WANG Hongmei, LI Zhe, WANG Songtao, et al. Discrimination Analysis of Conventional Baijiu-making Sorghum from Southwest China and Hybrid Sorghum Based on Physicochemical Properties and Metabolomics[J]. Science and Technology of Food Industry, 2024, 45(19): 256−267. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023100133.
Citation: WANG Hongmei, LI Zhe, WANG Songtao, et al. Discrimination Analysis of Conventional Baijiu-making Sorghum from Southwest China and Hybrid Sorghum Based on Physicochemical Properties and Metabolomics[J]. Science and Technology of Food Industry, 2024, 45(19): 256−267. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023100133.

Discrimination Analysis of Conventional Baijiu-making Sorghum from Southwest China and Hybrid Sorghum Based on Physicochemical Properties and Metabolomics

More Information
  • Received Date: October 18, 2023
  • Available Online: August 05, 2024
  • The objective of this paper was to analyze the difference of composition between hybrid sorghum and conventional sorghum in southwest China, and to establish the method of variety identification. The basic physical and chemical components of 29 sorghum samples were determined, and the metabolite composition of 29 sorghum samples was determined by ultra high performance liquid chromatography coupled with Q Exactive HF-X mass spectrometry. The marker component screening and construction of variety identification model were carried out using stoichiometry, which included principal component analysis (PCA), orthogonal partial least squares discriminant analysis (OPLS-DA), cluster analysis and receiver operating characteristic (ROC) curve analysis. The model was based on the basic physicochemical composition and all metabolites. The results showed that the contents of amylopectin and tannin of the conventional varieties form southwest China were higher than that of hybrid varieties, while the contents of amylose and 1000-grain weight were lower. By analyzing the physicochemical properties, it was possible to identify certain samples. The OPLS-DA model was constructed with all 1048 compounds variables, and 46 of the differential metabolites that had a significant impact on the model identification were screened out. A novel OPLS-DA identification model was developed for sorghum varieties, achieving a 100% accuracy in identification. The conventional varieties from southwest China exhibited a relatively high concentration of phenolic compounds. Furthermore, after conducting receiver operating characteristic (ROC) curve analysis and assessing the relative standard deviation (RSD) of quality control sample (QC), 20 feature components that exhibited both high diagnostic accuracy and good reproducibility were identified. Among them, syringetin 3-glucoside and 6"-o-acetyldaidzein had higher expression abundance in conventional sorghum varieties, while D-glucarate, putsutrine, N-acetylputsutrine and L-glutamine had higher content in hybrid sorghum varieties. This study unveiled the disparity in metabolites between hybrid sorghum and conventional sorghum. The study successfully developed a scientifically rigorous and precise untargeted metabolomics approach using UHPLC-Q Exactive HF-X-MS. This method can be effectively utilized for the identification of sorghum varieties, offering a novel strategy for sorghum variety identification.
  • [1]
    孙婷. 高粱品种的高光谱分类及多品种混合识别研究[D]. 自贡:四川轻化工大学, 2021. [[SUN T. Research on hyperspectral classification of sorghum varieties and multiple varieties mixed recognition[D]. Zigong:Sichuan University of Science & Engineering, 2021.]

    [SUN T. Research on hyperspectral classification of sorghum varieties and multiple varieties mixed recognition[D]. Zigong: Sichuan University of Science & Engineering, 2021.
    [2]
    郭喜祥. 高粱高产栽培技术[J]. 现代农业,2019(3):2. [GUO X X. High yield cultivation technology of sorghum[J]. Modern Agriculture,2019(3):2.]

    GUO X X. High yield cultivation technology of sorghum[J]. Modern Agriculture, 2019(3): 2.
    [3]
    戈刚. 什么是杂交高粱[J]. 中国农垦,1966(3):45. [GE G. What is hybrid sorghum[J]. China State Farm,1966(3):45.]

    GE G. What is hybrid sorghum[J]. China State Farm, 1966(3): 45.
    [4]
    闫松显, 吕云怀, 王莉, 等. 西南区酿酒高粱的种质形成与发展[J]. 中国酿造,2017,36(5):17−21. [YAN S X, LÜ Y H, WANG L, et al. Germplasm formation and development of Baijiu-making sorghum in the southwest of China[J]. China Brewing,2017,36(5):17−21.]

    YAN S X, LÜ Y H, WANG L, et al. Germplasm formation and development of Baijiu-making sorghum in the southwest of China[J]. China Brewing, 2017, 36(5): 17−21.
    [5]
    袁蕊, 敖中华, 刘小刚, 等. 南北方几种高粱酿酒品质分析[J]. 酿酒科技,2011,12:33−36. [YUAN R, AO Z H, LIU X G, et al. Brewing quality analysis of some kinds of sorghum in north and in south China[J]. Liquor-Making Science & Technology,2011,12:33−36.]

