YU Kejin, ZHANG Ning, WANG Shengnan, et al. Optimization of Preparation Process and Properties Analysis of Soy Hull Nanocellulose Hydrogel[J]. Science and Technology of Food Industry, 2024, 45(15): 203−212. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023080316.
Citation: YU Kejin, ZHANG Ning, WANG Shengnan, et al. Optimization of Preparation Process and Properties Analysis of Soy Hull Nanocellulose Hydrogel[J]. Science and Technology of Food Industry, 2024, 45(15): 203−212. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023080316.

Optimization of Preparation Process and Properties Analysis of Soy Hull Nanocellulose Hydrogel

More Information
  • Received Date: September 03, 2023
  • Available Online: June 04, 2024
  • The preparation process of soy hull nanocellulose hydrogel was optimized by Box-Behnken response surface. The structure and properties of soy hull nanocellulose hydrogel were studied. On the basis of single factor experiment, the preparation process of soy hull nanocellulose hydrogel was optimized through response surface with three factors and three levels when the maximum stress was used as the index. The structure and properties of soy hull nanocellulose hydrogel were characterized by Fourier transform infrared spectroscopy, X ray polycrystalline diffractometer, scanning electron microscopy, UV spectrophotometer, etc. The optimal process parameters were as follows: gelling temperature 191 ℃, freezing time 102 h, CaCl2 concentration 7%. Under this condition, the actual maximum stress of soy hull nanocellulose hydrogel was 84.11 kPa, which was close to the predicted value of 83.7 kPa. The nanocellulose of soy hull/sodium alginate/CaCl2 (SCNFs/SA/CaCl2) hydrogel showed uniform 3D network structure, excellent tensile performance (elongation at break was 220%), mechanical strength (83.97 kPa), transmittance (82%), and electrical conductivity (1.58 S/cm). The SCNFs/SA/CaCl2 hydrogel also had excellent mechanical strength and fatigue resistance after five cycles of stretching, so the service life of hydrogel was increased. This study provides a new method for preparing a tough, transparent, conductive and fatigue-resistant nanocellulose hydrogel.
  • [1]
    SHEN D, XIAO R, GU S, et al. The pyrolytic behavior of cellulose in lignocellulosic biomass:A review[J]. RSC Advances,2011,1(9):1641−1660. doi: 10.1039/c1ra00534k
    [2]
    LI D, AO K, WANG Q, et al. Preparation of Pd/bacterial cellulose hybrid nanofibers for dopamine detection[J]. Molecules,2016,21(5):618. doi: 10.3390/molecules21050618
    [3]
    de SOUZA LIMA M M, BORSALI R. Rodlike cellulose microcrystals:Structure, properties, and applications[J]. Macromolecular Rapid Communications,2004,25(7):771−787. doi: 10.1002/marc.200300268
    [4]
    YE D, MONTANE D, FARRIOL X. Preparation and characterisation of methylcellulose from annual cardoon and juvenile eucalyptus[J]. Carbohydrate Polymers,2005,61(4):446−454. doi: 10.1016/j.carbpol.2005.06.013
    [5]
    叶代勇, 黄洪, 傅和青, 等. 纤维素化学研究进展[J]. 化工学报,2006,57(8):1782−1791. [YE Daiyong, HUANG Hong, FU Heqing, et al. Advances in cellulose chemistry[J]. Journal of Chemical Industry and Engineering,2006,57(8):1782−1791.] doi: 10.3321/j.issn:0438-1157.2006.08.010

