TIAN Hongqiao, ZHU Jiana, LIU Menglong, et al. In Vitro Antibacterial Activity and Combined Drug Sensitivity of 18 Lichen Species from Cangshan[J]. Science and Technology of Food Industry, 2024, 45(19): 149−157. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023110027.
Citation: TIAN Hongqiao, ZHU Jiana, LIU Menglong, et al. In Vitro Antibacterial Activity and Combined Drug Sensitivity of 18 Lichen Species from Cangshan[J]. Science and Technology of Food Industry, 2024, 45(19): 149−157. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023110027.

In Vitro Antibacterial Activity and Combined Drug Sensitivity of 18 Lichen Species from Cangshan

More Information
  • Received Date: November 05, 2023
  • Available Online: July 31, 2024
  • This study aims to explore the in vitro antibacterial activity of 18 lichen species from Cangshan and the synergistic effect of their natural active products in combination with antibiotics against methicillin-resistant Staphylococcus aureus (MRSA). The in vitro antibacterial activity of 18 lichen species against 6 food-borne pathogens was determined using the agar well diffusion method, and the combined effect of active lichens and 7 common antibiotics was evaluated using the checkerboard method with MRSA as the tracer. Additionally, in vitro bactericidal curves, anti-mutagenic concentrations, and post-antibiotic effects were examined. The results demonstrated that 10 of the 18 lichen species exhibited in vitro anti-MRSA activity, with strongest antibacterial activity observed for Cetraria laevigata, showing extremely high sensitivity (the diameter of the inhibition zone was 22.0 mm). Furthermore, the combination of Lobaria kurokawae and Cladonia uncialis with piperacillin demonstrated a synergistic antibacterial effect, significantly reducing MRSA bacterial density (P<0.05), enhancing mutation prevention capability, and prolonging the post-antibiotic effect of piperacillin. These findings suggest that the extracts from various Cangshan lichen species exhibit promising antimicrobial activity against MRSA, and the combination of Lobaria kurokawae, Cladonia uncialis, and piperacillin shows a synergistic antibacterial effect, which have the potential for further development as antibiotics or antibiotic adjuvants.
  • [1]
    LI Y, HUANG Y, YANG J, et al. Bacteria and poisonous plants were the primary causative hazards of foodborne disease outbreak:A seven-year survey from Guangxi, South China[J]. BMC Public Health,2018,18(1):519. doi: 10.1186/s12889-018-5429-2
    [2]
    YU M, HOU Y, CHENG M, et al. Antibacterial activity of squaric amide derivative SA2 against methicillin-resistant Staphylococcus aureus[J]. Antibiotics (Basel),2022,11(11):1497. doi: 10.3390/antibiotics11111497
    [3]
    THITIANANPAKORN K, AIBA Y, TAN X E, et al. Association of mprF mutations with cross-resistance to daptomycin and vancomycin in methicillin-resistant Staphylococcus aureus (MRSA)[J]. Sci Rep,2020,10(1):16107. doi: 10.1038/s41598-020-73108-x
    [4]
    WU S, HUANG J, ZHANG F, et al. Prevalence and characterization of food-related methicillin-resistant Staphylococcus aureus (MRSA) in China[J]. Frontiers in Microbiology,2019,10:304. doi: 10.3389/fmicb.2019.00304
    [5]
    SCHNEIDER O, SIMIC N, AACHMANN F L, et al. Genome mining of Streptomyces sp. YIM 130001 isolated from lichen affords new thiopeptide antibiotic[J]. Front Microbiol,2018,9:3139. doi: 10.3389/fmicb.2018.03139
    [6]
    WERTH B J, JAIN R, HAHN A, et al. Emergence of dalbavancin non-susceptible, vancomycin-intermediate Staphylococcus aureus (VISA) after treatment of MRSA central line-associated bloodstream infection with a dalbavancin- and vancomycin-containing regimen[J]. Clin Microbiol Infect,2018,24(4):421−429.
    [7]
    吴少敏. 亚碲酸钠与β-内酰胺类抗生素的协同抗菌作用研究[D]. 武汉:武汉工程大学, 2022. [WU S M. Synergistic antibacterial effect of sodium tellurite and β-lactam antibiotics[D]. Wuhan:Wuhan Institute of Technology, 2022.]