    YUAN R, AO Z H, LIU X G, et al. Brewing quality analysis of some kinds of sorghum in north and in south China[J]. Liquor-Making Science & Technology, 2011, 12: 33−36.
    [6]
    卫永太, 张镔, 张桂香. 中国高梁品质性状的区域性差异[J]. 天津农业科学,2016,22(11):138−140. [WEI Y T, ZHANG B, ZHANG G X. Regional differences analysis on quality traits of Chinese sorghum[J]. Tianjin Agricultural Sciences,2016,22(11):138−140.]

    WEI Y T, ZHANG B, ZHANG G X. Regional differences analysis on quality traits of Chinese sorghum[J]. Tianjin Agricultural Sciences, 2016, 22(11): 138−140.
    [7]
    闫松显, 袁河, 雷元春, 等. 酿酒高粱籽粒微观形态分析及其果皮厚度和单宁含量的相关性[J]. 中国酿造,2018,37(3):67−71. [YAN S X, YUAN H, LEI Y C, et al. Micro-morphology analysis of liquor-making sorghums grain and the correlation of pericarp thickness and tannin content[J]. China Brewing,2018,37(3):67−71.]

    YAN S X, YUAN H, LEI Y C, et al. Micro-morphology analysis of liquor-making sorghums grain and the correlation of pericarp thickness and tannin content[J]. China Brewing, 2018, 37(3): 67−71.
    [8]
    RIGHETTI L, RUBERT J, GALAVERNA G, et al. A novel approach based on untargeted lipidomics reveals differences in the lipid pattern among durum and common wheat[J]. Food Chemistry,2018,240(Feb.1):775−783.
    [9]
    徐春晖, 王远兴. 基于UPLC-QTOF-MS结合非靶向代谢组学鉴别3种江西名茶[J]. 食品科学,2022,43(2):316−323. [[XU C H, WANG Y X. Non-targeted metabolomics based on ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry for discrimination of three Jiangxi famous teas[J]. Food Science,2022,43(2):316−323.]

    [XU C H, WANG Y X. Non-targeted metabolomics based on ultra-high performance liquid chromatography-quadrupole time-of-flight mass spectrometry for discrimination of three Jiangxi famous teas[J]. Food Science, 2022, 43(2): 316−323.
    [10]
    倪德让. 一种基于挥发性物质组成特征的高粱品种鉴别方法:中国, 202210686274[P]. 2022-09-13. [NI D R. A method for sorghum variety identification based on volatile substance composition characteristics:China, 202210686274[P]. 2022-09-13.]

    NI D R. A method for sorghum variety identification based on volatile substance composition characteristics: China, 202210686274[P]. 2022-09-13.
    [11]
    ZHOU Y X, WANG Z G, LI Y, et al. Metabolite profiling of sorghum seeds of different colors from different sweet sorghum cultivars using a widely targeted metabolomics approach[J]. International Journal of Genomics,2020,2020:6247429.
    [12]
    RAMALINGAM A P, MOHANAVEL W, PREMNATH A, et al. Large-scale non-targeted metabolomics reveals antioxidant, nutraceutical and therapeutic potentials of sorghum[J]. Antioxidants,2021,10(10):1511.
    [13]
    国家卫生和计划生育委员会, 国家食品药品监督管理总局. GB 5009.9-2016 食品中淀粉的测定[S]. 北京:中国标准出版社, 2016. [National Health and Family Planning Commission of the People's Republic of China, China Food and Drug Administration. GB 5009.9-2016 Determination of starch in food[S]. Beijing:Standards Press of China, 2016.]

    National Health and Family Planning Commission of the People's Republic of China, China Food and Drug Administration. GB 5009.9-2016 Determination of starch in food[S]. Beijing: Standards Press of China, 2016.
    [14]
    国家卫生和计划生育委员会, 国家食品药品监督管理总局 GB 5009.6-2016 食品中脂肪的测定[S]. 北京:中国标准出版社, 2016. [National Health and Family Planning Commission of the People's Republic of China, China Food and Drug Administration. GB 5009.6-2016 Determination of fat in food[S]. Beijing:Standards Press of China, 2016.]

    National Health and Family Planning Commission of the People's Republic of China, China Food and Drug Administration. GB 5009.6-2016 Determination of fat in food[S]. Beijing: Standards Press of China, 2016.
    [15]
    国家卫生和计划生育委员会, 国家食品药品监督管理总局 GB 5009.5-2016 食品中蛋白质的测定[S]. 北京:中国标准出版社, 2016. [National Health and Family Planning Commission of the People's Republic of China, China Food and Drug Administration. GB 5009.6-2016 Determination of protein in food[S]. Beijing:Standards Press of China, 2016.]

