HU Long, FAN Xiuzhi, YAO Fen, et al. Screening the Cordyceps militaris Strain for Reducing Glycemic Index of Rice Substrate under Solid Fermentation[J]. Science and Technology of Food Industry, 2021, 42(12): 119−124. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090155.
Citation: HU Long, FAN Xiuzhi, YAO Fen, et al. Screening the Cordyceps militaris Strain for Reducing Glycemic Index of Rice Substrate under Solid Fermentation[J]. Science and Technology of Food Industry, 2021, 42(12): 119−124. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090155.

Screening the Cordyceps militaris Strain for Reducing Glycemic Index of Rice Substrate under Solid Fermentation

More Information
  • Received Date: September 15, 2020
  • Available Online: April 11, 2021
  • In order to shorten the production cycle, reduce the cost, and obtain the fermentation product with low glycemic index (GI) and high content of active substances, the dominant strains of Cordyceps militarisfor solid fermentation of rice substrate were screened with mycelial growth rate, expected glycemic index (eGI), contents of polysaccharide and cordycepin as screening indicators. The results showed that the content of rapidly digestible starch (RDS) in all the fungal substances fermented by strains of C.militaris (Shennongda, Wanxi, Yun and Quan) decreased after fermentation, while the content of slowly digestible starch (SDS) and resistant starch (RS) increased. Further digestion kinetics in vitro showed that the eGI value in fungal substance was significantly lower than that before fermentation (P<0.05). Then combined with the results of four indexes, strain Quan was determined as the best one for solid fermentation of rice. After 25 days fermentation, the eGI value of fermentation product decreased from 80.33 (before fermentation) to 65.63, which reached the level of medium GI value. The polysaccharide content in fungal substance of Quan was 5.29%, and the content of cordycepin was 5185.98 mg/kg, which were higher than those in fruiting body. Therefore, the fermentation substance could be used to replace the fruity body in the development of nutrition and functional food, and would provide raw materials for the development of low GI products of C.militaris.
  • [1]
    Schakel S, SchauerR, Himes J, et al. Development of a glycemic index database for dietary assessment[J]. Journal of Food Composition and Analysis,2007,21:S50−S55.
    [2]
    Jenkins D J, Wolever T M, Taylor R H, et al. Glycemic index of foods: A physiological basis for carbohydrate exchange[J]. The American Journal of Clinical Nutrition,1981,34(3):362−366. doi: 10.1093/ajcn/34.3.362
    [3]
    Argiana V, Kanellos P T, Eleftheriadou I, et al. Low-glycemic-index/load desserts decrease glycemic and insulinemicresponse in patients with type 2 diabetes mellitus[J]. Nutrients,2020,12(7):2153. doi: 10.3390/nu12072153
    [4]
    Ha V, Viguiliouk E, Kendall C W C, et al. Effect of a low glycemic index diet versus a high-cereal fibre diet on markers of subclinical cardiac injury in healthy individuals with type 2 diabetes mellitus: An exploratory analysis of a randomized dietary trial[J]. Clinical Biochemistry,2017,50(18):1104−1109. doi: 10.1016/j.clinbiochem.2017.09.021
    [5]
    陈静茹, 孟庆佳, 康乐, 等. 低血糖生成指数谷物及其制品研究进展与法规管理现状[J]. 食品工业科技,2020,41(18):338−343.
    [6]
    中华人民共和国国家卫生健康委员会. WS/T 652-2019 食物血糖生成指数测定方法[S]. 北京: 中国农业出版社, 2019.
    [7]
    Shumoy H, Raes K. In vitro starch hydrolysis and estimated glycemic index of tef porridge and injera[J]. Food Chemistry,2017,229:381−387. doi: 10.1016/j.foodchem.2017.02.060
    [8]
    Salgado-Cruz M D L P, Ramírez-Miranda M, Díaz-Ramírez M, et al. Microstructural characterisation and glycemic index evaluation of pita bread enriched with chia mucilage[J]. Food Hydrocolloids,2017,69:141−149. doi: 10.1016/j.foodhyd.2017.01.027
