REN Xiaochan, CHANG Jingyao, MA Xiaoli, et al. Effects of Different Particle Sizes on the Quality of Barley Flour after Superfine Grinding[J]. Science and Technology of Food Industry, 2022, 43(10): 80−86. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080063.
Citation: REN Xiaochan, CHANG Jingyao, MA Xiaoli, et al. Effects of Different Particle Sizes on the Quality of Barley Flour after Superfine Grinding[J]. Science and Technology of Food Industry, 2022, 43(10): 80−86. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021080063.

Effects of Different Particle Sizes on the Quality of Barley Flour after Superfine Grinding

More Information
  • Received Date: August 05, 2021
  • Available Online: March 18, 2022
  • In this research, Barley was used as the main material to investigate the quality characteristics of disparate sizes of barley flour after superfine grinding. The results showed that moisture content, starch content, solubility, brightness value and whiteness value all increased remarkably with the decline of the particle size of the whole powders (P<0.05). However, the swelling power, peak viscosity, oil absorption, setback value, and the water holding capacity declined obviously with the declined of the size of the barley powder(P<0.05). The results of scanning electron microscopy showed that the particle size declined, the powders shape changed from round or ellipse to irregular shape, and the surface changed from smooth to rough. Meanwhile, compared with the barley powders from regular grinding technology, the quality of the barley powders from superfine grinding was significantly improved, which expanded the application scope of the barley powders in food processing. In conclusion, the quality characteristics of barley flour with different particle sizes were different after superfine grinding, and the barley flour with the size less than 54 μm had the best quality characteristics.
  • [1]
    GHOLIZADEL H, NASERIAN A, YARI M, et al. Crude protein fractionation, in situ ruminal degradability and FTIR protein molecular structures of different cultivars within barley, corn and sorghum cereal grains[J]. Animal Feed Science and Technology,2021,275:114855. doi: 10.1016/j.anifeedsci.2021.114855
    [2]
    DEVI R, SIT N. Effect of single and dual steps annealing in combination with hydroxypropylation on physicochemical, functional and rheological properties of barley starch[J]. International Journal of Biological Macromolecules,2019,129:1006−1014. doi: 10.1016/j.ijbiomac.2019.02.104
    [3]
    NIROULA A, AMGAIN N, KC R, et al. Pigments, ascorbic acid, total polyphenols and antioxidant capacities in deetiolated barley (Hordeum vulgare) and wheat (Triticum aestivum) microgreens[J]. Food Chemistry,2021,354(2):129491.
    [4]
    LEE J H, LEE S Y, KIM B, et al. Barley sprout extract containing policosanols and polyphenols regulate AMPK, SREBP2 and ACAT2 activity and cholesterol and glucose metabolism in vitro and in vivo[J]. Food Research International,2015,72:174−183. doi: 10.1016/j.foodres.2015.03.041
    [5]
    BECK E J, TOSH S M, BATTERHAM M J, et al. Oat beta-glucan increases postprandial cholecystokinin levels, decreases insulin response and extends subjective satiety in overweight subjects[J]. Molecular Nutrition and Food Research,2010,53(10):1343−1351.
    [6]
    FRANCKOWIACK J D, KONISHI T. Naked caryopsis[J]. Barley Genetics Newsletter,1997,26:51−52.
    [7]
    BHATTY R S. Hull-less barley bran: A potential new product from an old grain[J]. Cereal Foods World,1995,40(11):819−824.
    [8]
    DU B, ZHU F M, XU B J. Physicochemical and antioxidant properties of dietary fibers from Qingke (hull-less barley) flour as affected by ultrafine grinding[J]. Bioactive Carbohydrates and Dietary Fibre,2014,4(2):170−175. doi: 10.1016/j.bcdf.2014.09.003
    [9]
    赵神彳, 李鑫, 刘骞, 等. 高水分环境条件下普通和蜡质大麦淀粉不同比例复配体系的功能性质[J]. 食品科学,2020,41(16):8−14. [ZHAO S C, LI X, LIU Q, et al. Functional properties of nomal and waxy barley starch blends with various mass ratios in excess water[J]. Food Science,2020,41(16):8−14. doi: 10.7506/spkx1002-6630-20190704-054

