ZHENG Yawen, YANG Anquan, WANG Jing, et al. Extraction and Separation of Hyriopsis cumingii Polysaccharide and the Repairing Effect on UVB Damage[J]. Science and Technology of Food Industry, 2024, 45(19): 346−356. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023110213.
Citation: ZHENG Yawen, YANG Anquan, WANG Jing, et al. Extraction and Separation of Hyriopsis cumingii Polysaccharide and the Repairing Effect on UVB Damage[J]. Science and Technology of Food Industry, 2024, 45(19): 346−356. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023110213.

Extraction and Separation of Hyriopsis cumingii Polysaccharide and the Repairing Effect on UVB Damage

More Information
  • Received Date: November 20, 2023
  • Available Online: July 29, 2024
  • To improve the utilization of by-products of the Hyriopsis cumingii, this study investigated the effect of Hyriopsis cumingii polysaccharide (HCP) on the proliferation and migration of normal cells, as well as its reparative effects on ultraviolet radiation-B (UVB)-damaged cells. First, HCP was isolated and purified using DEAE Cellulose-52 column chromatography, Sephadex G-100 column chromatography and nanofiltration. Then, structural analysis was conducted using high-performance liquid chromatography, high-performance gel permeation chromatography, and infrared spectroscopy. Following this, cell proliferation experiments, cell scratch tests, UVB damage experiments, and protein expression analyses were employed to explore the anti-UVB damage effects and corresponding mechanisms of polysaccharide components. The results indicated the three substances obtained by isolation and purification were all homogeneous polysaccharide components. Among them, HCP-2 played a major role in promoting cell proliferation in HCP and facilitated the migration of HaCaT cells. The recovery of UVB-damaged cell vitality was raised by the increasing concentration of HCP-2. Furthermore, the reparative effect was more substantial than the protective effect at the same sample concentration. It was also observed that HCP-2 up-regulated the expression of the anti-apoptotic protein bcl-2 while inhibited the expression of apoptosis-related proteins casp9, p-Akt, and p-p38, indicating that HCP-2 could repair HaCaT cells by regulating apoptosis of cells damaged by UVB. In conclusion, HCP had the ability to inhibit cell apoptosis which provide a theoretical basis for its future application in the development of food and health products.
  • [1]
    XU Q Q, GUO L G, XIE J, et al. Relationship between quality of pearl cultured in the triangle mussel Hyriopsis cumingii of different ages and its immune mechanism[J]. Aquaculture,2011,315(3−4):196−200. doi: 10.1016/j.aquaculture.2011.02.033
    [2]
    SMAAL A C, FERREIRA J G, GRANT J, et al. Goods and services of marine bivalves[M]. Springer Nature, 2019.
    [3]
    刘志芳, 赵前程, 刘志东, 等. 贝类多糖研究进展[J]. 食品与发酵工业,2021,47(9):299−306. [LIU Z F, ZHAO Q C, LIU Z D, et al. Research progress of polysaccharides derived from shellfish[J]. Food and Fermentation Industries,2021,47(9):299−306.]

    LIU Z F, ZHAO Q C, LIU Z D, et al. Research progress of polysaccharides derived from shellfish[J]. Food and Fermentation Industries, 2021, 47(9): 299−306.
    [4]
    HAO L L, WANG X C, CAO Y R, et al. A comprehensive review of oyster peptides:Preparation, characterisation and bioactivities[J]. Reviews in Aquaculture,2022,14(1):120−138. doi: 10.1111/raq.12588
    [5]
    GRIENKE U, SILKE J, TASDEMIR D. Bioactive compounds from marine mussels and their effects on human health[J]. Food Chemistry,2014,142:48−60. doi: 10.1016/j.foodchem.2013.07.027
    [6]
    林双喜. 河蚌多糖的生物学活性研究[D]. 福州:福建农林大学, 2007. [LIN S X. Studies on biological properties of polysaccharides from Anodonta[D]. Fuzhou:Fujian Agriculture and Forestry University, 2007.]