    National Health and Family Planning Commission of the People's Republic of China, China Food and Drug Administration. GB 5009.6-2016 Determination of protein in food[S]. Beijing: Standards Press of China, 2016.
    [16]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 15686-2008高粱 单宁含量的测定[S]. 北京:中国标准出版社, 2008. [General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of China. GB/T 15686-2008 Determination of tannin content in sorghum[S]. Beijing:Standards Press of China, 2008.]

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of China. GB/T 15686-2008 Determination of tannin content in sorghum[S]. Beijing: Standards Press of China, 2008.
    [17]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 15683-2008 大米 直链淀粉含量的测定[S]. 北京:中国标准出版社, 2008. [General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of China. GB/T 15683-2008 Determination of amylose content in rice[S]. Beijing:Standards Press of China, 2008.]

    General Administration of Quality Supervision, Inspection and Quarantine of the People's Republic of China, Standardization Administration of China. GB/T 15683-2008 Determination of amylose content in rice[S]. Beijing: Standards Press of China, 2008.
    [18]
    徐晓, 任根增, 赵欣蕊, 等. 中国高粱地方品种和育成品种穗部表型性状精准鉴定及综合评价[J]. 中国农业科学,2022,55(11):2092−2108. [XU X, REN G Z, ZHAO X R, et al. Accurate identification and comprehensive evaluation of panicle phenotypic traits of landraces and cultivars of Sorghum bicolor (L.) Moench in China[J]. Scientia Agricultura Sinica,2022,55(11):2092−2108.]

    XU X, REN G Z, ZHAO X R, et al. Accurate identification and comprehensive evaluation of panicle phenotypic traits of landraces and cultivars of Sorghum bicolor (L.) Moench in China[J]. Scientia Agricultura Sinica, 2022, 55(11): 2092−2108.
    [19]
    王红梅, 李哲, 李令, 等. 川南白酒产区主要酿酒高粱理化性质与代谢组学分析[J]. 酿酒科技,2023,7:44−56. [WANG H M, LI Z, LI L, et al. Physicochemical properties and metabolomics of liquor-making sorghum from southern Sichuan[J]. Liquor-Making Science & Technology,2023,7:44−56.]

    WANG H M, LI Z, LI L, et al. Physicochemical properties and metabolomics of liquor-making sorghum from southern Sichuan[J]. Liquor-Making Science & Technology, 2023, 7: 44−56.
    [20]
    ZHOU L L, WANG D F, ZHOU H L. Metabolic profiling of two medicinal piper species[J]. South African Journal of Botany,2021,139:281−289. doi: 10.1016/j.sajb.2021.03.007
    [21]
    韩静雯, 李国辉, 钟其顶, 等. 基于超高效液相色谱-四极杆/飞行时间质谱鉴别红葡萄酒的品种和产地[J]. 食品与发酵工业,2022,48(19):250−256. [HAN J W, LI G H, ZHONG Q D, et al. Identification of red wine varieties and origins based on the ultra-high performance liquid chromalography-quadrupole/time of flight mass a spectrometry[J]. Food and Fermentation Industries,2022,48(19):250−256.]

    HAN J W, LI G H, ZHONG Q D, et al. Identification of red wine varieties and origins based on the ultra-high performance liquid chromalography-quadrupole/time of flight mass a spectrometry[J]. Food and Fermentation Industries, 2022, 48(19): 250−256.
    [22]
    LI Y H, LIANG L, XU C H, et al. UPLC-Q-TOF/MS-based untargeted metabolomics for discrimination of navel oranges from different geographical origins of China[J]. LWT-Food Science and Technology,2021,137:110382. doi: 10.1016/j.lwt.2020.110382
    [23]
    RIGHETTI L, RUBERT J, GALAVERNA G, et al. A novel approach based on the untargeted lipidomics reveals differences in the lipid pattern among durum and common wheat[J]. Food Chemistry,2018,240:775−783. doi: 10.1016/j.foodchem.2017.08.020
    [24]
    徐冰冰, 张九凯, 赵贵明, 等. 基于非靶标代谢组学的沙棘油真实性鉴别技术[J]. 食品科学,2021,42(18):246−253. [XU B B, ZHANG J K, ZHAO G M, et al. Authentication of sea buckthorn oil based on non-targeted metabolomic[J]. Food Science,2021,42(18):246−253.]

