YANG Nan, WANG Lei, GAO Xin, et al. Preparation and Characterization of Nanocellulose from Ulva prolifera by Different Methods[J]. Science and Technology of Food Industry, 2024, 45(22): 169−177. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024010088.
Citation: YANG Nan, WANG Lei, GAO Xin, et al. Preparation and Characterization of Nanocellulose from Ulva prolifera by Different Methods[J]. Science and Technology of Food Industry, 2024, 45(22): 169−177. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024010088.

Preparation and Characterization of Nanocellulose from Ulva prolifera by Different Methods

More Information
  • Received Date: January 09, 2024
  • Available Online: September 05, 2024
  • Ulva prolifera, as the dominant species of the green macro-algal bloom, was used as the raw material to prepare cellulose (UPC) by alkali extraction and bleaching treatment with a yield of 23.61%. Nanocelluloses of UPCNC-S, UPCNC-H, and UPCNC-T were prepared using sulfuric acid hydrolysis, hydrochloric acid hydrolysis, and TEMPO oxidation methods, respectively. The structure and micro-morphology of the prepared nanocelluloses were characterized and compared based on yield, fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), thermogravimetric analysis (TGA), scanning electron microscopy (SEM), particle size, zeta potential, and chromaticity value. The results showed that the yields of the nanocelluloses prepared by three methods were 10.07% of UPCNC-S, 32.48% of UPCNC-H, and 26.63% of UPCNC-T, respectively. All three methods did not damage the crystal form and the structure of the cellulose showed, an increase in crystallinity and reached 72.11% (UPCNC-S), 77.16% (UPCNC-H), and 66.53% (UPCNC-T). The thermal stability of nanocellulose UPCNC-S produced by sulfuric acid was to the weakest, while that of UPCNC-H was the optimal. In terms of morphological features, both UPCNC-T and UPCNC-H exhibited short-shaped morphology, with particle sizes concentrated around 430 nm and 610 nm, respectively. In addition to the short rod structure, partially spherical nanocellulose was produced by sulfuric acid hydrolysis, with the smallest particle sizes ranging from 300 nm to 400 nm. The Zeta potential values of the three types of nanocellulose were all less than −30 mV, indicating good stability in suspension. Besides, the color of UPCNC-S was slightly yellowish with the lowest whiteness value, while UPCNC-H and UPCNC-T both showed the whitish appearance. In summary, the nanocellulose prepared from Ulva prolifera in this study exhibited excellent characteristics such as high crystallinity, good dispersion, and small particle sizes, which would provide a theoretical basis for the high-value utilization of Ulva prolifera.
  • [1]
    WANG S, ZHAO L, WANG Y H, et al. Distribution characteristics of green tides and its impact on environment in the Yellow Sea[J]. Marine Environmental Research,2022,181:105756. doi: 10.1016/j.marenvres.2022.105756
    [2]
    WEI Q, FU G Q, WANG K, et al. Advances in research on antiviral activities of sulfated polysaccharides from seaweeds[J]. Pharmaceuticals (Basel),2022,15(5):581. doi: 10.3390/ph15050581
    [3]
    JIN W H, HE X Y, LONG L F, et al. Structural characterization and anti-lung cancer activity of a sulfated glucurono-xylo-rhamnan from Enteromorpha prolifera[J]. Carbohydrate Polymers,2020,237:116143. doi: 10.1016/j.carbpol.2020.116143
    [4]
    王慧鑫. 浒苔纳米纤维素/聚乙烯醇复合材料的制备与性能研究[D]. 青岛:山东科技大学, 2019. [WANG Huixin. Preparation and properties of Enteromorpha prolifera nanocellulose/polyvinyl alcohol composites[D]. Qingdao:Shandong University of Science and Technology, 2019.]

    WANG Huixin. Preparation and properties of Enteromorpha prolifera nanocellulose/polyvinyl alcohol composites[D]. Qingdao: Shandong University of Science and Technology, 2019.
    [5]
    SHEN P Z, TANG Q, CHEN X, et al. Nanocrystalline cellulose extracted from bast fibers:Preparation, characterization, and application[J]. Carbohydrate Polymers,2022,290:119462. doi: 10.1016/j.carbpol.2022.119462
    [6]
    张艳玲, 段超, 董凤霞, 等. 纳米纤维素制备及产业化研究进展[J]. 中国造纸,2021,40(11):79−89. [ZHANG Yanling, DUAN Chao, DONG Fengxia, et al. Research advances in nanocellulose preparation and industrialization[J]. China Pulp & Paper,2021,40(11):79−89.]

