Citation: | YU Kejin, ZHANG Ning, WANG Shengnan, et al. Optimization of Preparation Process and Properties Analysis of Soy Hull Nanocellulose Hydrogel[J]. Science and Technology of Food Industry, 2024, 45(15): 203−212. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023080316. |
[1] |
SHEN D, XIAO R, GU S, et al. The pyrolytic behavior of cellulose in lignocellulosic biomass:A review[J]. RSC Advances,2011,1(9):1641−1660. doi: 10.1039/c1ra00534k
|
[2] |
LI D, AO K, WANG Q, et al. Preparation of Pd/bacterial cellulose hybrid nanofibers for dopamine detection[J]. Molecules,2016,21(5):618. doi: 10.3390/molecules21050618
|
[3] |
de SOUZA LIMA M M, BORSALI R. Rodlike cellulose microcrystals:Structure, properties, and applications[J]. Macromolecular Rapid Communications,2004,25(7):771−787. doi: 10.1002/marc.200300268
|
[4] |
YE D, MONTANE D, FARRIOL X. Preparation and characterisation of methylcellulose from annual cardoon and juvenile eucalyptus[J]. Carbohydrate Polymers,2005,61(4):446−454. doi: 10.1016/j.carbpol.2005.06.013
|
[5] |
叶代勇, 黄洪, 傅和青, 等. 纤维素化学研究进展[J]. 化工学报,2006,57(8):1782−1791. [YE Daiyong, HUANG Hong, FU Heqing, et al. Advances in cellulose chemistry[J]. Journal of Chemical Industry and Engineering,2006,57(8):1782−1791.] doi: 10.3321/j.issn:0438-1157.2006.08.010
YE Daiyong, HUANG Hong, FU Heqing, et al. Advances in cellulose chemistry[J]. Journal of Chemical Industry and Engineering, 2006, 57(8): 1782−1791. doi: 10.3321/j.issn:0438-1157.2006.08.010
|
[6] |
ŠTURCOVA A, DAVIES G R, EICHHORN S J. Elastic modulus and stress-transfer properties of tunicate cellulose whiskers[J]. Biomacromolecules,2005,6(2):1055−1061. doi: 10.1021/bm049291k
|
[7] |
ORTS W J, SHEY J, IMAM S H, et al. Application of cellulose microfibrils in polymer nanocomposites[J]. Journal of Polymers and the Environment,2005,13:301−306. doi: 10.1007/s10924-005-5514-3
|
[8] |
MILLON L E, WAN W K. The polyvinyl alcohol-bacterial cellulose system as a new nanocomposite for biomedical applications[J]. Journal of Biomedical Materials Research Part B:Applied Biomaterials:An Official Journal of the Society for Biomaterials, the Japanese Society for Biomaterials, and the Australian Society for Biomaterials and the Korean Society for Biomaterials,2006,79(2):245−253.
|
[9] |
WANG B, DAI L, HUNTER L A, et al. A multifunctional nanocellulose-based hydrogel for strain sensing and self-powering applications[J]. Carbohydrate Polymers,2021,268:118210. doi: 10.1016/j.carbpol.2021.118210
|
[10] |
WEI P, YU X, FANG Y, et al. Strong and tough cellulose hydrogels via solution annealing and dual cross-linking[J]. Small,2023:2301204.
|
[11] |
ZHANG J, LIU T, LIU Z, et al. Facile fabrication of tough photocrosslinked polyvinyl alcohol hydrogels with cellulose nanofibrils reinforcement[J]. Polymer,2019,173:103−109. doi: 10.1016/j.polymer.2019.04.028
|
[12] |
SPOLJARIC S, SALMINEN A, LUONG N D, et al. Stable, self-healing hydrogels from nanofibrillated cellulose, poly (vinyl alcohol) and borax via reversible crosslinking[J]. European Polymer Journal,2014,56:105−117. doi: 10.1016/j.eurpolymj.2014.03.009
|
[13] |
LEE K Y, MOONEY D J. Alginate:Properties and biomedical applications[J]. Progress in Polymer Science,2012,37(1):106−126. doi: 10.1016/j.progpolymsci.2011.06.003
|
[14] |
NO Y J, CASTILHO M, RAMASWAMY Y, et al. Role of biomaterials and controlled architecture on tendon/ligament repair and regeneration[J]. Advanced Materials,2020,32(18):1904511. doi: 10.1002/adma.201904511
|
[15] |
SUN F, LIN M, DONG Z, et al. Nanosilica-induced high mechanical strength of nanocomposite hydrogel for killing fluids[J]. Journal of Colloid and Interface Science,2015,458:45−52. doi: 10.1016/j.jcis.2015.07.006
|
[16] |
王占红. 纳米纤维素/聚乳酸复合材料的制备、结构及性能研究[D]. 南京:南京航空航天大学, 2020. [WANG Zhanhong. Preparation, structure and properties of cellulose nanocrystals/polylactic acid composites[D]. Nanjing:Nanjing University of Aeronautics and Astronautics, 2020.]
