LI Caiming, ZHANG Dening, LIU Likuan, et al. Effect of Potentilla Fruticosa Tea from Qinghai-Tibet PlateauonIntestinal Flora of Hyperlipidemia Rats [J]. Science and Technology of Food Industry, 2021, 42(13): 366−371. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090061.
Citation: LI Caiming, ZHANG Dening, LIU Likuan, et al. Effect of Potentilla Fruticosa Tea from Qinghai-Tibet PlateauonIntestinal Flora of Hyperlipidemia Rats [J]. Science and Technology of Food Industry, 2021, 42(13): 366−371. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090061.

Effect of Potentilla Fruticosa Tea from Qinghai-Tibet PlateauonIntestinal Flora of Hyperlipidemia Rats

More Information
  • Received Date: September 09, 2020
  • Available Online: May 10, 2021
  • The aim of this study was to investigate the regulation of Potentilla fruticosa tea on blood lipid and gut micrebiota in hyperlipidemia rats(Wistar rats). The hyperlipidemia rat model was successfully bulit by inhacing with high-fat diet.Enzyme linked immunosorbent assay (ELISA) was used to investigate the effects of three kinds of Potentilla fruticosa tea on blood lipid in hyperlipidemia rats.Meanwhile, the diversity and structural changes of intestinal flora were analyzed by 16rS high-throughput sequencing.The results showed that compared with the model group, the HDL content of Potentilla fruticosa tea group was increased.There was significant difference in Potentilla fruticosa black tea group (P<0.05).The contents of TG, TC in Potentilla fruticosa flower tea, green tea and black tea groups were significantly decreased (P<0.05, P<0.01), and the content of LDL was decreased, but the difference was significant only in flower tea (P<0.05). At the same time, the results of intestinal flora showed that at the Phylum level, the abundance of dominant flora Firmicutes was down-regulated, and the abundance of Bacteroidetes was up-regulated. At thegenus level, the abundance of Lactobacillus and bacteroides in the intestinal tract of rats was significantly increased, while the abundance of unidentified_Ruminococcaceae, unidentified_Lachnospiraceae decreased significantly.Conclusion Potentilla fruticosa tea had the effect of regulating blood lipid and intestinal flora in hyperlipidemia rats, which had a tendency to recover to normal control group. It is speculated that Potentilla fruticosa tea may play a role in reducing blood lipid by interfering with lipid metabolism pathway by intestinal flora.
  • [1]
    李奇威, 王业胜, 周林, 等. 代谢性疾病与肠道菌群关系的研究进展[J]. 广州中医药大学学报,2017,34(4):623−626.
    [2]
    郑丽, 莫娟芬, 吴加元, 等. 基于网络药理学的虎杖抗高血脂作用及信号通路研究[J]. 中国临床药理学与治疗学,2019(10):1107−1119. doi: 10.12092/j.issn.1009-2501.2019.10.005
    [3]
    欧雅文, 周倩, 刘琪, 等. 酚类物质与肠道微生物对高血脂症的作用机制[J]. 中国食品学报,2018,18(10):275−281.
    [4]
    Attene-Ramos M S, Nava G M, Muellner M G, et al. DNA damage and toxicogenomic analyses of hydrogen sulfide in human intestinal epithelial FHs 74 Int cells[J]. Environ Mol Mutagen,2010,51(4):304−314.
    [5]
    Ge X, Pan J, Liu Y, et al. Intestinal crosstalk between microbiota and serotonin and its impact on gut motility[J]. Curr Pharm Biotechnol,2018,19(3):190−195. doi: 10.2174/1389201019666180528094202