    ZHANG Yanling, DUAN Chao, DONG Fengxia, et al. Research advances in nanocellulose preparation and industrialization[J]. China Pulp & Paper, 2021, 40(11): 79−89.
    [7]
    ZHANG Y Q, MAN J, LI J Y, et al. Preparation of the alginate/carrageenan/shellac films reinforced with cellulose nanocrystals obtained from enteromorpha for food packaging[J]. International Journal of Biological Macromolecules,2022,218:519−532. doi: 10.1016/j.ijbiomac.2022.07.145
    [8]
    王杰. 浒苔纳米纤维素/聚乳酸复合材料的制备与性能研究[D]. 青岛:山东科技大学, 2020. [WANG Jie. Preparation and properties of Enteromorpha prolifera nanocellulose/polylactic acid composites[D]. Qingdao:Shandong University of Science and Tech-nology, 2020.]

    WANG Jie. Preparation and properties of Enteromorpha prolifera nanocellulose/polylactic acid composites[D]. Qingdao: Shandong University of Science and Tech-nology, 2020.
    [9]
    中华人民共和国国家卫生和计划生育委员会. GB 5009.3-2016 食品安全国家标准 食品中水分的测定[S]. 北京:中国标准出版社, 2016. [The National Health and Family Planning Commission of the People's Republic of China. GB 5009.3-2016 National food safety standard. Determination of moisture in food[S]. Beijing:Standards Press of China, 2016.]

    The National Health and Family Planning Commission of the People's Republic of China. GB 5009.3-2016 National food safety standard. Determination of moisture in food[S]. Beijing: Standards Press of China, 2016.
    [10]
    中华人民共和国国家卫生和计划生育委员会. GB 5009.4-2016 食品安全国家标准 食品中灰分的测定[S]. 北京:中国标准出版社, 2016. [The National Health and Family Planning Commission of the People's Republic of China. GB 5009.3-2016 National food safety standard. Determination of ash content in food[S]. Beijing:Standards Press of China, 2016.]

    The National Health and Family Planning Commission of the People's Republic of China. GB 5009.3-2016 National food safety standard. Determination of ash content in food[S]. Beijing: Standards Press of China, 2016.
    [11]
    中华人民共和国国家卫生和计划生育委员会. GB 5009.5-2016 食品安全国家标准 食品中蛋白质的测定[S]. 北京:中国标准出版社, 2016. [The National Health and Family Planning Commission of the People's Republic of China. GB 5009.3-2016 National food safety standard. Determination of protein in food[S]. Beijing:Standards Press of China, 2016.]

    The National Health and Family Planning Commission of the People's Republic of China. GB 5009.3-2016 National food safety standard. Determination of protein in food[S]. Beijing: Standards Press of China, 2016.
    [12]
    斯琴巴特尔, 乌兰图亚. 溶剂浸提法提取蒙古扁桃种仁油脂研究[J]. 粮食与油脂,2018,31(6):20−22. [SECHENBAATER, ULAANOYA. Study on the solvent extraction of Prunus mongolica Maxim seed oil[J]. Cereals& Oils,2018,31(6):20−22.]

    SECHENBAATER, ULAANOYA. Study on the solvent extraction of Prunus mongolica Maxim seed oil[J]. Cereals& Oils, 2018, 31(6): 20−22.
    [13]
    徐大伦, 黄晓春, 欧昌荣, 等. 浒苔水溶性多糖提取的工艺研究[J]. 浙江海洋学院学报(自然科学版),2005(1):67−69. [XU Dalun, HUANG Xiaochun, OU Changrong, et al. Studies on the technology of extracting the water-soluble polysaccharides from Enteromorpha interspinlis[J]. Journal of Zhejiang Ocean University (Natural Science),2005(1):67−69.]

