REN Duoduo, SHAO Zijun, LIU Songxin, et al. Ameliorative Effect of Panax quinquefolius Polysaccharides on Antibiotic-associated Diarrhea Induced by Clindamycin Phosphate[J]. Science and Technology of Food Industry, 2021, 42(12): 354−361. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090144.
Citation: REN Duoduo, SHAO Zijun, LIU Songxin, et al. Ameliorative Effect of Panax quinquefolius Polysaccharides on Antibiotic-associated Diarrhea Induced by Clindamycin Phosphate[J]. Science and Technology of Food Industry, 2021, 42(12): 354−361. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090144.

Ameliorative Effect of Panax quinquefolius Polysaccharides on Antibiotic-associated Diarrhea Induced by Clindamycin Phosphate

More Information
  • Received Date: September 14, 2020
  • Available Online: April 14, 2021
  • Objective: To investigate the effects of Panax quinquefolius polysaccharides on intestinal side effects induced by antibiotics (clindamycin phosphate), including diarrhea, intestinal structural integrity, composition and diversity of gut microbiota. Methods: After water extraction, alcohol precipitation and deproteinization, the water-soluble Panax quinquefolius polysaccharide (WQP) was obtained from the root of Panax quinquefolius. The model of antibiotic-related side effects was established by intragastric administration of clindamycin phosphate, and then intervened with normal saline (natural recovery group, NR) or WQP group. Results: The results showed that WQP was mainly composed of galacturonic acid, glucose, galactose and arabinose. The yield, total sugar content, uronic acid content and protein content were 6.71%, 85.2%, 31.9% and 2.1%, respectively. The results of pharmacological experiments showed that WQP could relieve diarrhea symptoms, improve colonic edema, increase the length of intestinal villi and restore the diversity of gut microbiota. Compared with NR group, WQP decreased the relative abundance of Firmicutes and Proteobacteria in gut microbiota and increased the relative abundance of Bacteroidetes in gut microbiota, while WQP decreased the relative abundance of Bacteroides and Clostridium at genus level. Conclusion: WQP can improve the richness and diversity of gut microbiota by promoting the repair of intestinal structure in rats, and then alleviate the antibiotic-related side effects such as diarrhea and flora imbalance caused by clindamycin phosphate.
  • [1]
    Bartlett J G. Antibiotic-associated diarrhea[J]. New England Journal of Medicine,2002,346(5):334−339. doi: 10.1056/NEJMcp011603
    [2]
