REN Yuanyuan, WANG Chao, XIE Yong, et al. UPLC-Q-Orbitrap HRMS Combined with Network Pharmacology to Analyze the Material Basis and Mechanism of Schisandrae chinensis in the Treatment of Non-alcoholic Fatty Liver[J]. Science and Technology of Food Industry, 2022, 43(5): 21−33. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090347.
Citation: REN Yuanyuan, WANG Chao, XIE Yong, et al. UPLC-Q-Orbitrap HRMS Combined with Network Pharmacology to Analyze the Material Basis and Mechanism of Schisandrae chinensis in the Treatment of Non-alcoholic Fatty Liver[J]. Science and Technology of Food Industry, 2022, 43(5): 21−33. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021090347.

UPLC-Q-Orbitrap HRMS Combined with Network Pharmacology to Analyze the Material Basis and Mechanism of Schisandrae chinensis in the Treatment of Non-alcoholic Fatty Liver

More Information
  • Received Date: September 28, 2021
  • Available Online: December 30, 2021
  • Objective: UPLC-Q-Orbitrap HRMS, network pharmacology and molecular docking technology were used to explore the material basis and mechanism of Schisandrae chinensis (SC) in treating non-alcoholic fatty liver disease(NAFLD). Method: UPLC-Q-Orbitrap HRMS was used to identify the chemical components in SC. The Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP) and Swiss Target Prediction online platform were used to screen and predict the potential targets of the chemical composition of SC; GeneCards, CTD, OMIM, Dis-GeNET, GEO database were used to collect non-alcoholic fatty liver disease potential targets. String database and Cytoscape 3.7.1 software were used to construct a protein-protein interaction (PPI) network model; R-based bioconductor data package for gene ontology (GO) and KEGG pathway were used to analyse potential targets; Cytoscape 3.7.1 software were used to establish a "drug-key active ingredient-target-pathway" network. Finally, molecular docking was carried out to preliminarily verify the mechanism of SC in the treatment of NAFLD. Results: 50 components of SC were analyzed and identified, and 246 potential targets of SC in treating NAFLD were screened out. Through further analysis of network topology, 23 core components and 30 potential core targets were screened out, and enrichment analysis was carried out based on them. SC played a therapeutic role through the proteoglycans in cancer, endocrine resistance, Rap1 signaling pathway, VEGF signaling pathway, AGE-RAGE signaling pathway in diabetic complications and Estrogen signaling pathway. Molecular bonding results showed that the top 5 active ingredients, quercetin, kaempferol, schisandrin a, α-linolenic acid and schisandrol B, had good binding activities with the top 4 core targets, AKT1, HSP90AA1, SRC and MAPK1, and their binding free energies were all less than −5 kcal/mol. The docking conformation of the molecule was stable. Conclusion: SC may improve the symptoms of NAFLD by acting on lipid metabolism, oxidative stress, angiogenesis and inflammation related pathways and targets.
  • [1]
    YOUNOSSI Z M, KOENIG A B, ABDELATIF D, et al. Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes[J]. Hepatology,2016,64(1):73−84. doi: 10.1002/hep.28431
    [2]
    HUANG D Q, EL-SERAG H B, LOOMBA R. Global epidemiology of NAFLD-related HCC: Trends, predictions, risk factors and prevention[J]. Nature Reviews Gastroenterology Hepatol,2020,18(4):223−238.
    [3]
    CHALASANI N, YOUNOSSI Z, LAVINE J E, et al. The diagnosis and management of nonalcoholic fatty liver disease: Practice guidance from the American association for the study of liver diseases[J]. Hepatology,2018,67(1):328−357. doi: 10.1002/hep.29367
    [4]
    DOKMAK A, LIZAOLA-MAYO B, TRIVEDI H D. The impact of nonalcoholic fatty liver disease in primary care: A population health perspective[J]. The American Journal of Medicine,2020,134(1):23−29.