    XU Dalun, HUANG Xiaochun, OU Changrong, et al. Studies on the technology of extracting the water-soluble polysaccharides from Enteromorpha interspinlis[J]. Journal of Zhejiang Ocean University (Natural Science), 2005(1): 67−69.
    [14]
    KAZHARSKA M, DING Y Y, ARIF M, et al. Cellulose nanocrystals derived from Enteromorpha prolifera and their use in developing bionanocomposite films with water-soluble polysaccharides extracted from E. prolifera[J]. International Journal of Biological Macromolecules,2019,134:390−396. doi: 10.1016/j.ijbiomac.2019.05.058
    [15]
    DOH H, WHITESIDE W S. Isolation of cellulose nanocrystals from brown seaweed, Sargassum fluitans, for development of alginate nanocomposite film[J]. Polymer Crystallization,2020,3(4):e10133.
    [16]
    ZHANG C, WU J H, QIU X, et al. Enteromorpha cellulose micro-nanofibrils/poly (vinyl alcohol) based composite films with excellent hydrophilic, mechanical properties and improved thermal stability[J]. International Journal of Biological Macromolecules,2022,217:229−242. doi: 10.1016/j.ijbiomac.2022.06.150
    [17]
    WU J L, ZHU W J, SHI X D, et al. Acid-free preparation and characterization of kelp (Laminaria japonica) nanocelluloses and their application in Pickering emulsions[J]. Carbohydrate Polymers,2020,236:115999. doi: 10.1016/j.carbpol.2020.115999
    [18]
    SEGAL L, CREELY J J, MARTIN A E, et al. An empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer[J]. Textile Research Journal,1959,29(10):786−794. doi: 10.1177/004051755902901003
    [19]
    ACHABY M E, KASSAB Z, ABOULKAS A, et al. Reuse of red algae waste for the production of cellulose nanocrystals and its application in polymer nanocomposites[J]. International Journal of Biological Macromolecules,2018,106:681−691. doi: 10.1016/j.ijbiomac.2017.08.067
    [20]
    MELIKOGLU A Y, BILEK S E, CESUR S. Optimum alkaline treatment parameters for the extraction of cellulose and production of cellulose nanocrystals from apple pomace[J]. Carbohydrate Polymers,2019,215:330−337. doi: 10.1016/j.carbpol.2019.03.103
    [21]
    WEI N, QUARTERMAN J, JIN Y S. Marine macroalgae:An untapped resource for producing fuels and chemicals[J]. Trends Biotechnology,2013,31(2):70−77. doi: 10.1016/j.tibtech.2012.10.009
    [22]
    YU S J, SUN J Z, SHI Y F, et al. Nanocellulose from various biomass wastes:Its preparation and potential usages towards the high value-added products[J]. Environmental Science and Ecotechnology,2021,5:100077. doi: 10.1016/j.ese.2020.100077
    [23]
    范晓, 韩丽君, 郑乃余. 我国常见食用海藻的营养成分分析[J]. 中国海洋药物,1993,12(4):32−38. [FAN Xiao, HAN Lijun, ZHENG Naiyu. Analysis of nutrient composition of common edible seaweed in China[J]. Chinese Journal of Marine Drugs,1993,12(4):32−38.]

    FAN Xiao, HAN Lijun, ZHENG Naiyu. Analysis of nutrient composition of common edible seaweed in China[J]. Chinese Journal of Marine Drugs, 1993, 12(4): 32−38.
    [24]
    付燕红. 海带生长时期营养成分变化规律及海带褐藻糖胶分离纯化与抗氧化活性研究[D]. 烟台:烟台大学, 2020. [FU Yanhong. Study on the change rule of nutrients during the growth period of Laminaria japonica and the separation, prification and antioxidant activity of Laminaria japonica fucoidan[D]. Yantai:Yantai University, 2020.]

    FU Yanhong. Study on the change rule of nutrients during the growth period of Laminaria japonica and the separation, prification and antioxidant activity of Laminaria japonica fucoidan[D]. Yantai: Yantai University, 2020.
    [25]
    纪明侯. 海藻化学[M]. 北京:科学出版社, 1997. [JI Minghou. Seaweed chemistry[M]. Beijing:Science Press, 1997.]

    JI Minghou. Seaweed chemistry[M]. Beijing: Science Press, 1997.
    [26]
    史煣, 史升耀. 紫菜胶与紫菜琼胶[J]. 海洋科学,1994(1):48−52. [SHI Rou, SHI Shengyao. Studies on the porphyran and porphyra agar[J]. Marine Sciences,1994(1):48−52.]

    SHI Rou, SHI Shengyao. Studies on the porphyran and porphyra agar[J]. Marine Sciences, 1994(1): 48−52.
    [27]
    段元慧. 缘管浒苔(Enteromorpha)的营养成分及安全性分析[D]. 大连:大连海洋大学, 2014. [DUAN Yuanhui. The nutritional components and security analysis of the Enteromorpha[D]. Dalian:Dalian Ocean University, 2014.]