    Lv W, Liu C, Ye C X, et al. Structural modulation of gut microbiota during alleviation of antibiotic-associated diarrhea with herbal formula[J]. International Journal of Biological Macromolecules,2017,105:1622−1629. doi: 10.1016/j.ijbiomac.2017.02.060
    [3]
    陈卫, 田培郡, 张程程, 等. 肠道菌群与人体健康的研究热点与进展[J]. 中国食品学报,2017,17(2):1−9.
    [4]
    Marchesi J R, Adams D H, Fava F, et al. The gut microbiota and host health: A new clinical frontier[J]. Gut,2016,65(2):330−339. doi: 10.1136/gutjnl-2015-309990
    [5]
    于莲, 徐新, 苏瑾, 等. 纳米山药多糖合生元结肠靶向微生态调节剂对菌群失调大鼠免疫因子及SOD、MDA、NO、MPO表达的影响[J]. 中国微生态学杂志,2016,28(8):889−892.
    [6]
    韩乾杰. 植物多糖对仔猪生长性能、免疫功能和肠道健康的影响研究[D]. 杭州: 浙江农林大学, 2019.
    [7]
    张珊珊, 童微, 胡婕伦, 等. 铁皮石斛多糖不同分级组分对小鼠免疫调节及肠道健康的影响[J]. 中国食品学报,2019,19(12):14−21.
    [8]
    Li S S, Qi Y L, Chen L X, et al. Effects of Panax ginseng polysaccharides on the gut microbiota in mice with antibiotic-associated diarrhea[J]. International Journal of Biological Macromolecules,2019,124:931−937. doi: 10.1016/j.ijbiomac.2018.11.271
    [9]
    Qi Y L, Chen L X, Gao K, et al. Effects of Schisandra chinensis polysaccharides on rats with antibiotic-associated diarrhea[J]. International Journal of Biological Macromolecules,2019,124:627−634. doi: 10.1016/j.ijbiomac.2018.11.250
    [10]
    Li S S, Qi Y L, Ren D D, et al. The structure features and improving effects of polysaccharide from Astragalus membranaceus on antibiotic-associated diarrhea[J]. Antibiotics (Basel),2019,9(1):8. doi: 10.3390/antibiotics9010008
    [11]
    Chen R, Liu B, Wang X Y, et al. Effects of polysaccharide from Pueraria lobata on gut microbiota in mice[J]. International Journal of Biological Macromolecules,2020,158:740−749. doi: 10.1016/j.ijbiomac.2020.04.201
    [12]
    赵芷萌, 赵宏, 王宇亮, 等. 百合多糖的纯化及其对肠道菌群失调小鼠的调节作用[J]. 食品工业科技,2020,41(8):295−300, 306.
    [13]
    国家药典委员会. 中华人民共和国药典2015年版[S]. 一部. 北京: 中国医药科技出版社, 2015: 131.
    [14]
    孙婷婷, 张红, 李晔, 等. 西洋参药材中总多糖及总皂苷提取工艺研究[J]. 中国药师,2018,21(10):1734−1737. doi: 10.3969/j.issn.1008-049X.2018.10.007
    [15]
    黄社霄. 人参、西洋参、三七药用探讨[J]. 中国中医药现代远程教育,2011,9(15):73−74.
    [16]
    李珊珊, 孙印石. 西洋参多糖结构与药理活性研究进展[J]. 特产研究,2017,39(3):68−71.
    [17]
    尚金燕, 李桂荣, 邵明辉, 等. 西洋参的药理作用研究进展[J]. 人参研究,2016,28(6):49−51. doi: 10.3969/j.issn.1671-1521.2016.06.016
    [18]
    于晓娜, 崔波, 任贵兴. 西洋参多糖的研究进展[J]. 食品科学,2014,35(9):301−305. doi: 10.7506/spkx1002-6630-201409059
    [19]
    Zhang X, Yu L, Bi H T, et al. Total fractionation and characterization of the water-soluble polysaccharides isolated fromPanax ginseng C. A. Meyer[J]. Carbohydrate Polymers,2009,77(3):544−552. doi: 10.1016/j.carbpol.2009.01.034
    [20]
    祁玉丽, 李珊珊, 曲迪, 等. 人参中性多糖对小鼠肠道菌群组成及多样性的影响[J]. 中国中药杂志,2019,44(4):811−818.
    [21]
    张秀莲, 赵卉, 张志东, 等. 杜马斯燃烧法和凯氏定氮法在人参蛋白质含量检测中的对比研究[J]. 特产研究,2015,37(4):38−40. doi: 10.3969/j.issn.1001-4721.2015.04.011
    [22]