    [9]
    Shumoy H, Bockstaele F V, Devecioglu D, et al. Effect of sourdough addition and storage time on in vitro starch digestibility and estimated glycemic index of tef bread[J]. Food Chemistry,2018,264:34−40. doi: 10.1016/j.foodchem.2018.05.019
    [10]
    田宝明. 低血糖指数挂面的研制及其对糖尿病大鼠糖脂代谢影响的研究[D]. 重庆: 西南大学, 2015.
    [11]
    舒志成, 王华, 郭秀峰, 等. 一种具有低血糖生成指数(GI值)特点的八宝粥研制[J]. 中国食品添加剂,2016(1):127−132. doi: 10.3969/j.issn.1006-2513.2016.01.015
    [12]
    Singh S, Sethi S, Gupta S, et al. Fermentation of multigrain dough-an approach to reduce glycemic index for healthy bread[J]. Eureka: Life Sciences,2019,5:19−31. doi: 10.21303/2504-5695.2019.00994
    [13]
    Angelis M, Damiano N, Rizzello C G, et al. Sourdough fermentation as a tool for the manufacture of low-glycemic index white wheat bread enriched in dietary fibre[J]. European Food Research and Technology,2009,229(4):593−601. doi: 10.1007/s00217-009-1085-1
    [14]
    张姝, 张永杰, Shrestha Bhushan, 等. 冬虫夏草菌和蛹虫草菌的研究现状、问题及展望[J]. 菌物学报,2013,32(4):577−597.
    [15]
    杜秀菊, 张劲松, 贾薇, 等. 蛹虫草抗肿瘤和免疫活性部位的体外筛选[J]. 食用菌学报,2011,18(1):41−45. doi: 10.3969/j.issn.1005-9873.2011.01.006
    [16]
    Wang M, Meng X Y, Yang R L, et al. Cordycepsmilitaris polysaccharides can enhance the immunity and antioxidation activity in immunosuppressed mice[J]. Carbohydrate Polymers,2012,89:461−466. doi: 10.1016/j.carbpol.2012.03.029
    [17]
    Xu L, Wang F, Zhang Z C, et al. Optimization of polysaccharide production from Cordyceps militaris by Solid-State fermentation on rice and its antioxidant activities[J]. Foods(Basel, Switzerland),2019,8(11):590.
    [18]
    彭志妮, 郭丽琼, 张新超, 等. 蛹虫草固体发酵大豆基质的成分及抗氧化活性变化研究[J]. 菌物学报,2011,30(2):338−342.
    [19]
    刘洋, 黄芳芳. 蛹虫草固态发酵生产虫草素工艺优化研究[J]. 核农学报,2014,28(11):2065−2070. doi: 10.11869/j.issn.100-8551.2014.11.2065
    [20]
    朱振元, 贾长英, 孙会轻. 蛹虫草发酵大米的成分分析及体外抗氧化活性研究[J]. 食品工业科技,2016,37(20):235−238, 248.
    [21]
    陈丽冰, 吴光旭, 程薇, 等. 北虫草培养残基中虫草素的提取纯化及抗肿瘤活性[J]. 食品科学技术学报,2016,34(4):73−79. doi: 10.3969/j.issn.2095-6002.2016.04.013
    [22]
    孙叶, 包建忠, 刘红, 等. 蛹虫草培养基多糖的提取及抗肿瘤活性研究[J]. 食品与生物技术学报,2019,38(4):118−126. doi: 10.3969/j.issn.1673-1689.2019.04.018
    [23]
    潘昌, 范秀芝, 姚芬, 等. 食用菌发酵液对热干面中蜡样芽孢杆菌的抑制作用[J]. 现代食品科技,2020,36(5):170−177.
    [24]
    Reshmi S K, Sudha M L, Shashirekha M N. Starch digestibility and predicted glycemic index in the bread fortified with pomelo (Citrus maxima) fruit segments[J]. Food Chemistry,2017,237:957−965. doi: 10.1016/j.foodchem.2017.05.138
    [25]
    Goñi I, Garcia-Alonso A, Saura-Calixto F. A starch hydrolysis procedure to estimate glycemic index[J]. Nutrition Research,1997,17(3):427−437. doi: 10.1016/S0271-5317(97)00010-9
    [26]
    陈丽冰, 程薇, 高虹, 等. 北虫草培养基中多糖的闪式提取工艺研究[J]. 湖北农业科学,2014,53(19):4670−4674.
    [27]
    中华人民共和国农业部. SN/T 4260-2015 食用菌中粗多糖含量的测定[S]. 北京: 中国农业出版社, 2008.
    [28]
    中华人民共和国农业部. NY/T 2116-2012 虫草制品中虫草素和腺苷的测定高效液相色谱法[S]. 北京: 中国农业出版社, 2012.
    [29]
    Englyst H N, Hudson G J. The classification and measurement of dietary carbohydrates[J]. Food Chemistry,1996,57(1):15−21. doi: 10.1016/0308-8146(96)00056-8
    [30]
    方尚瑜, 贾志华, 张霞, 等. 碳氮源对液体培养蛹虫草生物合成虫草多糖的影响[J]. 食品科学,2013,34(13):165−169. doi: 10.7506/spkx1002-6630-201313036
    [31]
    朱丽娜, 刘艳芳, 张红霞, 等. 不同来源的蛹虫草子实体活性成分的比较[J]. 菌物学报,2018,37(12):1695−1706.
    [32]
    Shang X L, Pan L C, Tang Y, et al. 1H NMR-based metabonomics of the hypoglycemic effect of polysaccharides from Cordyceps militaris on streptozotocin-induced diabetes in mice[J]. Natural Product Research,2020,34(10):1366−1372. doi: 10.1080/14786419.2018.1516216
    [33]
    朱振元, 刘晓翠, 郭蓉, 等. 蛹虫草多糖对α-葡萄糖苷酶活性的抑制研究[J]. 现代食品科技,2014,30(12):55−60.
    [34]
    赵莹. 虫草多糖复合物降糖作用的研究[D]. 沈阳: 沈阳大学, 2016.
  • Related Articles