    LIN S X. Studies on biological properties of polysaccharides from Anodonta[D]. Fuzhou: Fujian Agriculture and Forestry University, 2007.
    [7]
    XIONG Q P, HU Y D, YE X Y, et al. Extraction, purification and characterization of sulphated polysaccharide from Bellamya quadrata and its stabilization roles on atherosclerotic plaque[J]. International Journal of Biological Macromolecules,2020,152:314−326. doi: 10.1016/j.ijbiomac.2020.02.243
    [8]
    CHEONG K L, XIA L X, LIU Y. Isolation and characterization of polysaccharides from oysters (Crassostrea gigas) with anti-tumor activities using an aqueous two-phase system[J]. Marine Drugs,2017,15(11):338. doi: 10.3390/md15110338
    [9]
    ZHONG M, ZHONG C, WANG T T, et al. Activation of dendritic cells by low molecular weight oyster polysaccharides[J]. International Immunopharmacology,2017,44:183−190. doi: 10.1016/j.intimp.2017.01.018
    [10]
    LI S J, SONG Z Y, LIU T T, et al. Polysaccharide from Ostrea rivularis attenuates reproductive oxidative stress damage via activating Keap1-Nrf2/ARE pathway[J]. Carbohydrate Polymers,2018,186:321−331. doi: 10.1016/j.carbpol.2018.01.075
    [11]
    WANG X M, ZHANG Z S, ZHOU H C, et al. The anti-aging effects of Gracilaria lemaneiformis polysaccharide in Caenor habditis elegans[J]. International Journal of Biological Macromolecules,2019,140:600−604. doi: 10.1016/j.ijbiomac.2019.08.186
    [12]
    HU B, CASTILLO E, HAREWOOD L, et al. Multifocal epithelial tumors and field cancerization from loss of mesenchymal CSL signaling[J]. Cell,2012,149(6):1207−1220. doi: 10.1016/j.cell.2012.03.048
    [13]
    BATTIE C, BERNERD F, MOYAL D, et al. UVA在日光诱导皮肤生物学变化中的重要作用[J]. 中华皮肤科杂志,2011,44(5):371−375. [BATTIE C, BERNERD F, MOYAL D, et al. UVA play a significant role in sun-induced biological alterations of the skin[J]. Chinese Journal of Dermatology,2011,44(5):371−375.] doi: 10.3760/cma.j.issn.0412-4030.2011.05.033

    BATTIE C, BERNERD F, MOYAL D, et al. UVA play a significant role in sun-induced biological alterations of the skin[J]. Chinese Journal of Dermatology, 2011, 44(5): 371−375. doi: 10.3760/cma.j.issn.0412-4030.2011.05.033
    [14]
    王丽雯, 孙娟, 燕华玲, 等. 藏雪莲水提取物减轻中波紫外线辐射后HaCaT细胞凋亡的体外研究[J]. 实用医学杂志,2016,32(8):1240−1243. [WANG L W, SUN J, YAN H L, et al. Study on apoptosis of HaCaT cells induced by UVB radiation induced by water extract of Saussurea tridactyla in vitro[J]. The Journal of Practical Medicine,2016,32(8):1240−1243.] doi: 10.3969/j.issn.1006-5725.2016.08.012