    [5]
    ADAMS L A, LYMP J F, SAUVER J S, et al. The natural history of nonalcoholic fatty liver disease: A population-based cohort study[J]. Gastroenterology,2005,129(1):113−121. doi: 10.1053/j.gastro.2005.04.014
    [6]
    WHITE D L, KANWAL F, EL-SERAG H B. Association between nonalcoholic fatty liver disease and risk for hepatocellular cancer, based on systematic review[J]. Clinical Gastroenterology and Hepatology,2012,10(12):1342−1359. doi: 10.1016/j.cgh.2012.10.001
    [7]
    FAN J G, WEI L, ZHUANG H. Guidelines for the prevention and treatment of non-alcoholic fatty liver disease (updated in 2018)[J]. Journal of Digestive Diseases,2019,20(4):163−173. doi: 10.1111/1751-2980.12685
    [8]
    高晓乐, 段冷昕, 仇可可, 等. 鬼针草水煎液对高脂高糖诱导的小鼠非酒精性脂肪肝的作用及机制研究[J]. 中国中药杂志,2020,45(16):3915−3921. [GAO X L, DUAN L X, QIU K K, et al. Study on the effect and mechanism of Bidens pilosa decoction on non-alcoholic fatty liver induced by high-fat and high-sugar in mice[J]. Chinese Journal of Chinese Materia Medica,2020,45(16):3915−3921.
    [9]
    陈珍, 陆敏涛, 徐方艳, 等. 刺梨果酒对高脂诱导肥胖小鼠脂代谢的影响[J/OL]. 食品工业科技, 2021: 1−16 [2021-10-28]. https://doi.org/10.13386/j.issn1002-0306.2021050264.

    CHEN Z, LU M T, XU F Y, et al. Effects of Cili Fruit Wine on lipid metabolism in obese mice induced by high fat[J/OL]. Science and Technology of Food Industry, 2021: 1−16 [2021-10-28]. https://doi.org/10.13386/j.issn1002-0306.2021050264.
    [10]
    JANG H I, DO G-M, LEE H M, et al. Schisandra chinensis Baillon regulates the gene expression of phase II antioxidant/detoxifying enzymes in hepatic damage induced rats[J]. Nutrition Research Practice,2014,8(3):272−277. doi: 10.4162/nrp.2014.8.3.272
    [11]
    XU W, ZHOU Q, YIN J J, et al. Anti-diabetic effects of polysaccharides from Talinum triangulare in streptozotocin(STZ)-induced type 2 diabetic male mice[J]. International Journal of Biological Macromolecules,2015,72:575−579. doi: 10.1016/j.ijbiomac.2014.09.011
    [12]
    SONG F J, ZENG K W, CHEN J F, et al. Extract of fructus Schisandrae chinensis inhibits neuroinflammation mediator production from Microglia via NF-κB and MAPK pathways[J]. Chinese Journal of Integrative Medicine (English Edition),2019,25(2):131−138.
    [13]
    PARK H J, LEE S-J, SONG Y, et al. Schisandra chinensis prevents alcohol-induced fatty liver disease in rats[J]. Journal of Medicinal Food,2014,17(1):103−110. doi: 10.1089/jmf.2013.2849
    [14]
    邵士凤. 五味子深加工产品研究进展[J]. 轻工科技,2021,37(10):1−2,11. [SHAO S F. Research progress of Schisandra chinensis deep processing products[J]. Light Industry Science and Technology,2021,37(10):1−2,11.
    [15]
    CHUN J N, CHO M, SO I, et al. The protective effects of Schisandra chinensis fruit extract and its lignans against cardiovascular disease: A review of the molecular mechanisms[J]. Fitoterapia,2014,97:224−233. doi: 10.1016/j.fitote.2014.06.014
    [16]
    CUI L, ZHU W, YANG Z, et al. Evidence of anti-inflammatory activity of schizandrin A in animal models of acute inflammation[J]. Naunyn Schmiedebergs Arch Pharmacol,2020,393(11):2221−2229. doi: 10.1007/s00210-020-01837-x
    [17]
    尚小莹, 陈茂彬. 五味子果醋饮料的研制[J]. 中国调味品,2013,38(11):36−39. [SHANG X Y, CHEN M B. Development of Schisandra chinensis fruit vinegar beverage[J]. China Condiments,2013,38(11):36−39. doi: 10.3969/j.issn.1000-9973.2013.11.010
    [18]
    尹乐斌, 周娟, 李立才, 等. 石榴五味子保健酒发酵工艺优化及抗氧化活性研究[J]. 食品与机械,2019,35(3):208−214. [YIN L B, ZHOU J, LI L C, et al. Fermentation process optimization and antioxidant activity of Punica granatum and Schisandra chinensis health wine[J]. Food & Machinery,2019,35(3):208−214.