    XU B B, ZHANG J K, ZHAO G M, et al. Authentication of sea buckthorn oil based on non-targeted metabolomic[J]. Food Science, 2021, 42(18): 246−253.
    [25]
    刘俊霞, 赵萍, 万小辉, 等. 大鲵肝茶叶水提液脱腥过程中挥发性有机物的动态变化[J]. 食品与机械,2022(3):38. [LIU J X, ZHAO P, WAN X H, et al. Dynamic changes of volatile organic compounds in giant salamander liver during the deodorization with tea water extract[J]. Food & Machinery,2022(3):38.]

    LIU J X, ZHAO P, WAN X H, et al. Dynamic changes of volatile organic compounds in giant salamander liver during the deodorization with tea water extract[J]. Food & Machinery, 2022(3): 38.
    [26]
    吴奇霄, 余松柏, 马龙, 等. 基于LC-MS和GC-MS结合多元统计的白酒酚类成分分析[J]. 中国酿造,2022,41(12):223−229. [[WU Q X, YU S B, MA L, et al. Component analysis of phenols in Baijiu based on LC-MS and GC-MS combined with multivariate statistics[J]. China Brewing,2022,41(12):223−229.]

    [WU Q X, YU S B, MA L, et al. Component analysis of phenols in Baijiu based on LC-MS and GC-MS combined with multivariate statistics[J]. China Brewing, 2022, 41(12): 223−229.
    [27]
    闫如毓, 郝慧宜, 苗子健, 等. 浓香型白酒发酵过程中4-甲/乙基愈创木酚的代谢规律分析[J]. 食品与发酵工业,2023,49(11):41−46. [YAN R Y, HAO H Y, MIAO Z J, et al. Analysis of metabolism of 4-methyl/ethyl guaiacol during strong flavor Baijiu fermentation[J]. Food and Fermentation Industries,2023,49(11):41−46.]

    YAN R Y, HAO H Y, MIAO Z J, et al. Analysis of metabolism of 4-methyl/ethyl guaiacol during strong flavor Baijiu fermentation[J]. Food and Fermentation Industries, 2023, 49(11): 41−46.
    [28]
    XIONG Y X, ZHANG P Z, WARNER R D, et al. Sorghum grain:From genotype, nutrition, and phenolic profile to its health benefits and food applications[J]. Comprehensive Reviews in Food Science and Food Safety,2019,18(6):2025−2046. doi: 10.1111/1541-4337.12506
    [29]
    李行, 吴李玲, 裴荣红, 等. 6种武陵酱香型白酒中挥发性含硫化合物差异分析[J]. 食品科学技术学报,2024,42(1):83−93. [LI X, WU L L, PEI R H, et al. Distribution difference analysis of volatile sulfur-containing compounds in 6 kinds of Wuling soy sauce aroma-type Baijiu[J]. Journal of Food Science and Technology,2024,42(1):83−93.]

    LI X, WU L L, PEI R H, et al. Distribution difference analysis of volatile sulfur-containing compounds in 6 kinds of Wuling soy sauce aroma-type Baijiu[J]. Journal of Food Science and Technology, 2024, 42(1): 83−93.
    [30]
    王韵, 汪峰, 费静娴, 等. 采供血机构ALT初筛检测质量保证的探讨[J]. 临床血液学杂志,2022,35(12):884−887. [WANG Y, WANG F, FEI J X, et al. Discussion on quality assurance of ALT primary screening in blood collection and supply institutions[J]. Journal of Clinical Hematology,2022,35(12):884−887.]

    WANG Y, WANG F, FEI J X, et al. Discussion on quality assurance of ALT primary screening in blood collection and supply institutions[J]. Journal of Clinical Hematology, 2022, 35(12): 884−887.
    [31]
    ZHOU Y, LV J, YU Z, et al. Integrated metabolomics and transcriptomic analysis of the flavonoid regulatory networks in sorghum bicolor seeds[J]. BMC Genomics,2022,23(1):1−10. doi: 10.1186/s12864-021-08243-4
    [32]
    CHMIEL M, STOMPOR-GORACY M. The spectrum of pharmacological actions of syringetin and its natural derivatives—a summary review[J]. Nutrients,2022,14(23):5157. doi: 10.3390/nu14235157
    [33]
    EISEN B, UNGAR Y, SHIMONI E. Stability of isoflavones in soy milk stored at elevated and ambient temperatures[J]. Journal of Agricultural and Food Chemistry,2003,51:2212−2215. doi: 10.1021/jf025783h
    [34]
    XIONG Y, ZHANG P Z, WARNER R D, et al. Comprehensive profiling of phenolic compounds by HPLC-DAD-ESI-QTOF-MS/MS to reveal their location and form of presence in different sorghum grain genotypes[J]. Food Research International,2020,137:109671. doi: 10.1016/j.foodres.2020.109671
    [35]
    PAVLI O I, VLACHOS C E, KALLONIATI C, et al. Metabolite profiling reveals the effect of drought on sorghum (Sorghum bicolor L. Moench) metabolism[J]. Plant Omics,2013,6(6):371−376.
    [36]
    PAIVA LIBOREIRO C, PINHEIRO EVANGELISTA W, VIEIRA QUEIROZ V A, et al. Bioactive amines in sorghum:Method optimisation and influence of line, tannin and hydric stress[J]. Food Chemistry,2015,173:224−230. doi: 10.1016/j.foodchem.2014.10.039
    [37]
    王新磊, 吕新芳. 氮代谢参与植物逆境抵抗的作用机理研究进展[J]. 广西植物,2020,40(4):583−591. [WANG X L, LÜ X F. Research progress on mechanism of nitrogen metabolism involved in plan stress resistance[J]. Guihaia,2020,40(4):583−591.]