    WANG L W, SUN J, YAN H L, et al. Study on apoptosis of HaCaT cells induced by UVB radiation induced by water extract of Saussurea tridactyla in vitro[J]. The Journal of Practical Medicine, 2016, 32(8): 1240−1243. doi: 10.3969/j.issn.1006-5725.2016.08.012
    [15]
    HUANG C H, LI H J, WU N L, et al. Photoprotective effects of cycloheterophyllin against UVA-induced damage and oxidative stress in human dermal fibroblasts[J]. PLoS One,2016,11(9):e0161767. doi: 10.1371/journal.pone.0161767
    [16]
    WANG C B, HUANG M Q, TAO G L, et al. Polypeptide from Chlamys farreri protects HaCaT cells from UVB-induced apoptosis[J]. Chemico-Biological Interactions,2004,147(2):119−127. doi: 10.1016/j.cbi.2003.11.002
    [17]
    TAKASAWA R, NAKAMURA H, MORI T, et al. Differential apoptotic pathways in human keratinocyte HaCaT cells exposed to UVB and UVC[J]. Apoptosis,2005,10:1121−1130. doi: 10.1007/s10495-005-0901-8
    [18]
    SVOBODOVA A, WALTEROVA D, VOSTALOVA J. Ultraviolet light induced alteration to the skin[J]. Biomedical Papers-Palacky University in Olomouc,2006,150(1):25. doi: 10.5507/bp.2006.003
    [19]
    TANG J, XIONG L D, SHU X H, et al. Antioxidant effects of bioactive compounds isolated from Cordyceps and their protective effects against UVB-irradiated HaCaT cells[J]. Journal of Cosmetic Dermatology,2019,18(6):1899−1906. doi: 10.1111/jocd.12895
    [20]
    YOSHIZUMI M, NAKAMURA T, KATO M, et al. Release of cytokines/chemokines and cell death in UVB‐irradiated human keratinocytes, HaCaT[J]. Cell Biology International,2008,32(11):1405−1411. doi: 10.1016/j.cellbi.2008.08.011
    [21]
    RYU B, AHN B N, KANG K H, et al. Dioxinodehydroeckol protects human keratinocyte cells from UVB-induced apoptosis modulated by related genes Bax/Bcl-2 and caspase pathway[J]. Journal of Photochemistry and Photobiology B:Biology,2015,153:352−357. doi: 10.1016/j.jphotobiol.2015.10.018
    [22]
    KONG J, HU X M, CAI W W, et al. Bioactive peptides from Skipjack tuna cardiac arterial bulbs (II):Protective function on UVB-irradiated HaCaT cells through antioxidant and anti-apoptotic mechanisms[J]. Marine drugs,2023,21(2):105. doi: 10.3390/md21020105
    [23]
    QIAO D L, KE C L, HU B, et al. Antioxidant activities of polysaccharides from Hyriopsis cumingii[J]. Carbohydrate Polymers,2009,78(2):199−204. doi: 10.1016/j.carbpol.2009.03.018
    [24]
    HU C F, LI J H, YANG D Y, et al. A neuroprotective polysaccharide from Hyriopsis cumingii[J]. Journal of Natural Products,2010,73(9):1489−1493. doi: 10.1021/np1001847
    [25]
    QIAO D L, WEI C B, CHEN N D, et al. Influences of Hyriopsis cumingii polysaccharides on mice immunosignaling molecules and T lymphocyte differentiation[J]. Food and Agricultural Immunology,2017,28(4):586−598. doi: 10.1080/09540105.2017.1306494
    [26]
    DUBOIS M, GILLES K A, HAMILTON J K, et al. Colorimetric method for determination of sugars and related substances[J]. Analytical chemistry,1956,28(3):350−356. doi: 10.1021/ac60111a017
    [27]
    乔德亮. 三角帆蚌多糖提取、纯化、生物活性及其结构[D]. 南京:南京农业大学, 2009. [QIAO D L. Extraction, purification, bioactivity and structure of polysaccharides from Hyriopsis cumingii[D]. Nanjing:Nanjing Agricultural University, 2009.]

    QIAO D L. Extraction, purification, bioactivity and structure of polysaccharides from Hyriopsis cumingii[D]. Nanjing: Nanjing Agricultural University, 2009.
    [28]
    TIAN L M, ZHAO Y, GUO C, et al. A comparative study on the antioxidant activities of an acidic polysaccharide and various solvent extracts derived from herbal Houttuynia cordata[J]. Carbohydrate Polymers,2011,83(2):537−544. doi: 10.1016/j.carbpol.2010.08.023
    [29]
    LIU Y H, WANG F S. Structural characterization of an active polysaccharide from Phellinus ribis[J]. Carbohydrate Polymers,2007,70(4):386−392. doi: 10.1016/j.carbpol.2007.04.019
    [30]
    LIU D, WANG S Y, BAO Y L, et al. Extraction, purification and structural characterization of polysaccharides from Apocynum venetum L. roots with anti-inflammatory activity[J]. Process Biochemistry,2022,121:100−112. doi: 10.1016/j.procbio.2022.06.035
    [31]
    ZHANG R, ZHANG X X, TANG Y X, et al. Composition, isolation, purification and biological activities of Sargassum fusiforme polysaccharides:A review[J]. Carbohydrate Polymers,2020,228:115381. doi: 10.1016/j.carbpol.2019.115381
    [32]
    TANG W, LIU D, YIN J Y, et al. Consecutive and progressive purification of food-derived natural polysaccharide:Based on material, extraction process and crude polysaccharide[J]. Trends in Food Science & Technology,2020,99:76−87.
    [33]
    COSKUN O. Separation techniques:Chromatography[J]. Northern Clinics of Istanbul,2016,3(2):156.
    [34]
    HENRY J D. Cross flow filtration, recent developments in separation science[M]. CRC Press, 2018:205-225.
    [35]
    ZHOU Y H, MA Y L, LI L R, et al. Purification, characterization, and functional properties of a novel glycoprotein from tartary buckwheat (Fagopyrum tartaricum) seed[J]. Food Chemistry,2020,309:125671. doi: 10.1016/j.foodchem.2019.125671
    [36]
    唐嘉诚, 包建强, 陈彦婕, 等. 天然糖蛋白研究进展[J]. 食品与发酵工业,2022,48(14):345−353. [TANG J C, BAO J Q, CHEN Y J, et al. The research progress of natural glycoprotein[J]. Food and Fermentation Industries,2022,48(14):345−353.]