    DUAN Yuanhui. The nutritional components and security analysis of the Enteromorpha[D]. Dalian: Dalian Ocean University, 2014.
    [28]
    林月, 沈照鹏, 宗雯雯, 等. 石莼(Ulva lactuca L.)营养成分及多糖组成分析[J]. 食品工业科技,2019,40(17):304−308,313. [LIN Yue, SHEN Zhaopeng, ZONG Wenwen, et al. Analysis on nutritional component and polysaccharide composition of Ulva lactuca L

    J]. Science and Technology of Food Industry,2019,40(17):304−308,313.
    [29]
    孙煜煊. 孔石莼多糖的提取及其生物活性的研究[D]. 厦门:集美大学, 2009. [SUN Yuxuan. Study on extraction and bioactivities of polysaccharides from Ulva pertusa kjellm[D]. Xiamen:Jimei University, 2009.]

    SUN Yuxuan. Study on extraction and bioactivities of polysaccharides from Ulva pertusa kjellm[D]. Xiamen: Jimei University, 2009.
    [30]
    FRASCHINI C, CHAUVE G, BOUCHARD J. TEMPO-mediated surface oxidation of cellulose nanocrystals (CNCs)[J]. Cellulose,2017,24(7):2775−2790. doi: 10.1007/s10570-017-1319-5
    [31]
    王旺霞, 孙楠勋, 董继红, 等. 酸法制备纤维素纳米晶体的研究进展[J]. 生物化工,2020,6(2):133−138. [WANG Wangxia, SUN Nanxun, DONG Jihong, et al. Advances on cellulose nanocrystal preparation by acid hydrolysis[J]. Biological Chemical Engineering,2020,6(2):133−138.]

    WANG Wangxia, SUN Nanxun, DONG Jihong, et al. Advances on cellulose nanocrystal preparation by acid hydrolysis[J]. Biological Chemical Engineering, 2020, 6(2): 133−138.
    [32]
    LU P, HSIEH Y L. Cellulose isolation and core–shell nanostructures of cellulose nanocrystals from chardonnay grape skins[J]. Carbohydrate Polymers,2012,87(4):2546−2553. doi: 10.1016/j.carbpol.2011.11.023
    [33]
    薛刚, 何易, 李小白, 等. 超声辅助硫酸水解法制备银杏果壳纳米纤维素及其特性表征[J]. 食品工业科技,2021,42(14):204−211. [XUE Gang, HE Yi, LI Xiaobai, et al. Ultrasound-assisted sulfuric acid hydrolysis method for preparation and characterization of nanocellulose from ginkgo nut shell[J]. Science and Technology of Food Industry,2021,42(14):204−211.]

    XUE Gang, HE Yi, LI Xiaobai, et al. Ultrasound-assisted sulfuric acid hydrolysis method for preparation and characterization of nanocellulose from ginkgo nut shell[J]. Science and Technology of Food Industry, 2021, 42(14): 204−211.
    [34]
    BAKKARI M E, BINDIGANAVILE V, GONCALVES J, et al. Preparation of cellulose nanofibers by TEMPO-oxidation of bleached chemi-thermomechanical pulp for cement applications[J]. Carbohydrate Polymers,2019,203:238−245. doi: 10.1016/j.carbpol.2018.09.036
    [35]
    LIU X R, LI Y D, EWULONU C M, et al. Mild alkaline pretreatment for isolation of native-like lignin and lignin-containing cellulose nanofibers (LCNF) from crop waste[J]. ACS Sustainable Chemistry & Engineering,2019,7(16):14135−14142.
    [36]
    BANO S, NEGI Y S. Studies on cellulose nanocrystals isolated from groundnut shells[J]. Carbohydrate Polymers,2017,157:1041−1049. doi: 10.1016/j.carbpol.2016.10.069
    [37]
    陈欢, 钟洪浩, 王鲁峰. TEMPO氧化-高压均质联用制备柑橘纳米纤维素及其性质表征[J]. 食品科学技术学报,2022,40(4):35−44. [CHEN Huan, ZHONG Honghao, WANG Lufeng. Preparation of citrus nanofibers by TEMPO oxidation-high pressure homogenization and ots characterization[J]. Journal of Food Science and Technology,2022,40(4):35−44.]