    WANG X L, LÜ X F. Research progress on mechanism of nitrogen metabolism involved in plan stress resistance[J]. Guihaia, 2020, 40(4): 583−591.
    [38]
    CHEN L J, ZHAO X, PLUMMER S, et al. Quantitative determination and structural characterization of isoflavones in nutrition supplements by liquid chromatography-mass spectrometry[J]. Journal of Chromatograohy,2005,1082:60−70. doi: 10.1016/j.chroma.2005.03.066
    [39]
    LÓPEZ-GUTIÈRREZ N, ROMERO-GONZÁLEZ R, FRENICH A G, et al. Identification and quantification of the main isoflavones and other phytochemicals in soy based nutraceutical products by liquid chromatography-orbitrap high resolution mass spectrometry[J]. Journal of Chromatography A,2014,1348:125−136. doi: 10.1016/j.chroma.2014.04.090
    [40]
    XIE B G, LIU Y L, ZOU H Q, et al. Determination of D-glucaric acid and/or D-glucaro-1, 4-lacton in different apple varieties through hydrophilic interaction chromatography[J]. Food Chemistry,2016,203:1−7. doi: 10.1016/j.foodchem.2016.02.009
    [41]
    PEREZ J L, JAYAPRAKASHA G K, YOO K S, et al. Development of a method for the quantification of D-glucaric acid in different varieties of grapefruits by high-performance liquid chromatography and mass spectra[J]. Journal of Chromatography A,2008,1190:394−397. doi: 10.1016/j.chroma.2008.03.026
  • Other Related Supplements

  • Cited by

    Periodical cited type(9)

    1. 张明赞,贺彪,田辉,王媛. 酱香型白酒生产过程中微生物对白酒风味物质影响的研究进展. 农产品加工. 2024(06): 108-111 .
    2. 高兴. 白酒品质的分析方法及质量安全控制策略. 食品安全导刊. 2024(28): 38-41 .
    3. 马裕清,段万里,彭蕾,耿丙杰,唐凌瑄,王浩能,高方圆. 食品包装材料中双酚A检测方法的研究进展. 上海预防医学. 2023(06): 604-612 .
    4. 孙震,郭铮蕾,刘莉,万晓楠,韩深,张朝晖,杨宇. 双酚A国内外管控法规和检测方法研究进展. 中国口岸科学技术. 2022(02): 38-44 .
    5. 任媛媛,王超,谢勇,郭光鹏,黄勤挽,王瑾. 基于UPLC-Q-Orbitrap HRMS和网络药理学分析五味子治疗非酒精性脂肪肝的物质基础及作用机制. 食品工业科技. 2022(05): 21-33 . 本站查看
    6. 周勇,高卓瑶,蒋玲波,贺文韬,汤海凤,陈毅洛,许景景,周小涵. 超高效液相色谱–串联质谱法同时测定化妆品中7种双酚类化合物及其衍生物. 化学分析计量. 2022(03): 73-77 .
    7. 黄煜,李杰. 高效液相色谱法测定工业双酚A中的微量杂质. 化学试剂. 2022(08): 1213-1217 .
    8. 张慧,曹慧,姜侃,肖功年,王瑾,周学军,厉小燕. 高效液相色谱-三重四极杆串联质谱法研究塑料接触材料中酚类化合物向奶油中的迁移. 食品科学. 2022(18): 339-345 .
    9. 王庆亮. 白酒品质分析及质量安全控制研究进展. 酿酒科技. 2021(08): 97-101 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (62) PDF downloads (15) Cited by(10)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return