    TANG J C, BAO J Q, CHEN Y J, et al. The research progress of natural glycoprotein[J]. Food and Fermentation Industries, 2022, 48(14): 345−353.
    [37]
    SOLTANI M, KAMYAB H, EL-ENSHASY H A. Molecular weight (Mw) and monosaccharide composition (MC):Two major factors affecting the therapeutic action of polysaccharides extracted from Cordyceps sinensis[J]. Journal of Pure and Applied Microbiology,2013,7(3):1601−1613.
    [38]
    CAI L L, ZOU S S, LIANG D P, et al. Structural characterization, antioxidant and hepatoprotective activities of polysaccharides from Sophorae tonkinensis Radix[J]. Carbohydrate Polymers,2018,184:354−365. doi: 10.1016/j.carbpol.2017.12.083
    [39]
    JI X L, LIU F, PENG Q, et al. Purification, structural characterization, and hypolipidemic effects of a neutral polysaccharide from Ziziphus jujuba cv. Muzao[J]. Food Chemistry,2018,245:1124−1130. doi: 10.1016/j.foodchem.2017.11.058
    [40]
    ZHAO C C, LI X, MIAO J, et al. The effect of different extraction techniques on property and bioactivity of polysaccharides from Dioscorea hemsleyi[J]. International Journal of Biological Macromolecules,2017,102:847−856. doi: 10.1016/j.ijbiomac.2017.04.031
    [41]
    WANG J L, BAO A J, MENG X H, et al. An efficient approach to prepare sulfated polysaccharide and evaluation of anti-tumor activities in vitro[J]. Carbohydrate Polymers,2018,184:366−375. doi: 10.1016/j.carbpol.2017.12.065
    [42]
    WANG L, LIU H M, QIN G Y. Structure characterization and antioxidant activity of polysaccharides from Chinese quince seed meal[J]. Food Chemistry,2017,234:314−322. doi: 10.1016/j.foodchem.2017.05.002
    [43]
    HU Y N, SUNG T J, CHOU C H, et al. Characterization and antioxidant activities of yellow strain Flammulina velutipes (Jinhua mushroom) polysaccharides and their effects on ROS content in L929 cell[J]. Antioxidants,2019,8(8):298. doi: 10.3390/antiox8080298
    [44]
    JAHANBIN K, ABBASIAN A, AHANG M. Isolation, purification and structural characterization of a new water-soluble polysaccharide from Eremurus stenophyllus (boiss. & buhse) baker roots[J]. Carbohydrate Polymers,2017,178:386−393. doi: 10.1016/j.carbpol.2017.09.058
    [45]
    ZHANG X J, KONG X R, HAO Y L, et al. Chemical structure and inhibition on α-glucosidase of polysaccharide with alkaline-extracted from Glycyrrhiza inflata residue[J]. International Journal of Biological Macromolecules,2020,147:1125−1135. doi: 10.1016/j.ijbiomac.2019.10.081
    [46]
    LIU W, WANG H, YU J P, et al. Structure, chain conformation, and immunomodulatory activity of the polysaccharide purified fromBacillus Calmette Guerin formulation[J]. Carbohydrate Polymers,2016,150:149−158. doi: 10.1016/j.carbpol.2016.05.011
    [47]
    郭立群, 王敏. 化妆品功效评价(Ⅶ)——细胞生物学在化妆品功效评价中的应用[J]. 日用化学工业,2018,48(7):371−377. [GUO L Q, WANG M. Efficacy evaluation of cosmetics (Ⅶ)—Application of cell biology in efficacy evaluation of cosmetics[J]. China Surfactant Detergent & Cosmetics,2018,48(7):371−377.]

