Citation: | TIAN Hongqiao, ZHU Jiana, LIU Menglong, et al. In Vitro Antibacterial Activity and Combined Drug Sensitivity of 18 Lichen Species from Cangshan[J]. Science and Technology of Food Industry, 2024, 45(19): 149−157. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023110027. |
[1] |
LI Y, HUANG Y, YANG J, et al. Bacteria and poisonous plants were the primary causative hazards of foodborne disease outbreak:A seven-year survey from Guangxi, South China[J]. BMC Public Health,2018,18(1):519. doi: 10.1186/s12889-018-5429-2
|
[2] |
YU M, HOU Y, CHENG M, et al. Antibacterial activity of squaric amide derivative SA2 against methicillin-resistant Staphylococcus aureus[J]. Antibiotics (Basel),2022,11(11):1497. doi: 10.3390/antibiotics11111497
|
[3] |
THITIANANPAKORN K, AIBA Y, TAN X E, et al. Association of mprF mutations with cross-resistance to daptomycin and vancomycin in methicillin-resistant Staphylococcus aureus (MRSA)[J]. Sci Rep,2020,10(1):16107. doi: 10.1038/s41598-020-73108-x
|
[4] |
WU S, HUANG J, ZHANG F, et al. Prevalence and characterization of food-related methicillin-resistant Staphylococcus aureus (MRSA) in China[J]. Frontiers in Microbiology,2019,10:304. doi: 10.3389/fmicb.2019.00304
|
[5] |
SCHNEIDER O, SIMIC N, AACHMANN F L, et al. Genome mining of Streptomyces sp. YIM 130001 isolated from lichen affords new thiopeptide antibiotic[J]. Front Microbiol,2018,9:3139. doi: 10.3389/fmicb.2018.03139
|
[6] |
WERTH B J, JAIN R, HAHN A, et al. Emergence of dalbavancin non-susceptible, vancomycin-intermediate Staphylococcus aureus (VISA) after treatment of MRSA central line-associated bloodstream infection with a dalbavancin- and vancomycin-containing regimen[J]. Clin Microbiol Infect,2018,24(4):421−429.
|
[7] |
吴少敏. 亚碲酸钠与β-内酰胺类抗生素的协同抗菌作用研究[D]. 武汉:武汉工程大学, 2022. [WU S M. Synergistic antibacterial effect of sodium tellurite and β-lactam antibiotics[D]. Wuhan:Wuhan Institute of Technology, 2022.]
WU S M. Synergistic antibacterial effect of sodium tellurite and β-lactam antibiotics[D]. Wuhan: Wuhan Institute of Technology, 2022.
|
[8] |
RIBEIRO-FILHO J, TELES Y, IGOLI J O, et al. Editorial:New trends in natural product research for inflammatory and infectious diseases[J]. Front Pharmacol,2022,13:975079. doi: 10.3389/fphar.2022.975079
|
[9] |
SANTIAGO K, EDRADA-EBEL R, DELA C T, et al. Biodiscovery of potential antibacterial diagnostic metabolites from the endolichenic fungus Xylaria venustula using LC-MS-based metabolomics[J]. Biology (Basel),2021,10(3):191. doi: 10.3390/biology10030191
|
[10] |
FELCZYKOWSKA A, PASTUSZAK-SKRZYPCZAK A, PAWLIK A, et al. Antibacterial and anticancer activities of acetone extracts from in vitro cultured lichen-forming fungi[J]. BMC Complement Altern Med,2017,17(1):300. doi: 10.1186/s12906-017-1819-8
|
[11] |
SISODIA R, GEOL M, VERMA S, et al. Antibacterial and antioxidant activity of lichen species Ramalina roesleri[J]. Nat Prod Res,2013,27(23):2235−2239. doi: 10.1080/14786419.2013.811410
|
[12] |
BASILE A, RIGANO D, LOPPI S, et al. Antiproliferative, antibacterial and antifungal activity of the lichen Xanthoria parietina and its secondary metabolite parietin[J]. Int J Mol Sci,2015,16(4):7861−7875. doi: 10.3390/ijms16047861
|
[13] |
NGUYEN V K, NGUYEN-SI H V, DEVI A P, et al. Eumitrins F-H:Three new xanthone dimers from the lichen Usnea baileyi and their biological activities[J]. Nat Prod Res,2023,37(9):1480−1490. doi: 10.1080/14786419.2021.2023143
|
[14] |
SCHINKOVITZ A, Le POGAM P, DERBRE S, et al. Secondary metabolites from lichen as potent inhibitors of advanced glycation end products and vasodilative agents[J]. Fitoterapia,2018,131:182−188. doi: 10.1016/j.fitote.2018.10.015
|
[15] |
程璐, 翟亚楠, 孙立彦, 等. 地衣及其内生真菌活性次级代谢产物研究进展[J]. 菌物学报,2021,40(1):14−30. [CHENG L, ZHAI Y N, SUN L Y, et al. Research progress on bioactive secondary metabolites of lichens and endolichenic fungi[J]. Mycosystema,2021,40(1):14−30.]