    [1]CAO Wanxue, LI Jiao, TAO Qiang, FAN Xuanxuan, LU Jiting, CHEN Naifu, CHEN Naidong. Selenization Optimization of Preparation Process of Polysaccharide from Dendrobium huoshanense and Its Inhibitory Effect on α-Amylase[J]. Science and Technology of Food Industry. DOI: 10.13386/j.issn1002-0306.2024060247
    [2]WANG Yanan, QIAN Xinyi, YONG Yidan, WU Mengmeng, LI Yihao, CHEN Yuhang, NI Zaizhong, LI Lulu, CHEN Anhui, ZHANG Peng, GENG Ying, SHAO Ying. Isolation, Purification, and Structural Characterization of Antioxidant Polysaccharides Isolated from the Fruiting Bodies of Cordyceps militaris[J]. Science and Technology of Food Industry. DOI: 10.13386/j.issn1002-0306.2024070386
    [3]HAN Pengfei, ZHU Xuan, YANG Min, HUANG Guiqiang. Solid-state Fermentation of Cordyceps taii for Polysaccharide Production[J]. Science and Technology of Food Industry, 2023, 44(14): 130-136. DOI: 10.13386/j.issn1002-0306.2022090117
    [4]WANG Mingrui, DENG Yongping, SONG Qingyan, CHEN Yuebin, LIU Xiaolan. Optimization of Polysaccharides and Fibrinolytic Enzyme Co-production from Cordyceps militaris through Solid State Fermentation[J]. Science and Technology of Food Industry, 2021, 42(4): 71-76. DOI: 10.13386/j.issn1002-0306.2020040341
    [5]WU Tong, WANG Zhen-jiong, WU Yu-long, JIANG Hai-tao, ZHOU Feng, WANG Ren-lei, HUA Chun, CHI Yue-lan. Study on the preparation of Cordyceps militaris polysaccharide/Nano-Selenium complex[J]. Science and Technology of Food Industry, 2017, (05): 49-53. DOI: 10.13386/j.issn1002-0306.2017.05.001
    [6]CHEN Xiao-li, WU Guang-hong, HUANG Zhuo-lie. Structural characterization of a polysaccharide from cultured Cordyceps militaris with antioxidant activity[J]. Science and Technology of Food Industry, 2016, (06): 155-159. DOI: 10.13386/j.issn1002-0306.2016.06.023
    [7]YANG Wen- ya, LI Chang- zheng, ZHANG Hai- hui, ZHANG Di, CAI Mei- hong, WANG Jia, DUAN Yu- qing. Study on the optimization for the extraction and antioxidant activity of polysaccharide from cordyceps militaris by subcritical water[J]. Science and Technology of Food Industry, 2016, (05): 252-257. DOI: 10.13386/j.issn1002-0306.2016.05.041
    [8]WANG Xue, CHI Yue-lan, HUA Chun, WANG Zhen-jiong, WU Yu-long, JIANG Hai-tao, ZHOU Feng, WANG Ren-lei. Effect of different extraction methods on the feature of polysaccharide in Cordyceps Militaris[J]. Science and Technology of Food Industry, 2015, (09): 49-52. DOI: 10.13386/j.issn1002-0306.2015.09.001
    [9]Study on the anti-mutagenic effect of Cordyceps militaris polysaccharide[J]. Science and Technology of Food Industry, 2013, (11): 350-352. DOI: 10.13386/j.issn1002-0306.2013.11.006
    [10]Optimization of nutritional conditions for promotion of polysaccharide produced by Cordyceps gunnii in submerged culture[J]. Science and Technology of Food Industry, 2013, (10): 225-229. DOI: 10.13386/j.issn1002-0306.2013.10.015
  • Cited by

    Periodical cited type(3)

    1. 魏帅,唐崟珺,马嘉亿,刘颖琳,刘振洋,刘书成. 超临界CO_2萃取联合超声处理对凡纳滨对虾虾头油脂提取效果的影响. 保鲜与加工. 2024(01): 15-19 .
    2. 陶玮红,林蓉,梁铎,杨燊,金日天. 源自发酵凡纳滨对虾的抗菌肽BCE3对蜡样芽孢杆菌的抑菌机制及其在米饭中的应用. 微生物学报. 2024(08): 2768-2783 .
    3. 徐文思,张梦媛,李柏花,杨祺福,危纳强,杨品红,周顺祥. 虾加工副产物蛋白肽提制及其生物活性研究进展. 食品工业科技. 2021(17): 432-438 . 本站查看

    Other cited types(5)

Catalog

    Article Metrics

    Article views (329) PDF downloads (38) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return