    Wang J, Li S S, Fan Y Y, et al. Anti-fatigue activity of the water-soluble polysaccharides isolated from Panax ginseng C. A. Meyer[J]. Journal of Ethnopharmacology,2010,130(2):421−423. doi: 10.1016/j.jep.2010.05.027
    [23]
    李珊珊, 祁玉丽, 华梅, 等. 北五味子多糖的分离纯化及抗氧化活性研究[J]. 食品工业,2018,39(4):233−237.
    [24]
    华梅, 李珊珊, 曲迪, 等. 人参膳食纤维的营养成分和多糖结构及热稳定性研究[J]. 特产研究,2020,42(2):20−26.
    [25]
    祁玉丽. 人参多糖对肠道微生态及肠黏膜免疫作用的研究[D]. 长春: 吉林农业大学, 2019.
    [26]
    Lange K, Buerger M, Stallmach A, et al. Effects of antibiotics on gut microbiota[J]. Digestive Diseases (Basel, Switzerland),2016,34(3):260−268. doi: 10.1159/000443360
    [27]
    Vangay P, Ward T, Gerber J S, et al. Antibiotics, pediatric dysbiosis, and disease[J]. Cell Host & Microbe,2015,17(5):553−564.
    [28]
    Caspary W F. Physiology and pathophysiology of intestinal absorption[J]. The American Journal of Clinical Nutrition,1992,55(1):299S−308S. doi: 10.1093/ajcn/55.1.299s
    [29]
    Bergogne-Bérézin E. Treatment and prevention of antibiotic associated diarrhea[J]. International Journal of Antimicrobial Agents,2000,16(4):521−526. doi: 10.1016/S0924-8579(00)00293-4
    [30]
    周祎青, 郑裕华, 陈颂, 等. 连翘对岭南湿热模型小鼠的作用及其肠道菌群变化的研究[J]. 中药新药与临床药理,2019,30(6):678−685.
    [31]
    Wexler H M. Bacteroides: The good, the bad, and the nitty-gritty[J]. Clinical Microbiology Reviews,2007,20(4):593−621. doi: 10.1128/CMR.00008-07
    [32]
    Wexler A G, Goodman A L. An insider's perspective: Bacteroides as a window into the microbiome[J]. Nature Microbiology,2017,2:17026. doi: 10.1038/nmicrobiol.2017.26
    [33]
    张雪梅, 袁振亚, 乔嘉凯, 等. 肠道菌群与抗生素相关性腹泻的关系[J]. 微生物学通报,2019,46(9):2386−2393.
    [34]
    陈弋, 王琛, 徐秋英, 等. 两种岭南湿热证小鼠模型肠道菌群动态变化的研究[J/OL]. 世界科学技术-中医药现代化: 1−12[2020-09-13].
    [35]
    帕孜力亚·艾克拉木, 尼格尔·艾白都拉, 阿丽雅·塔依尔, 等. 肠道梭菌属与2型糖尿病的相关性研究进展[J]. 中国微生态学杂志,2019,31(11):1351−1355.
    [36]
    祁玉丽, 高坤, 孙印石, 等. 植物多糖对肠道微生态的作用研究进展[J]. 中国微生态学杂志,2018,30(4):489−494.
    [37]
    Ren G M, Yu M, Li K K, et al. Seleno-lentinan prevents chronic pancreatitis development and modulates gut microbiota in mice[J]. Journal of Functional Foods,2016,22:177−188. doi: 10.1016/j.jff.2016.01.035
    [38]
    Gou Y, Sun J, Liu J, et al. Structural characterization of a water-soluble purple sweet potato polysaccharide and its effect on intestinal inflammation in mice[J]. Journal of Functional Foods,2019,61:103502.
    [39]
    Kanwa S, Joseph TP, Aliya S, et al. Attenuation of DSS induced colitis by Dictyophora indusiata polysaccharide (DIP) via modulation of gut microbiota and inflammatory related signaling pathways[J]. Journal of Functional Foods,2019:64.
    [40]
    周欣, 付志飞, 谢燕, 等. 中药多糖对肠道菌群作用的研究进展[J]. 中成药,2019,41(3):623−627.
  • Related Articles