    [6]
    范哲于, 王进波, 齐莉莉, 等. 肠道菌群与胆汁酸代谢的互作关系[J]. 动物营养学报,2018,30(9):142−148.
    [7]
    Dumas M E, Barton R H, Toye A, et al. Metabolic profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice[J]. Proc Natl Acad Sci USA,2006,103(33):12511−12516. doi: 10.1073/pnas.0601056103
    [8]
    许晓洁, 王秋桐, 石舵. 金露梅的药理作用、化学成分及含量测定方法[J]. 中国药房,2017,28(22):3155−3156. doi: 10.6039/j.issn.1001-0408.2017.22.35
    [9]
    Backhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage[J]. P Natl Acad Sci USA,2004,101(44):15718−15723. doi: 10.1073/pnas.0407076101
    [10]
    Tomczyk M, Leszczyńska K, Jakoniuk P. Antimicrobial activity of Potentilla species[J]. Fitoterapia,2008,79(7-8):592−594. doi: 10.1016/j.fitote.2008.06.006
    [11]
    孙玉侠. 金露梅化学成分及生物活性的研究[D]. 西宁: 青海师范大学, 2017.
    [12]
    严培瑛, 刘力宽, 曾阳, 等. 金露梅对T2DM大鼠糖脂代谢关键酶和激素表达的影响[J]. 中国药理学通报,2019,35(2):293−294. doi: 10.3969/j.issn.1001-1978.2019.02.029
    [13]
    曾阳, 唐勋, 马秀梅, 等. 一种治疗2型糖尿病的金露梅提取物及其制备方法:中国, ZL201410235414.2[P]. 2016.
    [14]
    Zeng Y, Sun Y X, Meng X H, et al. A new methylene bisflavan-3-ol from the branches and leaves of Potentilla fruticosa[J]. Nat Prod Res,2020,34(9):1238−1245. doi: 10.1080/14786419.2018.1557169
    [15]
    李美华, 王渭清, 曾阳, 等. 金露梅对α-淀粉酶, α-葡萄糖苷酶和醛糖还原酶的抑制作用[J]. 中国药科大学学报,2018,49(4):470−475.
    [16]
    Rauf A, Khan R, Khan H, et al. Cytotoxic, antitumour-promoting and inhibition of protein denaturation effects of flavonoids, isolated from Potentilla evestita Th. Wolf[J]. Nat Prod Res,2015,29(18):1775−1778. doi: 10.1080/14786419.2014.999336
    [17]
    曾阳, 刘力宽, 代芸, 等. 一种金露梅茶自动滚炒机: 中国, ZL201720264387.0[P].2017.
    [18]
    Zeng W, Huang K E, Luo Y, et al. Nontargeted urine metabolomics analysis of the protective and therapeutic effects of citri reticulatae chachiensis pericarpium on high-fat feed-induced hyperlipidemia in rats[J]. Biomed Chromatogr,2020,34:e4795.
    [19]
    Zhang Y, Wang Z, Jin G, et al. Regulating dyslipidemia effect of polysaccharides from pleurotus ostreatus on fat-emulsion-induced hyperlipidemia rats[J]. Int J Biol Macromol,2017,101:107−16. doi: 10.1016/j.ijbiomac.2017.03.084
    [20]
    严培瑛, 李锦萍, 曾阳, 等. 青藏高原金露梅茶提取物的降糖作用研究[J]. 营养学报,2018,40(6):604−607. doi: 10.3969/j.issn.0512-7955.2018.06.016
    [21]
    李丽莎, 徐小妹, 卢雪花, 等. 泽泻对高脂高糖饮食大鼠肠道菌群多样性的影响[J]. 中国微生态学杂志,2019,31(4):396−401.
    [22]
    王少平, 姜珊, 赵一慕, 等. 土鳖虫生物活性肽对高脂血症大鼠肠道菌群调节作用研究[J]. 中国药理学通报,2020,36(5):621−626.
    [23]
    Ley R E, Turnbaugh P J, Klein S, et al. Microbial ecology: Human gut microbes associated with obesity[J]. Nature,2006,444(7122):1022−1023. doi: 10.1038/4441022a
    [24]
    Fu X, Cao C, Ren B, et al. Structural characterization and in vitro fermentation of a novel polysaccharide from Sargassum thunbergii and its impact on gut microbiota[J]. Carbohydr Polym,2018,183:230−239. doi: 10.1016/j.carbpol.2017.12.048
    [25]
    高伟华. 乳酸菌对高糖高脂2型糖尿病小鼠糖脂代谢及肠道菌群的影响[D]. 临汾: 山西师范大学, 2018.
    [26]
    印伯星, 李艳, 瞿恒贤, 等. 不同乳酸菌发酵乳对高血脂症大鼠肠道菌群的影响[J]. 中国畜牧杂志,2019,55(6):100−106.
    [27]
    陈春秀. 肠道菌群次级胆汁酸通过调节食欲信号肽对高脂饮食性肥胖的影响[D]. 重庆: 重庆医科大学, 2020.
  • Related Articles