    ZHAO S C, LI X, LIU Q, et al. Functional properties of nomal and waxy barley starch blends with various mass ratios in excess water[J]. Food Science, 2020, 41(16): 8-14. doi: 10.7506/spkx1002-6630-20190704-054
    [10]
    DHIMAN A, PRABHAKARP K. Micronization in food processing: A comprehensive review of mechanistic approach, physicochemical, functional properties and self-stability of micronized food materials[J]. Journal of Food Engineering,2020,292:110248.
    [11]
    ZHAO X Y, DU F L, ZHU Q J, et al. Effect of superfine pulverization on properties of Astragalus membranaceus powder[J]. Powder Technology,2010,203(3):620−625. doi: 10.1016/j.powtec.2010.06.029
    [12]
    CHENG M, LIU B G, CAO X Z. Discussion on the application of LS-DYNA in superfine grinding of wheat bran[J]. Grain and Oil Science and Technology,2018,1(3):138−144. doi: 10.3724/SP.J.1447.GOST.2018.18008
    [13]
    WU G C, ZHANG M, WANG Y Q, et al. Production of silver carp bone powder using superfine grinding technology: Suitable production parameters and its properties[J]. Journal of Food Engineering,2012,109(4):730−735. doi: 10.1016/j.jfoodeng.2011.11.013
    [14]
    ZHAO X Y, YANG Z B, GAI G S, et al. Effect of superfine grinding on properties of ginger powder[J]. Journal of Food Engineering,2009,91(2):217−222. doi: 10.1016/j.jfoodeng.2008.08.024
    [15]
    曹英, 夏文, 李积华, 等. 超微粉碎处理对木薯淀粉结构及消化特性的影响[J]. 食品工业科技,2019,40(7):30−34,40. [CAO Y, XIA W, LI J H, et al. Effect of micronization on the structure and digestibility of tapioca starch[J]. Science and Technology of Food Industry,2019,40(7):30−34,40.

    CAO Y, XIA W, LI J H, et al. Effect of micronization on the structure and digestibility of tapioca starch[J]. Science and Technology of Food Industry, 2019, 40(7): 30-34, 40.
    [16]
    余清清, 张美霞, 陈光静, 等. 藕淀粉和超微全藕粉的糊化特性研究[J]. 食品与发酵工业,2018,44(11):130−137. [YU Q Q, ZHANG M X, CHEN G J, et al. Pasting properties of lotus root starch and super-fine whole lotus root starch[J]. Food and Fermentation Industries,2018,44(11):130−137.

    YU Q Q, ZHANG M X, CHEN G J, et al. Pasting properties of lotus root starch and super-fine whole lotus root starch[J]. Food and Fermentation Industries, 2018, 44(11): 130-137.
    [17]
    王立东, 侯越, 刘诗琳, 等. 气流超微粉碎对玉米淀粉微观结构及老化特性影响[J]. 食品科学,2020,41(1):86−93. [WANG L D, HOU Y, LIU S L, et al. Effect of jet milling on microstructure and aging characteristics of maize starch[J]. Food Science,2020,41(1):86−93. doi: 10.7506/spkx1002-6630-20190609-085

    WANG L D, HOU Y, LIU S L, et al. Effect of jet milling on microstructure and aging characteristics of maize starch[J]. Food Science, 2020, 41(1): 86-93. doi: 10.7506/spkx1002-6630-20190609-085
    [18]
    NIU M, ZHANG B J, JIA C H, et al. Multi-scale structures and pasting characteristics of starch in whole-wheat flour treated by superfine grinding[J]. International journal of Biological Macromolecules,2017,104:837−845. doi: 10.1016/j.ijbiomac.2017.06.125
    [19]
    AHMED J, THOMAS L, ARFAT Y A. Functional, rheological, microstructural and antioxidant properties of quinoa flour in dispersions as influenced by particle size[J]. Food research international,2019,116:302−311. doi: 10.1016/j.foodres.2018.08.039
    [20]
    LIU K S, HAN J. Enzymatic method for measuring starch gelatinization in dry products in situ[J]. Journal of Agricultural and Food Chemistry,2012,60(17):4212−4221. doi: 10.1021/jf300160v
    [21]
    HE S D, LI J, HE Q, et al. Physicochemical and antioxidant properties of hard white winter wheat (Triticum aestivm L.) bran superfine powder produced by eccentric vibratory milling[J]. Powder Technology,2017,325:126−133.
    [22]
    牛潇潇, 梁亮, 王宁, 等. 超微粉碎及不同粒度对马铃薯渣功能特性的影响[J]. 中国粮油学报,2022,37(1):37−45. [NIU X X, LIANG L, WANG N, et al. Effect of superfine grinding and different particle sizes on functional characteristics of potato residuess[J]. Journal of the Chinese Cereals and Oils Association,2022,37(1):37−45. doi: 10.3969/j.issn.1003-0174.2022.01.007

