FU Yaling, YAO Junxiu, ZHANG Rentang. Optimization of Extraction and Antioxidant Activities of Triterpenic Acids from Blacked Jujube by Response Surface Methodology[J]. Science and Technology of Food Industry, 2021, 42(12): 176−183. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080218.
Citation: FU Yaling, YAO Junxiu, ZHANG Rentang. Optimization of Extraction and Antioxidant Activities of Triterpenic Acids from Blacked Jujube by Response Surface Methodology[J]. Science and Technology of Food Industry, 2021, 42(12): 176−183. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080218.

Optimization of Extraction and Antioxidant Activities of Triterpenic Acids from Blacked Jujube by Response Surface Methodology

More Information
  • Received Date: August 23, 2020
  • Available Online: March 30, 2021
  • Objective: Blacked jujube was used as raw materials to study the extraction conditions and antioxidant activity of triterpenic acids. Methods: The ultrasonic extraction process of triterpenic acids from blacked jujube was optimized by single factor and Box-Behnken response surface experiments. The antioxidant activity of before and after purification of triterpenic acids were evaluated by determining the scavenging capacity of DPPH and ABTS+ free radicals and total reducing power. Results: The optimum extraction parameters were as follows: 50% ethanol concentration, liquid-solid ratio 23:1 mL/g, ultrasonic time 30 min, ultrasonic power 300 W. Under these conditions, the yield of triterpenoid acids was 1.313±0.01 mg/g. The half inhibitory concentration (IC50) for scavenging of DPPH· and ABTS+· of crude and purified triterpenoid acids from blacked jujube were 0.571, 0.053, 0.186 and 0.059 mg/mL, respectively. The total reducing power showed a certain dose effect relationship with the sample concentration. Conclusions: The process was simple, reasonable and feasible. The triterpenic acids of blacked jujube would have a good antioxidant activity.
  • [1]
    Ji X L, Peng Q, Yuan Y P, et al. Isolation, structures and bioactivities of the polysaccharides from jujube fruit (Ziziphus jujuba Mill.): A review[J]. Food Chemistry,2017,27:349−357.
    [2]
    Song L J, Zhang L, Xu L, et al. Optimized extraction of total triterpenoids from Jujube (Ziziphus jujuba Mill.) and comprehensive analysis of triterpenic acids in different cultivars[J]. Plants,2020,9:412. doi: 10.3390/plants9040412
    [3]
    Milena M, Paol M, Stefania M, et al. Quali-quantitative determination of triterpenic acids of Ziziphus jujuba fruits and evaluation of their capability to interfere in macrophages activation inhibiting NO release and iNOS expression[J]. Food Research International,2015,77:109−117. doi: 10.1016/j.foodres.2015.09.009
    [4]
    Gao L, Gu D Y, Sun X, et al. Investigation of processing technology for aged black jujube[J]. Food Science and Nutrition Studies,2019,3(4):107−121. doi: 10.22158/fsns.v3n4p107
    [5]
    Sun X, Gu D Y, Fu Q B, et al. Content variations in compositions and volatile component in jujube fruits during the blacking process[J]. Food Science & Nutrition,2019,7(4):1−9.
    [6]
    李斌, 李元甦, 孟宪军, 等. 响应曲面法优化北五味子总三萜的提取工艺[J]. 食品科学,2010,31(16):106−110.
    [7]
