NIE Meimei, XIAO Yadong, ZHANG Zhongyuan, et al. Effects of Microwave Intensity on Carotenoid Bioavailability in Carrot and Pumpkin during Microwave Vacuum Drying[J]. Science and Technology of Food Industry, 2021, 42(13): 74−79. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090305.
Citation: NIE Meimei, XIAO Yadong, ZHANG Zhongyuan, et al. Effects of Microwave Intensity on Carotenoid Bioavailability in Carrot and Pumpkin during Microwave Vacuum Drying[J]. Science and Technology of Food Industry, 2021, 42(13): 74−79. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020090305.

Effects of Microwave Intensity on Carotenoid Bioavailability in Carrot and Pumpkin during Microwave Vacuum Drying

More Information
  • Received Date: September 28, 2020
  • Available Online: May 12, 2021
  • In order to understand the effect of microwave intensity on the bioavailability of carotenoids in carrot and pumpkin during microwave vacuum drying (MVD), the changes of carotenoid bioavailability were evaluated by static in vitro simulated digestion model, and the changes of cell wall microstructure were observed by transmission electron microscope (TEM) and optical microscope. The results showed that the cell walls of carrot and pumpkin were broken and the chromosomal structure was damaged seriously after MVD. After simulated digestion in vitro, the cell structure of the digestive juice of carrot and pumpkin was destroyed obviously, and the cell wall was broken seriously. The content of carotenoids released from the cells into the digestive juice was significantly higher than that of fresh samples. The bioavailability of carotenoids first increased and then decreased with the increase of microwave intensity. When the microwave intensity was 9 W/g, carotenoids in carrot and pumpkin had higher bioavailability, and the bioavailability of β-carotene significantly increased by 12.02 and 24.2 times compared with fresh samples(P<0.05). Therefore, the appropriate microwave intensity is helpful to improve the bioavailability of carotenoids in vegetables.
  • [1]
    Takashi Maoka. Carotenoids as natural functional pigments[J]. Springer Singapore,2020,74(Suppl):1−16.
    [2]
    Liang X, Ma C, Yan X, et al. Advances in research on bioactivity, metabolism, stability and delivery systems of lycopene[J]. Trends in Food Science & Technology,2019:93.
    [3]
    Failla M L, Thakkar S K, Kim J Y. In vitro bioaccessibility of beta-carotene in orange fleshed sweet potato (Ipomoea batatas, Lam.)[J]. Journal of Agricultural & Food Chemistry,2009,57(22):10922.
    [4]
    白喜婷, 樊金玲, 朱文学, 等. 机械加工及油脂对南瓜类胡萝卜素生物接近度的影响[J]. 食品与机械,2014,30(5):3−9.
    [5]
    Schweiggert R M, Mezger D, Schimpf F, et al. Influence of chromoplast morphology on carotenoid bioaccessibility of carrot, mango, papaya, and tomato[J]. Food Chemistry,2012,135(4):2736−2742. doi: 10.1016/j.foodchem.2012.07.035
    [6]
    Durante M, Lenucci M S, D'Amico L, et al. Effect of drying and co-matrix addition on the yield and quality of supercritical CO2 extracted pumpkin (Cucurbita moschata Duch.) oil[J]. Food Chemistry,2014,148:314−320. doi: 10.1016/j.foodchem.2013.10.051
    [7]
    Bengtsson A, Brackmann C, Enejder A, et al. Effects of thermal processing on the in vitro bioaccessibility and microstructure of β-carotene in orange-fleshed sweet potato[J]. Journal of Agricultural & Food Chemistry,2010,58(20):11090.
    [8]
    Zhang Z, Wei Q, Nie M, et al. Microstructure and bioaccessibility of different carotenoid species as affected by hot air drying: Study on carrot, sweet potato, yellow bell pepper and broccoli[J]. LWT-Food Science and Technology,2018,96:357−363. doi: 10.1016/j.lwt.2018.05.061
    [9]
    Palmero P, Lemmens L, Hendrickx M, et al. Role of carotenoid type on the effect of thermal processing on bioaccessibility[J]. Food Chemistry,2014,157(15):275−282.
    [10]
    李瑜, 许时婴. 微波真空干燥大蒜片数学模型边界条件[J]. 天然产物研究与开发,2007,19(4):653−656. doi: 10.3969/j.issn.1001-6880.2007.04.028
    [11]
    韩晓斌. 微波真空干燥保鲜技术的研究[D]. 长春: 吉林大学, 2000.
    [12]
    Ashford D E. Microwaves in organic synthesis. Thermal and non-thermal microwave effects[J]. Chemical Society Reviews,2005,34(2):164−178.
    [13]
    汪小娉, 宋江峰, 李大婧, 等. 真空微波干燥对南瓜主要类胡萝卜素的影响[J]. 食品科学,2016,37(21):91−96. doi: 10.7506/spkx1002-6630-201621016
    [14]
    Latorre M E, Plá M F D E, Rojas A M, et al. Blanching of red beet (Beta vulgaris L. var. conditiva) root. Effect of hot water or microwave radiation on cell wall characteristics[J]. LWT-Food Science and Technology,2013,50(1):193−203. doi: 10.1016/j.lwt.2012.06.004
    [15]