    CHEN Huan, ZHONG Honghao, WANG Lufeng. Preparation of citrus nanofibers by TEMPO oxidation-high pressure homogenization and ots characterization[J]. Journal of Food Science and Technology, 2022, 40(4): 35−44.
    [38]
    LI X, KUANG Y S, JIANG Y F, et al. In vitro gastrointestinal digestibility of corn oil-in-water Pickering emulsions stabilized by three types of nanocellulose[J]. Carbohydrate Polymers,2022,277:118835. doi: 10.1016/j.carbpol.2021.118835
    [39]
    FRENCH A D. Idealized powder diffraction patterns for cellulose polymorphs[J]. Cellulose,2013,21(2):885−896.
    [40]
    李玉坤. 茶源纤维素纳米晶的制备及其在淀粉基薄膜中的应用[D]. 无锡:江南大学, 2022. [LI Yukun. Preparation of tea-derived cellulose nanocrystals and its application in starch-based films[D]. Wuxi:Jiangnan University, 2022.]

    LI Yukun. Preparation of tea-derived cellulose nanocrystals and its application in starch-based films[D]. Wuxi: Jiangnan University, 2022.
    [41]
    吕天艺, 张书敏, 陈媛, 等. 不同形态纳米纤维素的制备方法研究进展[J]. 食品与发酵工业,2022,48(8):281−288. [LÜ Tianyi, ZHANG Shumin, CHEN Yuan, et al. Research progress on preparation methods of different morphologies of nanocellulose[J]. Food and Fermentation Industries,2022,48(8):281−288.]

    LÜ Tianyi, ZHANG Shumin, CHEN Yuan, et al. Research progress on preparation methods of different morphologies of nanocellulose[J]. Food and Fermentation Industries, 2022, 48(8): 281−288.
    [42]
    TRILOKESH C, UPPULURI K B. Isolation and characterization of cellulose nanocrystals from jackfruit peel[J]. Scientific Reports,2019,9(1):16709. doi: 10.1038/s41598-019-53412-x
    [43]
    MANDAL A, CHAKRABARTY D. Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization[J]. Carbohydrate Polymers,2011,86(3):1291−1299. doi: 10.1016/j.carbpol.2011.06.030
    [44]
    ZHANG Y, QI J R, ZENG W Q, et al. Properties of dietary fiber from citrus obtained through alkaline hydrogen peroxide treatment and homogenization treatment[J]. Food Chemistry,2020,311:125873. doi: 10.1016/j.foodchem.2019.125873
    [45]
    TARCHOUN A F, TRACHE D, KLAPÖTKE T M, et al. Ecofriendly isolation and characterization of microcrystalline cellulose from giant reed using various acidic media[J]. Cellulose,2019,26(13-14):7635−7651. doi: 10.1007/s10570-019-02672-x
    [46]
    KARGARZADEH H, AHMAD I, ABDULLAH I, et al. Effects of hydrolysis conditions on the morphology, crystallinity, and thermal stability of cellulose nanocrystals extracted from kenaf bast fibers[J]. Cellulose,2012,19(3):855−866. doi: 10.1007/s10570-012-9684-6
    [47]
    谢大明, 张茂栖, 涂倩, 等. 石榴皮中纤维素纳米晶体的提取与表征[J]. 食品与发酵工业,2023,49(18):119−124. [XIE Daming, ZHANG Maoqi, TU Qian, et al. Extraction and characterization of cellulose nanocrystals from pomegranate peel[J]. Food and Fermentation Industries,2023,49(18):119−124.]

    XIE Daming, ZHANG Maoqi, TU Qian, et al. Extraction and characterization of cellulose nanocrystals from pomegranate peel[J]. Food and Fermentation Industries, 2023, 49(18): 119−124.
    [48]
    罗苏芹, 戴宏杰, 黄惠华, 等. 不同制备方法对菠萝皮渣纳米纤维素的结构影响[J]. 包装与食品机械,2018,36(5):1−6. [LUO Suqin, DAI Hongjie, HUANG Huihua, et al. Effect of different preparation methods on the structure of nanocellulose in pineapple peels[J]. Packaging and Food Machinery,2018,36(5):1−6.]