    WU S M. Synergistic antibacterial effect of sodium tellurite and β-lactam antibiotics[D]. Wuhan: Wuhan Institute of Technology, 2022.
    [8]
    RIBEIRO-FILHO J, TELES Y, IGOLI J O, et al. Editorial:New trends in natural product research for inflammatory and infectious diseases[J]. Front Pharmacol,2022,13:975079. doi: 10.3389/fphar.2022.975079
    [9]
    SANTIAGO K, EDRADA-EBEL R, DELA C T, et al. Biodiscovery of potential antibacterial diagnostic metabolites from the endolichenic fungus Xylaria venustula using LC-MS-based metabolomics[J]. Biology (Basel),2021,10(3):191. doi: 10.3390/biology10030191
    [10]
    FELCZYKOWSKA A, PASTUSZAK-SKRZYPCZAK A, PAWLIK A, et al. Antibacterial and anticancer activities of acetone extracts from in vitro cultured lichen-forming fungi[J]. BMC Complement Altern Med,2017,17(1):300. doi: 10.1186/s12906-017-1819-8
    [11]
    SISODIA R, GEOL M, VERMA S, et al. Antibacterial and antioxidant activity of lichen species Ramalina roesleri[J]. Nat Prod Res,2013,27(23):2235−2239. doi: 10.1080/14786419.2013.811410
    [12]
    BASILE A, RIGANO D, LOPPI S, et al. Antiproliferative, antibacterial and antifungal activity of the lichen Xanthoria parietina and its secondary metabolite parietin[J]. Int J Mol Sci,2015,16(4):7861−7875. doi: 10.3390/ijms16047861
    [13]
    NGUYEN V K, NGUYEN-SI H V, DEVI A P, et al. Eumitrins F-H:Three new xanthone dimers from the lichen Usnea baileyi and their biological activities[J]. Nat Prod Res,2023,37(9):1480−1490. doi: 10.1080/14786419.2021.2023143
    [14]
    SCHINKOVITZ A, Le POGAM P, DERBRE S, et al. Secondary metabolites from lichen as potent inhibitors of advanced glycation end products and vasodilative agents[J]. Fitoterapia,2018,131:182−188. doi: 10.1016/j.fitote.2018.10.015
    [15]
    程璐, 翟亚楠, 孙立彦, 等. 地衣及其内生真菌活性次级代谢产物研究进展[J]. 菌物学报,2021,40(1):14−30. [CHENG L, ZHAI Y N, SUN L Y, et al. Research progress on bioactive secondary metabolites of lichens and endolichenic fungi[J]. Mycosystema,2021,40(1):14−30.]

    CHENG L, ZHAI Y N, SUN L Y, et al. Research progress on bioactive secondary metabolites of lichens and endolichenic fungi[J]. Mycosystema, 2021, 40(1): 14−30.
    [16]
    任国媛, 郭启新, 王静, 等. 雪地茶甲醇提取物体外抑菌活性及其稳定性研究[J]. 食品工业科技,2022,43(1):147−154. [REN G Y, GUO Q X, WANG J, et al. Antibacterial activity and stability of methanol extract from Thamnolia subuliformis in vitro[J]. Science and Technology of Food Industry,2022,43(1):147−154.]