    YE Daiyong, HUANG Hong, FU Heqing, et al. Advances in cellulose chemistry[J]. Journal of Chemical Industry and Engineering, 2006, 57(8): 1782−1791. doi: 10.3321/j.issn:0438-1157.2006.08.010
    [6]
    ŠTURCOVA A, DAVIES G R, EICHHORN S J. Elastic modulus and stress-transfer properties of tunicate cellulose whiskers[J]. Biomacromolecules,2005,6(2):1055−1061. doi: 10.1021/bm049291k
    [7]
    ORTS W J, SHEY J, IMAM S H, et al. Application of cellulose microfibrils in polymer nanocomposites[J]. Journal of Polymers and the Environment,2005,13:301−306. doi: 10.1007/s10924-005-5514-3
    [8]
    MILLON L E, WAN W K. The polyvinyl alcohol-bacterial cellulose system as a new nanocomposite for biomedical applications[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials:An Official Journal of the Society for Biomaterials, the Japanese Society for Biomaterials, and the Australian Society for Biomaterials and the Korean Society for Biomaterials,2006,79(2):245−253.
    [9]
    WANG B, DAI L, HUNTER L A, et al. A multifunctional nanocellulose-based hydrogel for strain sensing and self-powering applications[J]. Carbohydrate Polymers,2021,268:118210. doi: 10.1016/j.carbpol.2021.118210
    [10]
    WEI P, YU X, FANG Y, et al. Strong and tough cellulose hydrogels via solution annealing and dual cross-linking[J]. Small,2023:2301204.
    [11]
    ZHANG J, LIU T, LIU Z, et al. Facile fabrication of tough photocrosslinked polyvinyl alcohol hydrogels with cellulose nanofibrils reinforcement[J]. Polymer,2019,173:103−109. doi: 10.1016/j.polymer.2019.04.028
    [12]
    SPOLJARIC S, SALMINEN A, LUONG N D, et al. Stable, self-healing hydrogels from nanofibrillated cellulose, poly (vinyl alcohol) and borax via reversible crosslinking[J]. European Polymer Journal,2014,56:105−117. doi: 10.1016/j.eurpolymj.2014.03.009
    [13]
    LEE K Y, MOONEY D J. Alginate:Properties and biomedical applications[J]. Progress in Polymer Science,2012,37(1):106−126. doi: 10.1016/j.progpolymsci.2011.06.003
    [14]
    NO Y J, CASTILHO M, RAMASWAMY Y, et al. Role of biomaterials and controlled architecture on tendon/ligament repair and regeneration[J]. Advanced Materials,2020,32(18):1904511. doi: 10.1002/adma.201904511
    [15]
    SUN F, LIN M, DONG Z, et al. Nanosilica-induced high mechanical strength of nanocomposite hydrogel for killing fluids[J]. Journal of Colloid and Interface Science,2015,458:45−52. doi: 10.1016/j.jcis.2015.07.006
    [16]
    王占红. 纳米纤维素/聚乳酸复合材料的制备、结构及性能研究[D]. 南京:南京航空航天大学, 2020. [WANG Zhanhong. Preparation, structure and properties of cellulose nanocrystals/polylactic acid composites[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2020.]

    WANG Zhanhong. Preparation, structure and properties of cellulose nanocrystals/polylactic acid composites[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020.
    [17]
    ZHAO Y, ZHOU S, XIA X, et al. High-performance carboxymethyl cellulose-based hydrogel film for food packaging and preservation system[J]. International Journal of Biological Macromolecules,2022,223:1126−1137. doi: 10.1016/j.ijbiomac.2022.11.102
    [18]
    LIU Y, WANG R, WANG D, et al. Development of a food packaging antibacterial hydrogel based on gelatin, chitosan, and 3-phenyllactic acid for the shelf-life extension of chilled chicken[J]. Food Hydrocolloids,2022,127:107546. doi: 10.1016/j.foodhyd.2022.107546
    [19]
    ZHANG Y, PU Y, JIANG H, et al. Improved sustained-release properties of ginger essential oil in a Pickering emulsion system incorporated in sodium alginate film and delayed postharvest senescence of mango fruits[J]. Food Chemistry,2024,435:137534. doi: 10.1016/j.foodchem.2023.137534
    [20]
    XIAO Z, HAN L, GU M, et al. Performance comparison of anthocyanin-based smart indicator films[J]. Food Packaging and Shelf Life,2023,40:101187. doi: 10.1016/j.fpsl.2023.101187
    [21]
    PIRAYESH H, PARK B D, KHANJANZADEH H, et al. Nanocellulose-based ammonia sensitive smart colorimetric hydrogels integrated with anthocyanins to monitor pork freshness[J]. Food Control,2023,147:109595. doi: 10.1016/j.foodcont.2022.109595
    [22]
    高春梅, 柳明珠, 吕少瑜, 等. 海藻酸钠水凝胶的制备及其在药物释放中的应用[J]. 化学进展,2013,25(6):1012. [GAO Chunmei, LIU Mingzhu, LÜ Shaoyu, et al. Preparation of sodium alginate hydrogel and its application in drug release[J]. Progress in Chemistry,2013,25(6):1012.] doi: 10.7536/PC120953