    [1]CAO Wanxue, LI Jiao, TAO Qiang, FAN Xuanxuan, LU Jiting, CHEN Naifu, CHEN Naidong. Selenization Optimization of Preparation Process of Polysaccharide from Dendrobium huoshanense and Its Inhibitory Effect on α-Amylase[J]. Science and Technology of Food Industry. DOI: 10.13386/j.issn1002-0306.2024060247
    [2]WANG Yanan, QIAN Xinyi, YONG Yidan, WU Mengmeng, LI Yihao, CHEN Yuhang, NI Zaizhong, LI Lulu, CHEN Anhui, ZHANG Peng, GENG Ying, SHAO Ying. Isolation, Purification, and Structural Characterization of Antioxidant Polysaccharides Isolated from the Fruiting Bodies of Cordyceps militaris[J]. Science and Technology of Food Industry. DOI: 10.13386/j.issn1002-0306.2024070386
    [3]HAN Pengfei, ZHU Xuan, YANG Min, HUANG Guiqiang. Solid-state Fermentation of Cordyceps taii for Polysaccharide Production[J]. Science and Technology of Food Industry, 2023, 44(14): 130-136. DOI: 10.13386/j.issn1002-0306.2022090117
    [4]WANG Mingrui, DENG Yongping, SONG Qingyan, CHEN Yuebin, LIU Xiaolan. Optimization of Polysaccharides and Fibrinolytic Enzyme Co-production from Cordyceps militaris through Solid State Fermentation[J]. Science and Technology of Food Industry, 2021, 42(4): 71-76. DOI: 10.13386/j.issn1002-0306.2020040341
    [5]WU Tong, WANG Zhen-jiong, WU Yu-long, JIANG Hai-tao, ZHOU Feng, WANG Ren-lei, HUA Chun, CHI Yue-lan. Study on the preparation of Cordyceps militaris polysaccharide/Nano-Selenium complex[J]. Science and Technology of Food Industry, 2017, (05): 49-53. DOI: 10.13386/j.issn1002-0306.2017.05.001
    [6]CHEN Xiao-li, WU Guang-hong, HUANG Zhuo-lie. Structural characterization of a polysaccharide from cultured Cordyceps militaris with antioxidant activity[J]. Science and Technology of Food Industry, 2016, (06): 155-159. DOI: 10.13386/j.issn1002-0306.2016.06.023
    [7]YANG Wen- ya, LI Chang- zheng, ZHANG Hai- hui, ZHANG Di, CAI Mei- hong, WANG Jia, DUAN Yu- qing. Study on the optimization for the extraction and antioxidant activity of polysaccharide from cordyceps militaris by subcritical water[J]. Science and Technology of Food Industry, 2016, (05): 252-257. DOI: 10.13386/j.issn1002-0306.2016.05.041
    [8]WANG Xue, CHI Yue-lan, HUA Chun, WANG Zhen-jiong, WU Yu-long, JIANG Hai-tao, ZHOU Feng, WANG Ren-lei. Effect of different extraction methods on the feature of polysaccharide in Cordyceps Militaris[J]. Science and Technology of Food Industry, 2015, (09): 49-52. DOI: 10.13386/j.issn1002-0306.2015.09.001
    [9]Study on the anti-mutagenic effect of Cordyceps militaris polysaccharide[J]. Science and Technology of Food Industry, 2013, (11): 350-352. DOI: 10.13386/j.issn1002-0306.2013.11.006
    [10]Optimization of nutritional conditions for promotion of polysaccharide produced by Cordyceps gunnii in submerged culture[J]. Science and Technology of Food Industry, 2013, (10): 225-229. DOI: 10.13386/j.issn1002-0306.2013.10.015
  • Cited by

    Periodical cited type(3)

    1. 魏帅,唐崟珺,马嘉亿,刘颖琳,刘振洋,刘书成. 超临界CO_2萃取联合超声处理对凡纳滨对虾虾头油脂提取效果的影响. 保鲜与加工. 2024(01): 15-19 .
    2. 陶玮红,林蓉,梁铎,杨燊,金日天. 源自发酵凡纳滨对虾的抗菌肽BCE3对蜡样芽孢杆菌的抑菌机制及其在米饭中的应用. 微生物学报. 2024(08): 2768-2783 .
    3. 徐文思,张梦媛,李柏花,杨祺福,危纳强,杨品红,周顺祥. 虾加工副产物蛋白肽提制及其生物活性研究进展. 食品工业科技. 2021(17): 432-438 . 本站查看

    Other cited types(5)

Catalog

    Article Metrics

    Article views (273) PDF downloads (32) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return