    REN G Y, GUO Q X, WANG J, et al. Antibacterial activity and stability of methanol extract from Thamnolia subuliformis in vitro[J]. Science and Technology of Food Industry, 2022, 43(1): 147−154.
    [17]
    BOHORA A A, KOKATE S R. Good bugs vs bad bugs:Evaluation of inhibitory effect of selected probiotics against enterococcus faecalis[J]. J Contemp Dent Pract,2017,18(4):312−316. doi: 10.5005/jp-journals-10024-2037
    [18]
    LI Z, CAI M, LIU Y, et al. Antibacterial activity and mechanisms of essential oil from Citrus medica L. var. sarcodactylis[J]. Molecules,2019,24(8):1577. doi: 10.3390/molecules24081577
    [19]
    JARKHI A, LEE A H C, SUN Z, et al. Antimicrobial effects of L-Chg10-teixobactin against enterococcus faecalis in vitro[J]. Microorganisms,2022,10(6):1099. doi: 10.3390/microorganisms10061099
    [20]
    KARACA N, SENER G, DEMIRCI B, et al. Synergistic antibacterial combination of Lavandula latifolia Medik. essential oil with camphor[J]. Z Naturforsch C J Biosci,2021,76(3-4):169−173. doi: 10.1515/znc-2020-0051
    [21]
    WEI C, CUI P, LIU X. Antibacterial activity and mechanism of madecassic acid against Staphylococcus aureus[J]. Molecules,2023,28(4):1895. doi: 10.3390/molecules28041895
    [22]
    WENTZEL J M, BIGGS L J, Van VUUREN M. Comparing the minimum inhibitory and mutant prevention concentrations of selected antibiotics against animal isolates of Pasteurella multocida and Salmonella typhimurium[J]. Onderstepoort J Vet Res,2022,89(1):e1−e7.
    [23]
    MOHAMED M A, NASR M, ELKHATIB W F, et al. Nanobiotic formulations as promising advances for combating MRSA resistance:Susceptibilities and post-antibiotic effects of clindamycin, doxycycline, and linezolid[J]. RSC Adv,2021,11(63):39696−39706. doi: 10.1039/D1RA08639A
    [24]
    STUDZINSKA-SROKA E, HANNA T, NATALIA M, et al. Cladonia uncialis as a valuable raw material of biosynthetic compounds against clinical strains of bacteria and fungi[J]. Acta Biochim Pol,2019,66(4):597−603.
    [25]
    ZHONG J, WANG H, ZHUANG Y, et al. Identification of the antibacterial mechanism of cryptotanshinone on methicillin-resistant Staphylococcus aureus using bioinformatics analysis[J]. Scientific Reports,2021,11(1):21726. doi: 10.1038/s41598-021-01121-9
    [26]
    GUO Y, HOU E, WEN T, et al. Development of membrane-active honokiol/magnolol amphiphiles as potent antibacterial agents against methicillin-resistant Staphylococcus aureus (MRSA)[J]. J Med Chem,2021,64(17):12903−12916. doi: 10.1021/acs.jmedchem.1c01073
    [27]
    YANG M R, SU S F, WU Y W. Using bacterial pan-genome-based feature selection approach to improve the prediction of minimum inhibitory concentration (MIC)[J]. Front Genet,2023,14:1054032. doi: 10.3389/fgene.2023.1054032
    [28]
    STUDZINSKA-SROKA E, HOLDERNA-KEDZIA E, GALANTY A, et al. In vitro antimicrobial activity of extracts and compounds isolated from Cladonia uncialis[J]. Nat Prod Res,2015,29(24):2302−2307. doi: 10.1080/14786419.2015.1005616
    [29]
    ISLAM M Z, KRAJEWSKA M, HOSSAIN S I, et al. Concentration-dependent effect of the steroid drug prednisolone on a lung surfactant monolayer[J]. Langmuir,2022,38(14):4188−4199. doi: 10.1021/acs.langmuir.1c02817
    [30]