    [19]
    李安, 章绍凡, 周戴维, 等. 桑椹五味子复合功能性酸奶的研制[J]. 食品工业科技,2017,38(10):42−47. [LI A, ZHANG S F, ZHOU D W, et al. Preparation of Fructus mori and Schisandra chinensis compound functional yogurt[J]. Food Industry Science,2017,38(10):42−47.
    [20]
    张宝香, 秦红艳, 张庆田, 等. 玫瑰茄五味子复合果汁饮料研究[J]. 特产研究,2015,37(3):30−33. [ZHANG B X, QIN H Y, ZHANG Q T, et al. Study on Hibiscus sabdariffa and Schisandra chinensi compound fruit juice beverage[J]. Specialty Research,2015,37(3):30−33. doi: 10.3969/j.issn.1001-4721.2015.03.007
    [21]
    王平, 周海燕, 曾万钧, 等. 促睡眠酸乳的制备及其功能评价[J]. 中国乳品工业,2020,48(4):55−59. [WANF P, ZHOU H Y, ZENG W J, et al. Preparation and functional evaluation of sleep-promoting yogurt[J]. China Dairy Industry,2020,48(4):55−59.
    [22]
    LI F, ZHANG T, SUN H, et al. A new nortriterpenoid, a sesquiterpene and hepatoprotective lignans isolated from the fruit of Schisandra chinensis[J]. Molecules,2017,22(11):1931. doi: 10.3390/molecules22111931
    [23]
    刘松, 赵振宇, 曾稳稳, 等. UPLC-Q-Orbitrap HRMS测定白酒接触塑料制品中21种双酚类及其衍生物[J]. 食品工业科技,2021,42(9):263−269. [LIU S, ZHAO Z Y, ZENG W W, et al. UPLC-Q-Orbitrap HRMS determination of 21 bisphenols and their derivatives in liquor contact plastic products[J]. Food Industry Science and Technology,2021,42(9):263−269.
    [24]
    张梦雅, 左莉华, 周霖, 等. 基于UPLC-Q-Orbitrap HRMS益智仁中倍半萜类物质的分析与鉴定[J]. 中草药,2020,51(24):6168−6177. [ZHANG M Y, ZUO L H, ZHOU L, et al. Analysis and identification of sesquiterpenoids in sharpleaf galangal based on UPLC-Q-Orbitrap HRMS[J]. Chinese Herbal Medicine,2020,51(24):6168−6177. doi: 10.7501/j.issn.0253-2670.2020.24.005
    [25]
    ZHOU Y, WANG C, KOU J, et al. Chrysanthemi Flos extract alleviated acetaminophen-induced rat liver injury via inhibiting oxidative stress and apoptosis based on network pharmacology analysis[J]. Pharmaceutical Biology,2021,59(1):1378−1387. doi: 10.1080/13880209.2021.1986077
    [26]
    GUO K, WANG T, LUO E, et al. Use of network pharmacology and molecular docking technology to analyze the mechanism of action of Velvet Antler in the treatment of postmenopausal osteoporosis[J]. Evidence-Based Complementary and Alternative Medicin,2021,2021:7144529.
    [27]
    JIAO X, LIU H, LU Q, et al. Study on the mechanism of Prunella vulgaris L on diabetes mellitus complicated with hypertension based on network pharmacology and molecular docking analyses[J]. Journal of Diabetes Research,2021,2021:9949302.
    [28]
    ZHANG L, LING Z, HU Z, et al. Huanglianjiedu decoction as an effective treatment for oral squamous cell carcinoma based on network pharmacology and experimental validation[J]. Cancer Cell International,2021,21(1):553. doi: 10.1186/s12935-021-02201-6
    [29]
    AN W, HUANG Y, CHEN S, et al. Mechanisms of Rhizoma Coptidis against type 2 diabetes mellitus explored by network pharmacology combined with molecular docking and experimental validation[J]. Scientific Reports,2021,11(1):20849. doi: 10.1038/s41598-021-00293-8
    [30]
    LIN W Z, CHEN Y H. Determination of total nitrogen and amino acid content of Bei Wuweizi[J]. Specialty Research,1998,4(1):35−36.