    GUO L Q, WANG M. Efficacy evaluation of cosmetics (Ⅶ)—Application of cell biology in efficacy evaluation of cosmetics[J]. China Surfactant Detergent & Cosmetics, 2018, 48(7): 371−377.
    [48]
    FALANGA V. Wound healing and its impairment in the diabetic foot[J]. The Lancet,2005,366(9498):1736−1743. doi: 10.1016/S0140-6736(05)67700-8
    [49]
    RODRIGUEZ L G, WU X, GUAN J L. Wound-healing assay[J]. Cell Migration:Developmental Methods and Protocols,2005,294:23−29.
    [50]
    MIGONE C, SCACCIATI N, GRASSIRI B, et al. Jellyfish polysaccharides for wound healing applications[J]. International Journal of Molecular Sciences,2022,23(19):11491. doi: 10.3390/ijms231911491
    [51]
    SHEN S H, CHEN X W, SHEN Z W, et al. Marine polysaccharides for wound dressings application:An overview[J]. Pharmaceutics,2021,13(10):1666. doi: 10.3390/pharmaceutics13101666
    [52]
    DING C B, PENG X J, YANG J L, et al. Rg3-loaded P407/CS/HA hydrogel inhibits UVB-induced oxidative stress, inflammation and apoptosis in HaCaT cells[J]. Biomedicine & Pharmacotherapy,2023,165:115177.
    [53]
    RAHMAN N S A, HASSAN M, HAMID N I, et al. Antioxidative and photoprotective effects of Pleurotus flabellatus (pink oyster mushroom) polysaccharides against UVA radiation-induced cytotoxicity in human dermal fibroblast (HS-27) cell line[J]. Malaysian Journal of Medicine and Health Sciences,2021,17:185−191.
    [54]
    CHOI H S, PARK E D, PARK Y, et al. Spent coffee ground extract suppresses ultraviolet B-induced photoaging in hairless mice[J]. Journal of Photochemistry and Photobiology B:Biology,2015,153:164−172. doi: 10.1016/j.jphotobiol.2015.09.017
    [55]
    HEWAGE S R K M, PIAO M J, KIM K C, et al. Galangin (3,5,7-trihydroxyflavone) shields human keratinocytes from ultraviolet B-induced oxidative stress[J]. Biomolecules & Therapeutics,2015,23(2):165.
    [56]
    ZHENG X, FENG M Y, WAN J, et al. Anti-damage effect of theaflavin-3′-gallate from black tea on UVB-irradiated HaCaT cells by photoprotection and maintaining cell homeostasis[J]. Journal of Photochemistry and Photobiology B:Biology,2021,224:112304. doi: 10.1016/j.jphotobiol.2021.112304
    [57]
    LONG Y L, WANG W J, ZHANG Y Y, et al. Photoprotective effects of Dendrobium nobile Lindl. polysaccharides against UVB-Induced oxidative stress and apoptosis in HaCaT Cells[J]. International Journal of Molecular Sciences,2023,24(7):6120. doi: 10.3390/ijms24076120
    [58]
    MAMMONE T, GAN D, COLLINS D, et al. Successful separation of apoptosis and necrosis pathways in HaCaT keratinocyte cells induced by UVB irradiation[J]. Cell Biology and Toxicology,2000,16:293−302. doi: 10.1023/A:1026746330146
    [59]
    WANG L, OH J Y, YANG H W, et al. Protective effect of sulfated polysaccharides from a Celluclast-assisted extract of Hizikia fusiforme against ultraviolet B-induced photoaging in vitro in human keratinocytes and in vivo in zebrafish[J]. Marine Life Science & Technology,2019,1:104−111.
    [60]
    王学红, 尹星星, 陆杰, 等. 枸杞籽油对中波紫外线诱导人永生化角质形成细胞光损伤的防护作用[J]. 食品与发酵工业,2023,50(6):1−11. [WANG X H, YIN X X, LU J, et al. Protective effect of Lycium barbarum seed oil on ultraviolet B-induced photodamage in human immortalized keratinocytes cells[J]. Food and Fermentation Industries,2023,50(6):1−11.]