    GAO Chunmei, LIU Mingzhu, LÜ Shaoyu, et al. Preparation of sodium alginate hydrogel and its application in drug release[J]. Progress in Chemistry, 2013, 25(6): 1012. doi: 10.7536/PC120953
    [23]
    刘袖洞, 于炜婷, 王为, 等. 海藻酸钠和壳聚糖聚电解质微胶囊及其生物医学应用[J]. 化学进展,2008,20(1):126. [LIU Xiudong, YU Weiting, WANG Wei, et al. Polyelectrolyte microcapsules prepared by alginate and chitosan for biomedical application[J]. Progress in Chemistry,2008,20(1):126.]

    LIU Xiudong, YU Weiting, WANG Wei, et al. Polyelectrolyte microcapsules prepared by alginate and chitosan for biomedical application[J]. Progress in Chemistry, 2008, 20(1): 126.
    [24]
    刘欣, 金明远, 翟江丽. 超声复凝聚法制备海藻酸钠-明胶-维生素B1纳米胶囊[J]. 化学研究与应用,2023,35(4):943−947. [LIU Xin, JIN Mingyuan, ZHAI Jiangli. Preparation of sodium alginate gelatin vitamin B1 nanocapsules by ultrasonic coacervation[J]. Chamical Research and Application,2023,35(4):943−947.] doi: 10.3969/j.issn.1004-1656.2023.04.029

    LIU Xin, JIN Mingyuan, ZHAI Jiangli. Preparation of sodium alginate gelatin vitamin B1 nanocapsules by ultrasonic coacervation[J]. Chamical Research and Application, 2023, 35(4): 943−947. doi: 10.3969/j.issn.1004-1656.2023.04.029
    [25]
    马领兄. pH值对润滑分子缓释影响及壳聚糖-海藻酸钠多孔膜摩擦性能研究[J]. 江西化工,2023,39(2):58−65. [MA Lingxiong. Effect of pH value on slow release of lubricating molecules and tribological properties of chitosan-sodium alginate porous membrane[J]. Jiangxi Chemical Industry,2023,39(2):58−65.] doi: 10.3969/j.issn.1008-3103.2023.02.014

    MA Lingxiong. Effect of pH value on slow release of lubricating molecules and tribological properties of chitosan-sodium alginate porous membrane[J]. Jiangxi Chemical Industry, 2023, 39(2): 58−65. doi: 10.3969/j.issn.1008-3103.2023.02.014
    [26]
    钟启明, 张佳雨, 郭城, 等. 海藻酸钠水凝胶3D打印效果和流变特征及其相关性分析[J]. 食品工业科技,2023,44(23):21−28. [ZHONG Qiming, ZHANG Jiayu, GUO Cheng, et al. Correlation analysis of 3D printability and rheological properties of sodium alginate hydrogels[J]. Science and Technology of Food Industry,2023,44(23):21−28.]