CHENG L, ZHAI Y N, SUN L Y, et al. Research progress on bioactive secondary metabolites of lichens and endolichenic fungi[J]. Mycosystema, 2021, 40(1): 14−30.
|
[16] |
任国媛, 郭启新, 王静, 等. 雪地茶甲醇提取物体外抑菌活性及其稳定性研究[J]. 食品工业科技,2022,43(1):147−154. [REN G Y, GUO Q X, WANG J, et al. Antibacterial activity and stability of methanol extract from Thamnolia subuliformis in vitro[J]. Science and Technology of Food Industry,2022,43(1):147−154.]
REN G Y, GUO Q X, WANG J, et al. Antibacterial activity and stability of methanol extract from Thamnolia subuliformis in vitro[J]. Science and Technology of Food Industry, 2022, 43(1): 147−154.
|
[17] |
BOHORA A A, KOKATE S R. Good bugs vs bad bugs:Evaluation of inhibitory effect of selected probiotics against enterococcus faecalis[J]. J Contemp Dent Pract,2017,18(4):312−316. doi: 10.5005/jp-journals-10024-2037
|
[18] |
LI Z, CAI M, LIU Y, et al. Antibacterial activity and mechanisms of essential oil from Citrus medica L. var. sarcodactylis[J]. Molecules,2019,24(8):1577. doi: 10.3390/molecules24081577
|
[19] |
JARKHI A, LEE A H C, SUN Z, et al. Antimicrobial effects of L-Chg10-teixobactin against enterococcus faecalis in vitro[J]. Microorganisms,2022,10(6):1099. doi: 10.3390/microorganisms10061099
|
[20] |
KARACA N, SENER G, DEMIRCI B, et al. Synergistic antibacterial combination of Lavandula latifolia Medik. essential oil with camphor[J]. Z Naturforsch C J Biosci,2021,76(3-4):169−173. doi: 10.1515/znc-2020-0051
|
[21] |
WEI C, CUI P, LIU X. Antibacterial activity and mechanism of madecassic acid against Staphylococcus aureus[J]. Molecules,2023,28(4):1895. doi: 10.3390/molecules28041895
|
[22] |
WENTZEL J M, BIGGS L J, Van VUUREN M. Comparing the minimum inhibitory and mutant prevention concentrations of selected antibiotics against animal isolates of Pasteurella multocida and Salmonella typhimurium[J]. Onderstepoort J Vet Res,2022,89(1):e1−e7.
|
[23] |
MOHAMED M A, NASR M, ELKHATIB W F, et al. Nanobiotic formulations as promising advances for combating MRSA resistance:Susceptibilities and post-antibiotic effects of clindamycin, doxycycline, and linezolid[J]. RSC Adv,2021,11(63):39696−39706. doi: 10.1039/D1RA08639A
|
[24] |
STUDZINSKA-SROKA E, HANNA T, NATALIA M, et al. Cladonia uncialis as a valuable raw material of biosynthetic compounds against clinical strains of bacteria and fungi[J]. Acta Biochim Pol,2019,66(4):597−603.
|
[25] |
ZHONG J, WANG H, ZHUANG Y, et al. Identification of the antibacterial mechanism of cryptotanshinone on methicillin-resistant Staphylococcus aureus using bioinformatics analysis[J]. Scientific Reports,2021,11(1):21726. doi: 10.1038/s41598-021-01121-9
|
[26] |
GUO Y, HOU E, WEN T, et al. Development of membrane-active honokiol/magnolol amphiphiles as potent antibacterial agents against methicillin-resistant Staphylococcus aureus (MRSA)[J]. J Med Chem,2021,64(17):12903−12916. doi: 10.1021/acs.jmedchem.1c01073
|
[27] |
YANG M R, SU S F, WU Y W. Using bacterial pan-genome-based feature selection approach to improve the prediction of minimum inhibitory concentration (MIC)[J]. Front Genet,2023,14:1054032. doi: 10.3389/fgene.2023.1054032
|
[28] |
STUDZINSKA-SROKA E, HOLDERNA-KEDZIA E, GALANTY A, et al. In vitro antimicrobial activity of extracts and compounds isolated from Cladonia uncialis[J]. Nat Prod Res,2015,29(24):2302−2307. doi: 10.1080/14786419.2015.1005616
|
[29] |
ISLAM M Z, KRAJEWSKA M, HOSSAIN S I, et al. Concentration-dependent effect of the steroid drug prednisolone on a lung surfactant monolayer[J]. Langmuir,2022,38(14):4188−4199. doi: 10.1021/acs.langmuir.1c02817
|
[30] |
SETIAWAN E, SUWANNOI L, MONTAKANTIKUL P, et al. Optimization of intermittent vancomycin dosage regimens for Thai critically Ill population infected by MRSA in the era of the "MIC Creep" phenomenon[J]. Acta Med Indones,2019,51(1):10−18.