    [31]
    杨文潮, 杨洁, 段金廒, 等. 南五味子中氨基酸类成分分析评价[J]. 中药材,2016,39(2):342−347. [YANG W C, YANG J, DUAN J A, et al. Analysis and evaluation of amino acids in Nan Wuweizi[J]. Chinese Materia Medica,2016,39(2):342−347.
    [32]
    黄文倩. 五味子“五味”物质基础研究[D]. 北京: 首都医科大学, 2015

    HUANG WQ. Research on the material basis of the "five flavors" of Schisandra chinensis [D]. Beijing: Capital Medical University, 2015.
    [33]
    白文宇, 王厚恩, 王冰瑶, 等. 五味子化学成分及其药理作用研究进展[J]. 中成药,2019,41(9):2177−2183. [BAI W Y, WANG H E, WANG B Y, et al. Research progress on the chemical constituents of Schisandra chinensis and its pharmacological effects[J]. Chinese Patent Medicine,2019,41(9):2177−2183. doi: 10.3969/j.issn.1001-1528.2019.09.033
    [34]
    卞振华, 金舒, 周春刚, 等. 五味子对耐甲氧西林金黄色葡萄球菌体外抑菌活性部位的筛选和UP-LC-QTOF-MS/MS分析活性组分化学成分[J]. 中国医院药学杂志,2018,38(19):2008−2012. [BIAN Z H, JIN S, ZHOU C G, et al. Screening of antibacterial active sites of Schisandra chinensis on methicillin-resistant Staphylococcus aureus in vitro and UP-LC-QTOF-MS/MS analysis of active components of chemical components[J]. Chinese Journal of Hospital Pharmacy,2018,38(19):2008−2012.
    [35]
    金银萍, 艾军, 王振兴, 等. 不同种质资源五味子藤茎酚酸类成分的含量测定[J]. 中药材,2018,41(2):322−324. [JIN Y P, AI J, WANG Z X, et al. Determination of phenolic acids in different germplasm resources of Schisandra chinensis[J]. Chinese Materia Medica,2018,41(2):322−324.
    [36]
    MOCAN A, SCHAFBERG M, CRISAN G, et al. Determination of lignans and phenolic components of Schisandra chinensis (Turcz.) Baill. using HPLC-ESI-ToF-MS and HPLC-online TEAC: Contribution of individual components to overall antioxidant activity and comparison with traditional[J]. Journal of Functional Foods,2016,24:579−594. doi: 10.1016/j.jff.2016.05.007
    [37]
    李伟, 刘亚丽, 宋永贵, 等. UPLC-Q-TOF-MSE结合OPLS-DA模式快速鉴定南, 北五味子化学成分与识别差异标志物[J]. 中草药,2015(15):2212−2218. [LI W, LIU Y L, SONG Y G, et al. UPLC-Q-TOF-MSE combined with OPLS-DA model for rapid identification of chemical constituents of the Nan Wuweizi and Bei Wuweiz and identification of differential markers[J]. Chinese Herbal Medicine,2015(15):2212−2218. doi: 10.7501/j.issn.0253-2670.2015.15.006
    [38]
    WIJARNPREECHA K, LOU S, WATTHANASUNTORN K, et al. Small intestinal bacterial overgrowth and nonalcoholic fatty liver disease: A systematic review and meta-analysis[J]. European Journal of Gastroenterology Hepatology,2020,32(5):601−608. doi: 10.1097/MEG.0000000000001541
    [39]
    LINDENMEYER C C, MCCULLOUGH A J. The natural history of nonalcoholic fatty liver disease—An evolving view[J]. Clinics in Liver Disease,2018,22(1):11−21. doi: 10.1016/j.cld.2017.08.003
    [40]
    谢萍, 周新喜, 张琴. 非酒精性脂肪肝的发病机制和治疗[J]. 中西医结合学报,2010,8(3):201−209. [XIE P, ZHOU X X, ZHANG Q. Pathogenesis and treatment of non-alcoholic fatty liver[J]. Chinese Journal of Integrative Medicine,2010,8(3):201−209. doi: 10.3736/jcim20100301
    [41]
    WANG H, CHE J, CUI K, et al. Schisantherin A ameliorates liver fibrosis through TGF-β1 mediated activation of TAK1/MAPK and NF-κB pathways in vitro and in vivo[J]. Phytomedicine,2021,88:153609. doi: 10.1016/j.phymed.2021.153609
    [42]
    JEONG M J, KIM S R, JUNG U J. Schizandrin A supplementation improves nonalcoholic fatty liver disease in mice fed a high-fat and high-cholesterol diet[J]. Nutrition Research,2019,64:64−71. doi: 10.1016/j.nutres.2019.01.001