    ZHONG Qiming, ZHANG Jiayu, GUO Cheng, et al. Correlation analysis of 3D printability and rheological properties of sodium alginate hydrogels[J]. Science and Technology of Food Industry, 2023, 44(23): 21−28.
    [27]
    杨青峰. 聚乙烯醇/海藻酸钠基复合水凝胶的制备及吸附性能研究[D]. 淮南:安徽理工大学, 2022. [YANG Qingfeng. Preparation and adsorption performance of polyvinyl alcohol/sodium alginate based composite hydrogels[D]. Huainan:Anhui University of Science and Technology, 2022.]

    YANG Qingfeng. Preparation and adsorption performance of polyvinyl alcohol/sodium alginate based composite hydrogels[D]. Huainan: Anhui University of Science and Technology, 2022.
    [28]
    杨继建, 和法莲, 张婷, 等. 纳米活性炭/海藻酸钠复合纤维的制备与性能[J]. 材料导报,2022,36(S2):523−527. [YANG Jijian, HE Falian, ZHANG Ting, et al. Preparation and characterization of activated carbon nanoparticles/sodium alginate composite fiber[J]. Materials Reports,2022,36(S2):523−527.]

    YANG Jijian, HE Falian, ZHANG Ting, et al. Preparation and characterization of activated carbon nanoparticles/sodium alginate composite fiber[J]. Materials Reports, 2022, 36(S2): 523−527.
    [29]
    王雨生, 赵敬松, 栾茜玉, 等. 钙源及海藻酸钠/多孔玉米淀粉配比对其凝胶特性的影响[J]. 粮油食品科技,2022,30(5):139−148. [WANG Yusheng, ZHAO Jingsong, LUAN Qianyu, et al. Effects of calcium source and sodium alginate to porous corn starch ratio on the characteristics of sodium alginate-porous starch complex gel[J]. Science and Technology of Cereals, Oils and Foods,2022,30(5):139−148.]

    WANG Yusheng, ZHAO Jingsong, LUAN Qianyu, et al. Effects of calcium source and sodium alginate to porous corn starch ratio on the characteristics of sodium alginate-porous starch complex gel[J]. Science and Technology of Cereals, Oils and Foods, 2022, 30(5): 139−148.
    [30]
    KUO C K, MA P X. Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering:Part 1. Structure, gelation rate and mechanical properties[J]. Biomaterials,2001,22(6):511−521. doi: 10.1016/S0142-9612(00)00201-5
    [31]
    DRURY J L, DENNIS R G, MOONEY D J. The tensile properties of alginate hydrogels[J]. Biomaterials,2004,25(16):3187−3199. doi: 10.1016/j.biomaterials.2003.10.002
    [32]
    于秋菊, 耿凤英, 张梦蝶. Box-Behnken 响应面法优化银杏酚酸提取工艺及其抗肿瘤活性的研究[J]. 化学研究与应用,2022,34(4):842−849. [YU Qiuju, GENG Fengying, ZHANG Mengdie. Box-Behnken response surface methodology for optimization of extraction technology of ginkgolic acid and antitumor activities[J]. Chemical Research and Application,2022,34(4):842−849.] doi: 10.3969/j.issn.1004-1656.2022.04.019

    YU Qiuju, GENG Fengying, ZHANG Mengdie. Box-Behnken response surface methodology for optimization of extraction technology of ginkgolic acid and antitumor activities[J]. Chemical Research and Application, 2022, 34(4): 842−849. doi: 10.3969/j.issn.1004-1656.2022.04.019
    [33]
    杨萍, 岳天义, 张萍, 等. 黑苦荞壳烘烤工艺条件优化与品质分析[J]. 西华大学学报(自然科学版),2022,41(4):72−81. [YANG Ping, YUE Tianyi, ZHANG Ping, et al. Optimization research and quality analysis of black tartary buckwheat husk roasting process conditions[J]. Journal of Xihua University(Natural Science Edition),2022,41(4):72−81.]