|
[31] |
M ALSHABRMI F, ALATAWI E A. Unraveling the mechanisms of cefoxitin resistance in methicillin-resistant Staphylococcus aureus (MRSA):Structural and molecular simulation-based insights[J]. Journal of Biomolecular Structure & Dynamics,2023,9:1−11.
|
[32] |
WANG B, WEI P W, WAN S, et al. Ginkgo biloba exocarp extracts inhibit S. aureus and MRSA by disrupting biofilms and affecting gene expression[J]. J Ethnopharmacol,2021,271:113895. doi: 10.1016/j.jep.2021.113895
|
[33] |
SATRIA D, HARAHAP U, DALIMUNTHE A, et al. Synergistic antibacterial effect of ethyl acetate fraction of Vernonia amygdalina Delile leaves with tetracycline against clinical isolate methicillin-resistant Staphylococcus aureus (MRSA) and pseudomonas aeruginosa[J]. Adv Pharmacol Pharm Sci,2023,2023:2259534.
|
[34] |
UDO E E, BOSWIHI S S, MATHEW B, et al. Resurgence of chloramphenicol resistance in methicillin-resistant Staphylococcus aureus due to the acquisition of a variant florfenicol exporter (fexAv)-mediated chloramphenicol resistance in Kuwait Hospitals[J]. Antibiotics (Basel),2021,10(10):1250. doi: 10.3390/antibiotics10101250
|
[35] |
GARGVANSHI S, HERAVI G, AYON N J, et al. Screening the NCI diversity set V for anti-MRSA activity:Cefoxitin synergy and LC-MS/MS confirmation of folate/thymidine biosynthesis inhibition[J]. Microbiology Spectrum,2023,11(6):e0054123. doi: 10.1128/spectrum.00541-23
|
[36] |
HASHMI H B, FAROOQ M A, KHAN M H, et al. Collaterally sensitive beta-lactam drugs as an effective therapy against the pre-existing methicillin resistant Staphylococcus aureus (MRSA) biofilms[J]. Pharmaceuticals (Basel),2023,16(5):687. doi: 10.3390/ph16050687
|
[37] |
JANARDHANAN J, BOULEY R, MARTINEZ-CABALLERO S, et al. The quinazolinone allosteric inhibitor of PBP2a synergizes with piperacillin and tazobactam against methicillin-resistant Staphylococcus aureus[J]. Antimicrob Agents Chemother,2019,63(5):e02637−18.
|
[38] |
RUAN Z, CUI J, HE Z, et al. Synergistic effects from combination of cryptotanshinone and fosfomycin against fosfomycin-susceptible and fosfomycin-resistant Staphylococcus aureus[J]. Infect Drug Resist,2020,13:2837−2844. doi: 10.2147/IDR.S255296
|
[39] |
NGUENA-DONGUE B N, TCHAMGOUE J, NGANDJUI T Y, et al. Potentiation effect of mallotojaponin B on chloramphenicol and mode of action of combinations against methicillin-resistant Staphylococcus aureus[J]. PLoS One,2023,18(3):e282008.
|
[40] |
KAWAMURA M, FUJIMURA S, TOKUDA K, et al. Mutant selection window of disinfectants for Staphylococcus aureus and Pseudomonas aeruginosa[J]. J Glob Antimicrob Resist,2019,17:316−320. doi: 10.1016/j.jgar.2019.01.015
|
[41] |
HUANG J, GUO S, LI X, et al. Nemonoxacin enhances antibacterial activity and anti-resistance mutation ability of vancomycin against methicillin-resistant Staphylococcus aureus in an in vitro dynamic pharmacokinetic/pharmacodynamic model[J]. Antimicrob Agents Chemother,2022,66(2):e180021.
|