    SETIAWAN E, SUWANNOI L, MONTAKANTIKUL P, et al. Optimization of intermittent vancomycin dosage regimens for Thai critically Ill population infected by MRSA in the era of the "MIC Creep" phenomenon[J]. Acta Med Indones,2019,51(1):10−18.
    [31]
    M ALSHABRMI F, ALATAWI E A. Unraveling the mechanisms of cefoxitin resistance in methicillin-resistant Staphylococcus aureus (MRSA):Structural and molecular simulation-based insights[J]. Journal of Biomolecular Structure & Dynamics,2023,9:1−11.
    [32]
    WANG B, WEI P W, WAN S, et al. Ginkgo biloba exocarp extracts inhibit S. aureus and MRSA by disrupting biofilms and affecting gene expression[J]. J Ethnopharmacol,2021,271:113895. doi: 10.1016/j.jep.2021.113895
    [33]
    SATRIA D, HARAHAP U, DALIMUNTHE A, et al. Synergistic antibacterial effect of ethyl acetate fraction of Vernonia amygdalina Delile leaves with tetracycline against clinical isolate methicillin-resistant Staphylococcus aureus (MRSA) and pseudomonas aeruginosa[J]. Adv Pharmacol Pharm Sci,2023,2023:2259534.
    [34]
    UDO E E, BOSWIHI S S, MATHEW B, et al. Resurgence of chloramphenicol resistance in methicillin-resistant Staphylococcus aureus due to the acquisition of a variant florfenicol exporter (fexAv)-mediated chloramphenicol resistance in Kuwait Hospitals[J]. Antibiotics (Basel),2021,10(10):1250. doi: 10.3390/antibiotics10101250
    [35]
    GARGVANSHI S, HERAVI G, AYON N J, et al. Screening the NCI diversity set V for anti-MRSA activity:Cefoxitin synergy and LC-MS/MS confirmation of folate/thymidine biosynthesis inhibition[J]. Microbiology Spectrum,2023,11(6):e0054123. doi: 10.1128/spectrum.00541-23
    [36]
    HASHMI H B, FAROOQ M A, KHAN M H, et al. Collaterally sensitive beta-lactam drugs as an effective therapy against the pre-existing methicillin resistant Staphylococcus aureus (MRSA) biofilms[J]. Pharmaceuticals (Basel),2023,16(5):687. doi: 10.3390/ph16050687
    [37]
    JANARDHANAN J, BOULEY R, MARTINEZ-CABALLERO S, et al. The quinazolinone allosteric inhibitor of PBP2a synergizes with piperacillin and tazobactam against methicillin-resistant Staphylococcus aureus[J]. Antimicrob Agents Chemother,2019,63(5):e02637−18.
    [38]
    RUAN Z, CUI J, HE Z, et al. Synergistic effects from combination of cryptotanshinone and fosfomycin against fosfomycin-susceptible and fosfomycin-resistant Staphylococcus aureus[J]. Infect Drug Resist,2020,13:2837−2844. doi: 10.2147/IDR.S255296
    [39]
    NGUENA-DONGUE B N, TCHAMGOUE J, NGANDJUI T Y, et al. Potentiation effect of mallotojaponin B on chloramphenicol and mode of action of combinations against methicillin-resistant Staphylococcus aureus[J]. PLoS One,2023,18(3):e282008.
    [40]
    KAWAMURA M, FUJIMURA S, TOKUDA K, et al. Mutant selection window of disinfectants for Staphylococcus aureus and Pseudomonas aeruginosa[J]. J Glob Antimicrob Resist,2019,17:316−320. doi: 10.1016/j.jgar.2019.01.015
    [41]
    HUANG J, GUO S, LI X, et al. Nemonoxacin enhances antibacterial activity and anti-resistance mutation ability of vancomycin against methicillin-resistant Staphylococcus aureus in an in vitro dynamic pharmacokinetic/pharmacodynamic model[J]. Antimicrob Agents Chemother,2022,66(2):e180021.
  • Other Related Supplements

Catalog

    Article Metrics

    Article views PDF downloads Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return