.10.009
    [28]
    游茂兰, 覃小丽, 段娇娇, 等. 超声-微波协同提取青稞β-葡聚糖[J]. 食品与发酵工业,2019,45(8):178−183. [YOU M L, QIN X L, DUAN J J, et al. Ultrasonic-microwave synergistic extraction of β-glucan from hull-lessbarley[J]. Food and Fermentation Industries,2019,45(8):178−183.

    YOU M L, QIN X L, DUAN J J, et al. Ultrasonic-microwave synergistic extraction of β-glucan from hull-lessbarley[J]. Food and Fermentation Industries, 2019, 45(8): 178-183.
    [29]
    罗磊, 薛依涵, 杨永庆, 等. 牡丹花蕊多糖三相分离纯化及其理化性质[J]. 食品与机械,2018,34(8):123−128, 134. [LUO L, XUE Y H, YANG Y Q, et al. Study on the purification of polysaccharide from Peony Stamen by three phase partitioning and physicochemical property[J]. Food & Machinery,2018,34(8):123−128, 134. doi: 10.13652/j.issn.1003-5788.2018.08.025

    LUO L, XUE Y H, YANG Y Q, et al. Study on the purification of polysaccharide from Peony Stamen by three phase partitioning and physicochemical property[J]. Food & Machinery, 2018, 34(8): 123-128, 134. doi: 10.13652/j.issn.1003-5788.2018.08.025
    [30]
    YUZUGULLU K Y, KAHVECI B, ACEMI A, et al. Application of three-phase partitioning to the purification and characterization of polyphenol oxidase from antioxidant rosemary (Rosmarinus officinalis L.)[J]. International Journal of Food Engineering,2020,16(11):20200118.
  • Cited by

    Periodical cited type(13)

    1. 成圆,王宇加,王婷婷,丁淼,樊梓鸾. 几种典型天然甜味剂的功能活性及食品加工应用. 现代食品科技. 2023(08): 326-333 .
    2. 安悦嘉,曹雪妍,杨梅,陶冬冰,张旋,张琦,潘松,岳喜庆. pH值对酪蛋白-木糖醇复合物功能和结构特性的影响. 农产品加工. 2023(15): 24-28 .
    3. 陈鑫,赵抒娜,王晨,孟庆佳,陈然,王黎明. 新型复配食糖对小鼠血糖影响的研究. 中国糖料. 2023(04): 81-87 .
    4. 高飞,李艳如,杨畅,季慧苹,李洪亮. 甜味物质应用进展及风险评价. 农产品加工. 2022(01): 57-61 .
    5. 任敏,李志国,闫清泉,边燕飞,司阔林,宗学醒. 基于响应面法优化无糖益生菌牛奶片配方. 食品工业. 2022(02): 79-83 .
    6. 邢耿佳,黄仪友,张黎,陈强,张旭光. 质量源于设计理念在维生素E咀嚼片开发中的应用. 食品工业. 2022(05): 120-124 .
    7. 徐杭蓉,马中媛,于鹏. 低糖冰淇淋的研究进展. 食品工业. 2021(06): 366-367 .
    8. 高蕾蕾,刘峰,栾庆民,贾慧慧,熊小兰,裴疆森,张倩,李克文. 赤藓糖醇生产与应用研究进展. 精细与专用化学品. 2020(03): 1-4 .
    9. 计红芳,李莎莎,张令文,王雪菲,陈复生,马汉军. 豌豆蛋白对猪肉盐溶蛋白理化性质的影响. 食品工业科技. 2019(08): 31-36 . 本站查看
    10. 计红芳,李莎莎,王雪菲,张令文,陈复生,马汉军. 豌豆蛋白对牛肉盐溶蛋白理化性质及二级结构的影响. 食品与发酵工业. 2019(07): 109-115 .
    11. 计红芳,李莎莎,张令文,王雪菲,陈复生,马汉军. 豌豆蛋白对牛肉盐溶蛋白共混凝胶特性的影响. 食品与发酵工业. 2019(09): 89-95 .
    12. 计红芳,李莎莎,张令文,王雪菲,陈复生,马汉军. 豌豆蛋白的添加对猪肉盐溶蛋白凝胶特性的影响. 食品工业科技. 2019(14): 31-36+41 . 本站查看
    13. 李俊霖,郭传庄,王松江,王建彬,隋松森. 赤藓糖醇的特性及其应用研究进展. 中国食品添加剂. 2019(10): 169-172 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (174) PDF downloads (15) Cited by(19)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return