    [43]
    LU Y, SHAO M, XIANG H, et al. Integrative transcriptomics and metabolomics explore the mechanism of kaempferol on improving nonalcoholic steatohepatitis[J]. Food Function,2020,11(11):10058−10069. doi: 10.1039/D0FO02123G
    [44]
    ZHU X, XIONG T, LIU P, et al. Quercetin ameliorates HFD-induced NAFLD by promoting hepatic VLDL assembly and lipophagy via the IRE1a/XBP1s pathway[J]. Food Chemical Toxicology,2018,114:52−60. doi: 10.1016/j.fct.2018.02.019
    [45]
    尉捷, 董艳敏, 王辉, 等. 五味子乙素对NAFLD细胞模型肝脂质堆积, 内质网应激信号通路蛋白及脂肪酸合成相关基因表达的影响[J]. 中国中医药信息杂志,2019,26(12):45−49. [WEI J, DONG Y M, WANG H, et al. Effects of schisandrin B on liver lipid accumulation, endoplasmic reticulum stress signaling pathway protein and fatty acid synthesis-related gene expression in NAFLD cell model[J]. China Journal of Information on Traditional Chinese Medicine,2019,26(12):45−49. doi: 10.3969/j.issn.1005-5304.2019.12.011
    [46]
    YANG H, YANG T, HENG C, et al. Quercetin improves nonalcoholic fatty liver by ameliorating inflammation, oxidative stress, and lipid metabolism in db/db mice[J]. Phytotherapy Research,2019,33(12):3140−3152. doi: 10.1002/ptr.6486
    [47]
    YU T, ZHENG E, LI Y, et al. Src-mediated Tyr353 phosphorylation of IP3R1 promotes its stability and causes apoptosis in palmitic acid-treated hepatocytes[J]. Experimental Cell Research,2021,399(2):112438. doi: 10.1016/j.yexcr.2020.112438
    [48]
    SCHEVING L A, ZHANG X, THREADGILL D W, et al. Hepatocyte ERBB3 and EGFR are required for maximal CCl4-induced liver fibrosis[J]. American Journal of Physiology Gastrointestinal Liver Physiology,2016,311(5):G807−G816. doi: 10.1152/ajpgi.00423.2015
    [49]
    FUCHS B C, HOSHIDA Y, FUJII T, et al. Epidermal growth factor receptor inhibition attenuates liver fibrosis and development of hepatocellular carcinoma[J]. Hepatology,2014,59(4):1577−1590. doi: 10.1002/hep.26898
    [50]
    BHUSHAN B, BANERJEE S, PARANJPE S, et al. Pharmacologic inhibition of epidermal growth factor receptor suppresses nonalcoholic fatty liver disease in a murine fast-food diet model[J]. Hepatology,2019,70(5):1546−1563. doi: 10.1002/hep.30696
    [51]
    COULON S, FRANCQUE S, COLLE I, et al. Evaluation of inflammatory and angiogenic factors in patients with non-alcoholic fatty liver disease[J]. Cytokine,2012,59(2):442−449. doi: 10.1016/j.cyto.2012.05.001
    [52]
    WU W, LI W, WEI J, et al. Chronic intermittent hypoxia accelerates liver fibrosis in rats with combined hypoxia and nonalcoholic steatohepatitis via angiogenesis rather than endoplasmic reticulum stress[J]. Acta Biochimica et Biophysica Sinica,2019,51(2):159−167. doi: 10.1093/abbs/gmy169
    [53]
    LONARDO A, MANTOVANI A, LUGARI S, et al. NAFLD in some common endocrine diseases: Prevalence, pathophysiology, and principles of diagnosis and management[J]. International Journal of Molecular Sciences,2019,20(11):2841. doi: 10.3390/ijms20112841
    [54]
    RADAELLI M G, MARTUCCI F, PERRA S, et al. NAFLD/NASH in patients with type 2 diabetes and related treatment options[J]. Journal of Endocrinological Investigation,2018,41(5):509−521. doi: 10.1007/s40618-017-0799-3

Catalog

    Article Metrics

    Article views (1057) PDF downloads (80) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return