    NIU X X, LIANG L, WANG N, et al. Effect of superfine grinding and different particle sizes on functional characteristics of potato residuess[J]. Journal of the Chinese Cereals and Oils Association, 2022, 37(1): 37-45. doi: 10.3969/j.issn.1003-0174.2022.01.007
    [23]
    许青莲, 岳天义, 张萍, 等. 超微粉碎对苦荞物化性质的影响[J]. 包装工程,2020,41(11):25−32. [XU Q L, YUE T Y, ZAHNG P, et al. Effects of superfine grinding on physicochemical properties of tartary buckwheat[J]. Packaging Engineering,2020,41(11):25−32.

    XU Q L, YUE T Y, ZAHNG P, et al. Effects of superfine grinding on physicochemical properties of tartary buckwheat[J]. Packaging Engineering, 2020, 41(11): 25-32.
    [24]
    刘月如, 王海林, 杨茂, 等. 超微化膳食纤维功能特性的研究进展[J]. 食品科技,2020,45(3):64−68. [LIU Y R, WANG H L, YANG M, et al. Research progress of functional properties of superfine dietary fiber[J]. Food Science and Technology,2020,45(3):64−68.

    LIU Y R, WANG H L, YANG M, et al. Research progress of functional properties of superfine dietary fiber[J]. Food Science and Technology, 2020, 45(3): 64-68.
    [25]
    杨茉, 王素雅, 曹崇江, 等. 超微粉碎对竹笋壳粉理化性质的影响[J]. 食品工业科技,2019,40(1):34−39. [YANG M, WANG S Y, CAO C J, et al. Effect of ultrafine grinding on physical and chemical properties of bamboo shell powder[J]. Science and Technology of Food Industry,2019,40(1):34−39.

    YANG M, WANG S Y, CAO C J, et al. Effect of ultrafine grinding on physical and chemical properties of bamboo shell powder[J]. Science and Technology of Food Industry, 2019, 40(1): 34-39.
    [26]
    谭力铭, 裴海生, 赵丹丹, 等. 超微冷冻粉碎处理下酸枣仁蛋白提取工艺优化[J]. 食品工业科技,2020,41(23):122−128. [TAN L M, PEI H S, ZHAO D D, et al. Optimization of extracting jujube kernel protein by ultramicro freezing grinding[J]. Science and Technology of Food Industry,2020,41(23):122−128.

    TAN L M, PEI H S, ZHAO D D, et al. Optimization of extracting jujube kernel protein by ultramicro freezing grinding[J]. Science and Technology of Food Industry, 2020, 41(23): 122-128.
    [27]
    杨璐. 超微粉碎对燕麦粉品质影响及体外模拟消化研究[D]. 沈阳: 沈阳农业大学, 2019.

    YANG L. Effects of ultrafine pulverization on quality and in vitro simulated digestion of oat flour[D]. Shenyang: Shenyang Agricultural University, 2019.
    [28]
    邓凯波, 黄雅萍, 代亚萍, 等. 超微粉碎对南瓜粉物化及其粉糊流变性质的影响[J]. 东北农业大学学报,2018,49(11):42−49. [DENG K B, HUANG Y P, DAI Y P, et al. Effect of ultrafine grinding on physicochemical and paste rheological properties of pumpkin powder[J]. Journal of Northeast Agricultural University,2018,49(11):42−49. doi: 10.3969/j.issn.1005-9369.2018.11.006