    Kou X H, Chen Q, Li X H, et al. Quantitative assessment of bioactive compounds and the antioxidant activity of 15 jujube cultivars[J]. Food Chemistry,2015,173:1037−1044. doi: 10.1016/j.foodchem.2014.10.110
    [8]
    Qiao A M, Wang Y H, Xiang L M, et al. Triterpenoids of sour jujube show pronounced inhibitory effect on human tumor cells and antioxidant activity[J]. Fitoterapia,2014,98:137−142. doi: 10.1016/j.fitote.2014.07.020
    [9]
    Xiao S L, Tian Z Y, Wang Y F, et al. Recent progress in the antiviral activity and mechanism study of pentacyclic triterpenoids and their derivatives[J]. Medicinal Research Reviews,2018,38(3):951−976. doi: 10.1002/med.21484
    [10]
    Wang Z H, Hsu C C, Huang C N, et al. Anti-glycative effects of oleanolic acid and ursolic acid in kidney of diabatic mice[J]. European Journal of Pharmacology,2010,628:255−260. doi: 10.1016/j.ejphar.2009.11.019
    [11]
    Gao Q H, Wu C S, Wang M. Thejujube (Ziziphus Jujuba Mill.) fruit: A review of current knowledge of fruit composition and health benefits[J]. Journal of Agricultural and Food Chemistry,2013,61(14):3351−3363. doi: 10.1021/jf4007032
    [12]
    Szakiel A, Paczkowski C, Pensec F, et al. Fruit cuticular waxes as asource of biologically active triterpenoids[J]. Phytochemistry Reviews,2012,11(2−3):263−284. doi: 10.1007/s11101-012-9241-9
    [13]
    刘子祯, 姜蕊, 刘伟锐, 等. 红枣叶中三萜皂苷的提取工艺和含量测定研究[J]. 食品研究与开发,2016,37(1):57−59. doi: 10.3969/j.issn.1005-6521.2016.01.015
    [14]
    蔡天娇, 雷宏杰, 王瑞珍, 等. 红枣三萜酸大孔吸附树脂纯化特性及其抗氧化活性研究[J]. 食品工业科技,2017,38(20):159−165.
    [15]
    樊梓鸾, 赵梓煣, 赵翔, 等. 红豆越橘总三萜的纯化及体外抗炎活性[J]. 自然科学版,2019,43(4):132−138.
    [16]
    Fu Z F, Tu Z C, Zhang L, et al. Antioxidant activities and polyphenols of sweet potato (Ipomoea batatas L.) leaves extracted with solvents of various polarities[J]. Food Bioscience,2016,15(3):11−18.
    [17]
    Liu C H, Yen M H, Tsang S F, et al. Antioxidant triterpenoids from the stems of Momordica charantia[J]. Food Chemistry,2010,118(3):751−756. doi: 10.1016/j.foodchem.2009.05.058
    [18]
    康宁, 王占斌, 李德海, 等. 粗毛纤孔菌三萜类化合物的诱导合成及其抗氧化功能分析[J]. 食品科学,2019,40(10):157−165. doi: 10.7506/spkx1002-6630-20180530-430
    [19]
    张爽, 任亚梅, 刘春利, 等. 响应面试验优化苹果渣总三萜超声提取工艺[J]. 食品科学,2015,36(16):44−50. doi: 10.7506/spkx1002-6630-201516008
    [20]
    张琼, 张雪丹, 王中堂, 等. 响应面法优化枣果三萜酸的提取工艺研究[J]. 山东农业科学,2018,50(4):120−124.
    [21]
    周茜, 韩雪, 韩晓梅, 等. 响应面试验优化乌梅熊果酸提取工艺及其对大肠杆菌的抑制作用[J]. 食品科学,2016,37(8):67−73. doi: 10.7506/spkx1002-6630-201608012
    [22]
    凡芸, 宋雅, 孙月, 等. 超声辅助乙醇提取杏鲍菇总三萜化合物工艺研究[J]. 食品工业,2016,37(8):124−126.
    [23]
    张国强, 郭晓东, 薛文华, 等. 西藏野生卷叶黄精多酚的提取及其抗氧化活性分析[J]. 食品科学,2017,38(6):236−241.
    [24]
    黄艳, 孙怡婷, 张见明, 等. 松毛菇多酚的提取及纯化工艺研究[J]. 食品研究与开发,2019,40(21):106−114.
    [25]
    Jiang C X, Li X, Jiao Y P, et al. Optimization for ultrasound-assisted extraction of polysaccharides with antioxidant activity in vitro from the aerial root of Ficus microcarpa[J]. Carbohydrate Polymers,2014,110:10−17. doi: 10.1016/j.carbpol.2014.03.027
    [26]
    Sun Y, Liu D, Chen J, et al. Effects of different factors of ultrasound treatment on the extraction yield of the all-trans-β-carotene from citrus peels[J]. Ultrasonics Sonochemistry,2011,18(1):243−249. doi: 10.1016/j.ultsonch.2010.05.014
    [27]
    王美英, 李化强, 吴菲菲, 等. 响应面法优化超声辅助竹叶鸡爪茶多酚的提取工艺[J]. 食品安全质量检测学报,2019,10(24):8337−8344.
  • Related Articles