    [1]TIAN Ming, WANG Huan, CHEN Jiamiao, GUO Qinwen, FAN Xin. Management Research on Canadian Food Claim and Natural Health Product Claim and Inspiration[J]. Science and Technology of Food Industry, 2023, 44(10): 430-435. DOI: 10.13386/j.issn1002-0306.2022070275
    [2]CHI Hailin, LI Feifei, ZHANG Liwei, JIANG Yu. Application and Research Progress of Glucosamine in Health Food[J]. Science and Technology of Food Industry, 2023, 44(8): 437-445. DOI: 10.13386/j.issn1002-0306.2022050211
    [3]LI Yaxian, TIAN Huaixiang, YU Haiyan, LU Zhi. Detection of Total Arsenic and Inorganic Arsenic Content in Health Food Raw Materials from Different Habitats[J]. Science and Technology of Food Industry, 2022, 43(12): 10-17. DOI: 10.13386/j.issn1002-0306.2021120117
    [4]DUAN Hao, LV Yanni, YAN Wenjie. Application Progress of Probiotics in Functional Food in China[J]. Science and Technology of Food Industry, 2022, 43(3): 384-394. DOI: 10.13386/j.issn1002-0306.2020100077
    [5]SA Yi, CHEN Xiaoyi. Record of Vitamin Mineral Supplement in China and Its Future Development Trend[J]. Science and Technology of Food Industry, 2021, 42(3): 320-325,337. DOI: 10.13386/j.issn1002-0306.2020040243
    [6]TIAN Ming, ZHAO Jing-bo, ZHANG Zi-yi. Model of Canadian Natural Health Product Management and Its Enlightenment[J]. Science and Technology of Food Industry, 2019, 40(10): 355-359,368. DOI: 10.13386/j.issn1002-0306.2019.10.058
    [7]MA Yu-xun, DUAN Hao, LIU Hong-yu, CHEN Wen. Classification and Management of Health Related Foods in Japan[J]. Science and Technology of Food Industry, 2019, 40(7): 269-272. DOI: 10.13386/j.issn1002-0306.2019.07.046
    [8]ZHANG Jun-yi, LIU Fei, XU Hong. Research Progress of Application of Steam Explosion Technology in Pretreatment of Food Raw Materials[J]. Science and Technology of Food Industry, 2019, 40(4): 331-334. DOI: 10.13386/j.issn1002-0306.2019.04.055
    [9]LIU Qi, DU Yong, YANG Ling, WU Guo-qing. Analysis of the Status in Domestic Registered Weight-reduction Health Foods[J]. Science and Technology of Food Industry, 2019, 40(1): 209-213. DOI: 10.13386/j.issn1002-0306.2019.01.037
    [10]Enlightenment from US food safety emergency response system[J]. Science and Technology of Food Industry, 2012, (20): 49-52. DOI: 10.13386/j.issn1002-0306.2012.20.039
  • Cited by

    Periodical cited type(11)

    1. 裘一婧,贾彦博,江海,孙岚,陈美春,陈丽芳,余菁,林舒忆. UPLC-MS/MS测定凉果类酵素食品中的致泻类非法添加物. 发酵科技通讯. 2024(01): 1-7 .
    2. 赵一萌,索晓雄,刘彩霞,尚彩玲,杜晨晖,闫艳,裴香萍. 药用植物蛋白提取方法及生物活性研究进展. 食品安全质量检测学报. 2024(15): 119-126 .
    3. 丘梓慧,陈梓雅,陈爽,王琴,肖更生,彭进明. 超微粉碎果蔬粉的活性成分、物理特性与食品开发研究进展. 现代食品科技. 2024(11): 398-409 .
    4. 周勤文. 酸枣仁蛋白的提取工艺优化分析. 中国食品工业. 2023(02): 95-97+46 .
    5. 孟楠,秦令祥,曹源,高愿军. 超微冷冻前处理协同渗漉法提取食叶草黄酮工艺优化及其抗氧化、降血糖活性研究. 食品安全质量检测学报. 2023(13): 249-257 .
    6. 谭力铭,曹妍,裴海生,郝建雄,李慧颖. 酶法制备酸枣仁ACE抑制肽理化性质研究. 食品工业科技. 2022(02): 84-92 . 本站查看
    7. 任晓婵,常婧瑶,马晓丽,孔保华,辛莹,胡公社,刘骞. 超微粉碎后粒径对大麦全粉品质特性的影响. 食品工业科技. 2022(10): 80-86 . 本站查看
    8. 赵学旭,武蕊,衣春敏,武安琪,马培轩,单良. 沙棘果渣粉的超微冷冻粉碎制备及其理化性质与结构特性. 现代食品科技. 2022(05): 87-95 .
    9. 易佳,刘昆仑. 超微联合超声波优化提取米糠蛋白及其对米糠蛋白溶解性的影响. 食品研究与开发. 2022(19): 117-123 .
    10. 王士佳,张璐,葛善赢,李佳宸,吴学智,张佰清. 两种粉碎机型式对鹰嘴豆芽超微粉食用品质的影响. 食品安全质量检测学报. 2022(20): 6699-6705 .
    11. 刘晖,李光哲,肖凤琴,杨亦柳,韩荣欣,张红印,严铭铭. 酸枣仁蛋白的分离纯化及体外免疫活性. 食品科技. 2022(12): 214-220 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (278) PDF downloads (21) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return