    YANG Ping, YUE Tianyi, ZHANG Ping, et al. Optimization research and quality analysis of black tartary buckwheat husk roasting process conditions[J]. Journal of Xihua University(Natural Science Edition), 2022, 41(4): 72−81.
    [34]
    WANG L, ZHANG X, XIA Y, et al. Cooking-inspired versatile design of an ultrastrong and tough polysaccharide hydrogel through programmed supramolecular interactions[J]. Advanced Materials,2019,31(41):1902381. doi: 10.1002/adma.201902381
    [35]
    RAMAMOORTHY M, RAJIV S. In-vitro release of fragrant l-carvone from electrospun poly (ϵ-caprolactone)/wheat cellulose scaffold[J]. Carbohydrate Polymers,2015,133:328−336. doi: 10.1016/j.carbpol.2015.07.015
    [36]
    CHEN L, HUANG W, HAO M, et al. Rapid and ultrasensitive activity detection of α-amylase based on γ-cyclodextrin crosslinked metal-organic framework nanozyme[J]. International Journal of Biological Macromolecules, 2023,242:124881.
    [37]
    WANG S, YU L, WANG S, et al. Strong, tough, ionic conductive, and freezing-tolerant all-natural hydrogel enabled by cellulose-bentonite coordination interactions[J]. Nature Communications,2022,13(1):3408. doi: 10.1038/s41467-022-30224-8
    [38]
    OHM Y, PAN C, FORD M J, et al. An electrically conductive silver-polyacrylamide-alginate hydrogel composite for soft electronics[J]. Nature Electronics,2021,4(3):185−192. doi: 10.1038/s41928-021-00545-5
    [39]
    YUE L, ZHANG X, WANG Y, et al. Cellulose nanocomposite modified conductive self-healing hydrogel with enhanced mechanical property[J]. European Polymer Journal,2021,146:110258. doi: 10.1016/j.eurpolymj.2020.110258
    [40]
    ZHU Y, GUO Y, CAO K, et al. A general strategy for synthesizing biomacromolecular ionogel membranes via solvent-induced self-assembly[J]. Nature Synthesis, 2023, 2(9):864−872.
    [41]
    杨金艳. 壳聚糖水凝胶的制备及其对重金属的吸附研究[D]. 成都:成都理工大学, 2016. [YANG Jinyan. Preparation of novel chitosan hydrogel and its adsorption properties for heavy metals[D]. Chengdu:Chengdu University of Technology, 2016.]

    YANG Jinyan. Preparation of novel chitosan hydrogel and its adsorption properties for heavy metals[D]. Chengdu: Chengdu University of Technology, 2016.
    [42]
    CHEN Y, REN H, RONG D, et al. Stretchable all-in-one supercapacitor enabled by poly (ethylene glycol)-based hydrogel electrolyte with low-temperature tolerance[J]. Polymer,2023,270:125796. doi: 10.1016/j.polymer.2023.125796
    [43]
    KWEON O Y, SAMANTA S K, WON Y, et al. Stretchable and self-healable conductive hydrogels for wearable multimodal touch sensors with thermoresponsive behavior[J]. ACS Applied Materials & Interfaces,2019,11(29):26134−26143.
    [44]
    ZHOU L N, SONG W Z, SUN D J, et al. Transparent, stretchable, and recyclable triboelectric nanogenerator based on an acid-and alkali-resistant hydrogel[J]. ACS Applied Electronic Materials,2022,5(1):216−226.
    [45]
    JIANG X, XIANG N, ZHANG H, et al. Preparation and characterization of poly(vinyl alcohol)/sodium alginate hydrogel with high toughness and electric conductivity[J]. Carbohydrate Polymers,2018,186:377−383. doi: 10.1016/j.carbpol.2018.01.061
    [46]
    HAN Y, SUN L, WEN C, et al. Flexible conductive silk-PPy hydrogel toward wearable electronic strain sensors[J]. Biomedical Materials,2022,17(2):024107. doi: 10.1088/1748-605X/ac5416
  • Related Articles