    [1]CAO Wanxue, LI Jiao, TAO Qiang, FAN Xuanxuan, LU Jiting, CHEN Naifu, CHEN Naidong. Selenization Optimization of Preparation Process of Polysaccharide from Dendrobium huoshanense and Its Inhibitory Effect on α-Amylase[J]. Science and Technology of Food Industry. DOI: 10.13386/j.issn1002-0306.2024060247
    [2]WANG Yanan, QIAN Xinyi, YONG Yidan, WU Mengmeng, LI Yihao, CHEN Yuhang, NI Zaizhong, LI Lulu, CHEN Anhui, ZHANG Peng, GENG Ying, SHAO Ying. Isolation, Purification, and Structural Characterization of Antioxidant Polysaccharides Isolated from the Fruiting Bodies of Cordyceps militaris[J]. Science and Technology of Food Industry. DOI: 10.13386/j.issn1002-0306.2024070386
    [3]HAN Pengfei, ZHU Xuan, YANG Min, HUANG Guiqiang. Solid-state Fermentation of Cordyceps taii for Polysaccharide Production[J]. Science and Technology of Food Industry, 2023, 44(14): 130-136. DOI: 10.13386/j.issn1002-0306.2022090117
    [4]WANG Mingrui, DENG Yongping, SONG Qingyan, CHEN Yuebin, LIU Xiaolan. Optimization of Polysaccharides and Fibrinolytic Enzyme Co-production from Cordyceps militaris through Solid State Fermentation[J]. Science and Technology of Food Industry, 2021, 42(4): 71-76. DOI: 10.13386/j.issn1002-0306.2020040341
    [5]WU Tong, WANG Zhen-jiong, WU Yu-long, JIANG Hai-tao, ZHOU Feng, WANG Ren-lei, HUA Chun, CHI Yue-lan. Study on the preparation of Cordyceps militaris polysaccharide/Nano-Selenium complex[J]. Science and Technology of Food Industry, 2017, (05): 49-53. DOI: 10.13386/j.issn1002-0306.2017.05.001
    [6]CHEN Xiao-li, WU Guang-hong, HUANG Zhuo-lie. Structural characterization of a polysaccharide from cultured Cordyceps militaris with antioxidant activity[J]. Science and Technology of Food Industry, 2016, (06): 155-159. DOI: 10.13386/j.issn1002-0306.2016.06.023
    [7]YANG Wen- ya, LI Chang- zheng, ZHANG Hai- hui, ZHANG Di, CAI Mei- hong, WANG Jia, DUAN Yu- qing. Study on the optimization for the extraction and antioxidant activity of polysaccharide from cordyceps militaris by subcritical water[J]. Science and Technology of Food Industry, 2016, (05): 252-257. DOI: 10.13386/j.issn1002-0306.2016.05.041
    [8]WANG Xue, CHI Yue-lan, HUA Chun, WANG Zhen-jiong, WU Yu-long, JIANG Hai-tao, ZHOU Feng, WANG Ren-lei. Effect of different extraction methods on the feature of polysaccharide in Cordyceps Militaris[J]. Science and Technology of Food Industry, 2015, (09): 49-52. DOI: 10.13386/j.issn1002-0306.2015.09.001
    [9]Study on the anti-mutagenic effect of Cordyceps militaris polysaccharide[J]. Science and Technology of Food Industry, 2013, (11): 350-352. DOI: 10.13386/j.issn1002-0306.2013.11.006
    [10]Optimization of nutritional conditions for promotion of polysaccharide produced by Cordyceps gunnii in submerged culture[J]. Science and Technology of Food Industry, 2013, (10): 225-229. DOI: 10.13386/j.issn1002-0306.2013.10.015
  • Cited by

    Periodical cited type(3)

    1. 魏帅,唐崟珺,马嘉亿,刘颖琳,刘振洋,刘书成. 超临界CO_2萃取联合超声处理对凡纳滨对虾虾头油脂提取效果的影响. 保鲜与加工. 2024(01): 15-19 .
    2. 陶玮红,林蓉,梁铎,杨燊,金日天. 源自发酵凡纳滨对虾的抗菌肽BCE3对蜡样芽孢杆菌的抑菌机制及其在米饭中的应用. 微生物学报. 2024(08): 2768-2783 .
    3. 徐文思,张梦媛,李柏花,杨祺福,危纳强,杨品红,周顺祥. 虾加工副产物蛋白肽提制及其生物活性研究进展. 食品工业科技. 2021(17): 432-438 . 本站查看

    Other cited types(5)

Catalog

    Article Metrics

    Article views (464) PDF downloads (72) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return