    WANG X H, YIN X X, LU J, et al. Protective effect of Lycium barbarum seed oil on ultraviolet B-induced photodamage in human immortalized keratinocytes cells[J]. Food and Fermentation Industries, 2023, 50(6): 1−11.
    [61]
    WEI Y J, SINHA S C, LEVINE B. Dual role of JNK1-mediated phosphorylation of Bcl-2 in autophagy and apoptosis regulation[J]. Autophagy,2008,4(7):949−951. doi: 10.4161/auto.6788
    [62]
    BODUR C, KUTUK O, KARSLI-UZUNBAS G, et al. Pramanicin analog induces apoptosis in human colon cancer cells:Critical roles for Bcl-2, Bim, and p38 MAPK signaling[J]. PLoS One,2013,8(2):e56369. doi: 10.1371/journal.pone.0056369
    [63]
    WANG Y N, LI W X, XU S K, et al. Protective skin aging effects of cherry blossom extract (Prunus Yedoensis) on oxidative stress and apoptosis in UVB-irradiated HaCaT cells[J]. Cytotechnology,2019,71(2):475−487. doi: 10.1007/s10616-018-0215-7
    [64]
    FISCHER T, ZMIJEWSKI M, WORTSMAN J, et al. Melatonin maintains mitochondrial membrane potential and attenuates activation of initiator (casp-9) and effector caspases (casp-3/casp-7) and PARP in UVR-exposed HaCaT keratinocytes[J]. Journal of Pineal Research,2008,44(4):397−407. doi: 10.1111/j.1600-079X.2007.00542.x
    [65]
    郭宇. 荔枝草提取物对UVB辐射皮肤光损伤的保护作用及机制实验研究[D]. 蚌埠:蚌埠医学院, 2023. [GUO Y. Protective effect of Salvia plebeia R. Br ethanol extract on UVB-induced skin photoaging in vitro and in vivo[D]. Bengbu:BengBu Medical College, 2023.]

    GUO Y. Protective effect of Salvia plebeia R. Br ethanol extract on UVB-induced skin photoaging in vitro and in vivo[D]. Bengbu: BengBu Medical College, 2023.
    [66]
    ZHEN Y L, DING C J, SUN J Q, et al. Activation of the calcium-sensing receptor promotes apoptosis by modulating the JNK/p38 MAPK pathway in focal cerebral ischemia-reperfusion in mice[J]. American Journal of Translational Research,2016,8(2):911.
    [67]
    LI L Y, HUANG T, LAN C, et al. Protective effect of polysaccharide from Sophora japonica L. flower buds against UVB radiation in a human keratinocyte cell line (HaCaT cells)[J]. Journal of Photochemistry and Photobiology B:Biology,2019,191:135−142. doi: 10.1016/j.jphotobiol.2018.12.001
    [68]
    IBUKI Y, GOTO R. Suppression of apoptosis by UVB irradiation:Survival signaling via PI3-kinase/Akt pathway[J]. Biochemical and Biophysical Research Communications,2000,279(3):872−878. doi: 10.1006/bbrc.2000.4018
    [69]
    KIM W, YANG H J, YOUN H, et al. Myricetin inhibits Akt survival signaling and induces Bad-mediated apoptosis in a low dose ultraviolet (UV)-B-irradiated HaCaT human immortalized keratinocytes[J]. Journal of Radiation Research,2010,51(3):285−296. doi: 10.1269/jrr.09141
    [70]
    XIANG X W, JIANG Q H, YANG H S, et al. A review on shellfish polysaccharides:Extraction, characterization and amelioration of metabolic syndrome[J]. Frontiers in Nutrition,2022,9:974860. doi: 10.3389/fnut.2022.974860
    [71]
    JI D S, YOU L J, REN Y L, et al. Protective effect of polysaccharides from Sargassum fusiforme against UVB-induced oxidative stress in HaCaT human keratinocytes[J]. Journal of Functional Foods,2017,36:332−340. doi: 10.1016/j.jff.2017.06.051
    [72]
    LI L Y, HUANG T, LIU H M, et al. Purification, structural characterization and anti-UVB irradiation activity of an extracellular polysaccharide from Pantoea agglomerans[J]. International Journal of Biological Macromolecules,2019,137:1002−1012. doi: 10.1016/j.ijbiomac.2019.06.191
    [73]
    SU W C, WANG L, FU X T, et al. Protective effect of a fucose-rich fucoidan isolated from Saccharina japonica against ultraviolet B-induced photodamage in vitro in human keratinocytes and in vivo in zebrafish[J]. Marine Drugs,2020,18(6):316. doi: 10.3390/md18060316
  • Other Related Supplements

Catalog

    Article Metrics

    Article views (66) PDF downloads (16) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return