    Espinal-Ruiz M, Restrepo-Sanchez L P, Narvaez-Cuenca C E, et al. Impact of pectin properties on lipid digestion under simulated gastrointestinal conditions: Comparison of citrus and banana passion fruit (Passifloratripartita, var. mollissima) pectins[J]. Food Hydrocolloids,2016,52:329−342.
    [16]
    Nie M, Zhang Z, Liu C, et al. Hesperetin and hesperidin improved β-carotene incorporation efficiency, intestinal cell uptake, and retinoid concentrations in tissues[J]. Journal of Agricultural & Food Chemistry,2019,67(12):3363−3371.
    [17]
    王晓燕. 真空微波干燥对胡萝卜和南瓜果胶特性及类胡萝卜素生物利用率的影响[D]. 南京: 南京农业大学, 2018.
    [18]
    Moelants K R N, Cardinaels R, Jolie R P, et al. Relation between particle properties and rheological characteristics of carrot-derived suspensions[J]. Food & Bioprocess Technology,2013,6(5):1127−1143.
    [19]
    Zdunek A, Umeda M. Influence of cell size and cell wall volume fraction on failure properties of potato and carrot tissue[J]. Journal of Texture Studies,2005,36(1):25−43. doi: 10.1111/j.1745-4603.2005.00002.x
    [20]
    Palmero P, Lemmens L, Ribas-Agustí A, et al. Novel targeted approach to better understand how natural structural barriers govern carotenoid in vitro bioaccessibility in vegetable-based systems[J]. Food Chemistry, 2013, 141(3), 2036-2043.
    [21]
    Tydeman E A, Parker M L, Wickham M S, et al. Effect of carrot (Daucus carota) microstructure on carotene bioaccessibilty in the upper gastrointestinal tract. 1. In vitro simulations of carrot digestion[J]. Journal of Agricultural & Food Chemistry,2010,58(17):9847−9854.
    [22]
    Panozzo A, Lemmens L, Loey A V, et al. Microstructure and bioaccessibility of different carotenoid species as affected by high pressure homogenisation: A case study on differently coloured tomatoes[J]. Food Chemistry,2013,141(4):4094−4100. doi: 10.1016/j.foodchem.2013.06.099
    [23]
    Colle I, Buggenhout S V, Loey A V, et al. High pressure homogenization followed by thermal processing of tomato pulp: Influence on microstructure and lycopene in vitro bioaccessibility[J]. Food Research International,2010,43(8):2193−2200.
    [24]
    Palmero P, Panozzo A, Colle I, et al. Role of structural barriers for carotenoid bioaccessibility upon high pressure homogenization[J]. Food Chemistry,2016,199:423−432. doi: 10.1016/j.foodchem.2015.12.062
    [25]
    梁瑞红, 王淑洁, 贺小红, 等. 微波降解果胶对其流变性质的影响及动力学[J]. 食品科学,2017,38(5):1−6. doi: 10.7506/spkx1002-6630-201705001
    [26]
    张钟元, 聂梅梅, 肖亚冬, 等. 真空微波干燥过程中南瓜果胶性质变化与质构的关系[J]. 现代食品科技,2021,37(1):1−8.
    [27]
    Diaz J V, Anthon G E, Barrett D M. Conformational changes in serum pectins during industrial tomato paste production[J]. Journal of Agricultural & Food Chemistry,2009,57(18):8453−8458.
    [28]
    Hedrén E, Diaz V, Svanberg U. Estimation of carotenoid accessibility from carrots determined by an in vitro digestion method.[J]. European Journal of Clinical Nutrition,2002,56:425−430. doi: 10.1038/sj.ejcn.1601329
    [29]
    Zhang Z, Wang X, Li Y, et al. Evaluation of the impact of food matrix change on the in vitro bioaccessibility of carotenoids in pumpkin (Cucurbita moschata) slices during two drying processes[J]. Food & Function,2017,8:4693−4702.
    [30]
    Lemmens L, Buggenhout S V, Oey I, et al. Towards a better understanding of the relationship between the p-carotene in vitro bio-accessibility and pectin structural changes: A case study on carrots[J]. Food Research International,2009,42(9):1323−1330. doi: 10.1016/j.foodres.2009.04.006
    [31]
    Jeffery J, Holzenburg A, King S. Physical barriers to carotenoid bioaccessibility. Ultrastructure survey of chromoplast and cell wall morphology in nine carotenoid-containing fruits and vegetables[J]. Journal of the Science of Food & Agriculture,2012,92(13):2594.
    [32]
    Therdthai, N, Zhou W B. Characterization of microwave vacuum drying and hot air drying of mint leaves (Mentha cordifolia Opiz ex Fresen)[J]. Journal of Food Engineering,2009,91(3):482−489. doi: 10.1016/j.jfoodeng.2008.09.031
    [33]
    李宜祥, 热风和真空微波干燥处理对南瓜类胡萝卜素生物释放率的影响[D]. 南京: 南京农业大学, 2017.
  • Cited by

    Periodical cited type(4)

    1. 赵小勤,许莉,杨小艳,汪洋,罗霄,李及,张良,康帅,马双成. 智能感官技术在中药领域的应用研究进展. 中国药事. 2025(01): 96-104 .
    2. 刘玉璇,李倩倩,王宇慧,沈力,李泽玉,张璐璐,马超. 黄精“九蒸九制”过程中感官品质变化及其物质基础研究. 食品与发酵科技. 2025(01): 16-24 .
    3. 马景余,孙涛,王彦荣,李鑫,曾婉晴,王志强. 基于电子舌和电子眼信息融合的贝母品种快速辨识方法. 食品工业科技. 2024(18): 9-18 . 本站查看
    4. 王雪芹,程启康. 新鲜莲子营养成分影响因素及保鲜技术研究进展. 现代农业科技. 2024(19): 121-124+131 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (262) PDF downloads (26) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return