    [1]WANG Xueli, LEI Chao, SHEN Kaiwei, CHENG Yanwei, LIU Xueting, LI Zhen, YU Lu. Degradation Performance of Biogenic Amines in Fermented Food by Lactobacillus casei FV006[J]. Science and Technology of Food Industry, 2023, 44(14): 137-144. DOI: 10.13386/j.issn1002-0306.2022090136
    [2]WANG Xiaojie, MENG Fanqiang, ZHOU Libang, LU Zhaoxin. Optimization of Brevibacillin Fermentation Medium with Brevibacillus laterosporus by Response Surface Methodology[J]. Science and Technology of Food Industry, 2022, 43(4): 153-160. DOI: 10.13386/j.issn1002-0306.2021070335
    [3]WU Jun-lin, BAI Jian-ling, MO Shu-ping, ZHANG Ju-mei. Optimization of fermentation medium of lactic acid bacteria cultured in high concentration[J]. Science and Technology of Food Industry, 2018, 39(9): 96-101. DOI: 10.13386/j.issn1002-0306.2018.09.017
    [4]ZHU Yun-peng, TIAN You-ming, HONG Qing-lin, NI Hui, XIAO An-feng, YANG Qiu-ming. Optimization of medium composition and culture conditions for Aspergillus tubingensis production[J]. Science and Technology of Food Industry, 2018, 39(3): 82-86,91. DOI: 10.13386/j.issn1002-0306.2018.03.017
    [5]HU Yan-xin, LIU Xiao-li, WANG Ying, DONG Ming-sheng, ZHOU Jian-zhong. Optimization on fermentation conditions and medium for bacteriocin produced by Lactobacillus farcimini[J]. Science and Technology of Food Industry, 2016, (10): 255-259. DOI: 10.13386/j.issn1002-0306.2016.10.043
    [6]WANG Can, ZHANG Wei, ZHANG Ming-liang, HUANG Jian-zhong. Optimization of Schizochytrium sp. FJU-512 fermentation medium producing DHA[J]. Science and Technology of Food Industry, 2015, (04): 171-174. DOI: 10.13386/j.issn1002-0306.2015.04.029
    [7]DONG Ting, ZHOU Zhi-jiang, HAN Ye. Optimization of fermentation medium and fermentation conditions for Pediococcus acidilactici PA003[J]. Science and Technology of Food Industry, 2014, (14): 192-196. DOI: 10.13386/j.issn1002-0306.2014.14.034
    [8]LIU Ying-ying, LIU Ying, ZHANG Guang, SUN Bing-yu, WANG Jin-feng, SHI Yan-guo. Optimum fermentation medium of high-yielding neutral protease of mucor[J]. Science and Technology of Food Industry, 2014, (06): 166-170. DOI: 10.13386/j.issn1002-0306.2014.06.032
    [9]AN Jun-ying, LIU Ying, ZHU Wen-juan, HU Xue-qiong, YE Li-zhen. Optimization of fermentation medium of Bacillus amyloliquefaciens ZJHD-06 by response surface methodology[J]. Science and Technology of Food Industry, 2014, (01): 191-195. DOI: 10.13386/j.issn1002-0306.2014.01.031
    [10]Optimization of solid state fermentation medium to produce β-galactosidase by Aspergillus oryzae[J]. Science and Technology of Food Industry, 2013, (08): 232-235. DOI: 10.13386/j.issn1002-0306.2013.08.033
  • Other Related Supplements

  • Cited by

    Periodical cited type(1)

    1. 谢雨佳,彭小杰,李明逸,李政,王娟,肖珊珊,张少辉. 乳清蛋白源抗真菌多肽的制备工艺优化. 中国乳品工业. 2024(06): 59-64 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (105) PDF downloads (27) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return