    DENG K B, HUANG Y P, DAI Y P, et al. Effect of ultrafine grinding on physicochemical and paste rheological properties of pumpkin powder[J]. Journal of Northeast Agricultural University, 2018, 49(11): 42-49. doi: 10.3969/j.issn.1005-9369.2018.11.006
    [29]
    DU B, ZHU F M, XU B J. Superfine grinding improves functional properties and antioxidant capacities of bran dietary fibre from Qingke (hull-less barley) grown in Qinghai-Tibet Plateau, China[J]. Journal of Cereal Science,2015,65:43−47. doi: 10.1016/j.jcs.2015.06.006
    [30]
    时东杰, 房一明, 朱红英, 等. 不同粒径鹧鸪茶粉体表征与理化特性的比较研究[J]. 热带作物学报,2020,41(5):1030−1040. [SHI D J, FANG Y M, ZHU H Y, et al. Comparative study on characterization and physical and chemical properties of Mallotus peltatus powder with different particle sizes[J]. Chinese Journal of Tropical Crops,2020,41(5):1030−1040. doi: 10.3969/j.issn.1000-2561.2020.05.025

    SHI D J, FANG Y M, ZHU H Y, et al. Comparative study on characterization and physical and chemical properties of Mallotus peltatus powder with different particle sizes[J]. Chinese Journal of Tropical Crops, 2020, 41(5): 1030-1040. doi: 10.3969/j.issn.1000-2561.2020.05.025
    [31]
    HUANG X, LIANG K H, LIU Q, et al. Superfine grinding affects physicochemical, thermal and structural properties of Moringa oleifera leaf powders[J]. Industrial Crops and Products,2020,151:112472. doi: 10.1016/j.indcrop.2020.112472
    [32]
    KONG F, WANG L, GAO H F, et al. Process of steam explosion assisted superfine grinding on particle size, chemical composition and physico-chemical properties of wheat bran powder[J]. Powder Technology,2020:371.
    [33]
    HUANG X, DOU J Y, LI D, et al. Effects of superfine grinding on properties of sugar beet pulp powders[J]. LWT-Food Science and Technology,2017,87:203−209.
    [34]
    HU J H, CHEN Y C, NI D J. Effect of superfine grinding on quality and antioxidant property of fine green tea powders[J]. LWT-Food Science and Technology,2012,45(1):8−12. doi: 10.1016/j.lwt.2011.08.002
    [35]
    RYU G H, NEUMANN P E, WALKER, C E. Pasting of wheat flour extrudates containing conventional baking ingredients[J]. Food Science,1993,58(3):567−573. doi: 10.1111/j.1365-2621.1993.tb04325.x
    [36]
    KUMAR L, BRENNAN M, ZHENG H T, et al. The effects of dairy ingredients on the pasting, textural, rheological, freeze thaw properties and swelling behaviour of oat starch[J]. Food Chemistry,2018,245:518−524. doi: 10.1016/j.foodchem.2017.10.125
    [37]
    ROSANA C, PINTO V Z, HALAL S L M E, et al. Structural, morphological, and physicochemical properties of acetylated high-, medium-, and low-amylose rice starches[J]. Carbohydrate Polymers,2014,103:405−413. doi: 10.1016/j.carbpol.2013.12.070
    [38]
    NIU M, HOU G G, WANG L, et al. Effects of superfine grinding on the quality characteristics of whole-wheat flour and its raw noodle product[J]. Journal of Cereal Science,2014,60(2):382−388. doi: 10.1016/j.jcs.2014.05.007
    [39]
    LI L, YUAN T Z, SETIA R, et al. Characteristics of pea, lentil and faba bean starches isolated from air-classified flours in comparison with commercial starches[J]. Food Chemistry,2019,276:599−607. doi: 10.1016/j.foodchem.2018.10.064
  • Cited by

    Periodical cited type(1)

    1. 卢靖辉,温靖,赖慧宁,吕思哲,徐玉娟,余元善,程丽娜,彭健. 不同浓缩方式对枸杞汁品质特性的影响. 食品工业科技. 2025(03): 31-40 . 本站查看

    Other cited types(0)

Catalog

    Article Metrics

    Article views (336) PDF downloads (57) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return