    LUO Suqin, DAI Hongjie, HUANG Huihua, et al. Effect of different preparation methods on the structure of nanocellulose in pineapple peels[J]. Packaging and Food Machinery, 2018, 36(5): 1−6.
    [49]
    ARAKI J, WADA M, KUGA S, et al. Flow properties of microcrystalline cellulose suspension prepared by acid treatment of native cellulose[J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,1998,142:75−82.
    [50]
    CUDJOE E, HUNSEN M, XUE Z J, et al. Miscanthus giganteus:A commercially viable sustainable source of cellulose nanocry-stals[J]. Carbohydrate Polymers,2017,155:230−241. doi: 10.1016/j.carbpol.2016.08.049
    [51]
    RODSAMRAN P, SOTHORNVIT R. Renewable cellulose source:Isolation and characterisation of cellulose from rice stubble residues[J]. International Journal of Food Science & Technology,2015,50(9):1953−1959.
  • Related Articles

    [1]Weiye XIU, Xin WANG, Yumeng LI, Shiyou YU, Chenchen LI, Yu LUO, Zhuo ZHOU, Yongqiang MA. Preparation, Structural Characterization and in Vitro Activity of Chromium Complexes of Sweet Corn Cob Polysaccharide[J]. Science and Technology of Food Industry, 2023, 44(13): 186-196. DOI: 10.13386/j.issn1002-0306.2022080338
    [2]LIU Yiqing, MA Yueyun, LIU Zonghao, ZUO Yijin, WANG Qiukuan, WU Long, ZHOU Hui. Review on Preparation, Separation and Characterization of Alginate Oligosaccharide[J]. Science and Technology of Food Industry, 2022, 43(9): 456-468. DOI: 10.13386/j.issn1002-0306.2021050030
    [3]XUE Gang, HE Yi, LI Xiaobai, ZHANG Zhi, ZHANG Youzuo, XU Guangzhi. Ultrasound-assisted Sulfuric Acid Hydrolysis Method for Preparation and Characterization of Nanocellulose from Ginkgo Nut Shell[J]. Science and Technology of Food Industry, 2021, 42(14): 204-211. DOI: 10.13386/j.issn1002-0306.2020120006
    [4]LI Suixin, HUO Yunlei, WU Yunpeng, LI Jiahui, CHEN Bo, WANG Yan. Preparation,Characterization and Adsorption Properties of Hydrophilic Syringostrobin Molecularly Imprinted Microspheres[J]. Science and Technology of Food Industry, 2021, 42(5): 72-77,92. DOI: 10.13386/j.issn1002-0306.2020050050
    [5]QIAN Xue-li, TAO Ning-ping, WANG Xi-chang. Research Progress on the Preparation,Characterization and Application of Nanoparticles in Food[J]. Science and Technology of Food Industry, 2018, 39(16): 313-317,324. DOI: 10.13386/j.issn1002-0306.2018.16.056
    [6]SONG Pan-pan, ZHU Yang-jun, ZHANG Yan-qing, XIE Jun-bo. Preparation and characterization of spinosin phospholipid complex[J]. Science and Technology of Food Industry, 2018, 39(1): 56-61,69. DOI: 10.13386/j.issn1002-0306.2018.01.011
    [7]LIU Zhi-feng, ZHANG Quan, WEN Hui-liang. Progress in the preparation, characterization and application of iodine encapsulated in cyclodextrins[J]. Science and Technology of Food Industry, 2017, (23): 321-325. DOI: 10.13386/j.issn1002-0306.2017.23.058
    [8]YANG Shuai-shuai, LI Hai-chao, HUANG Li-juan. Preparation and characterization of modified gelatin films by plasticizer[J]. Science and Technology of Food Industry, 2017, (21): 84-87. DOI: 10.13386/j.issn1002-0306.2017.21.017
    [9]HOU Shu-yao, DAI Yang-yong, LIU Chuan-fu, LI Pei-da, DONG Hai-zhou. Preparation and characterization of sweet potato starch nanoparticles by high pressure homogenization[J]. Science and Technology of Food Industry, 2017, (12): 233-238. DOI: 10.13386/j.issn1002-0306.2017.12.042
    [10]REN Peng-cheng, LI Li-xiang, YI Chang-si, MA Li. Preparation and characterization of tea seed shells adsorbent[J]. Science and Technology of Food Industry, 2014, (15): 107-111. DOI: 10.13386/j.issn1002-0306.2014.15.013
  • Other Related Supplements

Catalog

    Article Metrics

    Article views (65) PDF downloads (12) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return