WANG Zhanhong. Preparation, structure and properties of cellulose nanocrystals/polylactic acid composites[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2020.
|
[17] |
ZHAO Y, ZHOU S, XIA X, et al. High-performance carboxymethyl cellulose-based hydrogel film for food packaging and preservation system[J]. International Journal of Biological Macromolecules,2022,223:1126−1137. doi: 10.1016/j.ijbiomac.2022.11.102
|
[18] |
LIU Y, WANG R, WANG D, et al. Development of a food packaging antibacterial hydrogel based on gelatin, chitosan, and 3-phenyllactic acid for the shelf-life extension of chilled chicken[J]. Food Hydrocolloids,2022,127:107546. doi: 10.1016/j.foodhyd.2022.107546
|
[19] |
ZHANG Y, PU Y, JIANG H, et al. Improved sustained-release properties of ginger essential oil in a Pickering emulsion system incorporated in sodium alginate film and delayed postharvest senescence of mango fruits[J]. Food Chemistry,2024,435:137534. doi: 10.1016/j.foodchem.2023.137534
|
[20] |
XIAO Z, HAN L, GU M, et al. Performance comparison of anthocyanin-based smart indicator films[J]. Food Packaging and Shelf Life,2023,40:101187. doi: 10.1016/j.fpsl.2023.101187
|
[21] |
PIRAYESH H, PARK B D, KHANJANZADEH H, et al. Nanocellulose-based ammonia sensitive smart colorimetric hydrogels integrated with anthocyanins to monitor pork freshness[J]. Food Control,2023,147:109595. doi: 10.1016/j.foodcont.2022.109595
|
[22] |
高春梅, 柳明珠, 吕少瑜, 等. 海藻酸钠水凝胶的制备及其在药物释放中的应用[J]. 化学进展,2013,25(6):1012. [GAO Chunmei, LIU Mingzhu, LÜ Shaoyu, et al. Preparation of sodium alginate hydrogel and its application in drug release[J]. Progress in Chemistry,2013,25(6):1012.] doi: 10.7536/PC120953
GAO Chunmei, LIU Mingzhu, LÜ Shaoyu, et al. Preparation of sodium alginate hydrogel and its application in drug release[J]. Progress in Chemistry, 2013, 25(6): 1012. doi: 10.7536/PC120953
|
[23] |
刘袖洞, 于炜婷, 王为, 等. 海藻酸钠和壳聚糖聚电解质微胶囊及其生物医学应用[J]. 化学进展,2008,20(1):126. [LIU Xiudong, YU Weiting, WANG Wei, et al. Polyelectrolyte microcapsules prepared by alginate and chitosan for biomedical application[J]. Progress in Chemistry,2008,20(1):126.]
LIU Xiudong, YU Weiting, WANG Wei, et al. Polyelectrolyte microcapsules prepared by alginate and chitosan for biomedical application[J]. Progress in Chemistry, 2008, 20(1): 126.
|
[24] |
刘欣, 金明远, 翟江丽. 超声复凝聚法制备海藻酸钠-明胶-维生素B1纳米胶囊[J]. 化学研究与应用,2023,35(4):943−947. [LIU Xin, JIN Mingyuan, ZHAI Jiangli. Preparation of sodium alginate gelatin vitamin B1 nanocapsules by ultrasonic coacervation[J]. Chamical Research and Application,2023,35(4):943−947.] doi: 10.3969/j.issn.1004-1656.2023.04.029
LIU Xin, JIN Mingyuan, ZHAI Jiangli. Preparation of sodium alginate gelatin vitamin B1 nanocapsules by ultrasonic coacervation[J]. Chamical Research and Application, 2023, 35(4): 943−947. doi: 10.3969/j.issn.1004-1656.2023.04.029
|
[25] |
马领兄. pH值对润滑分子缓释影响及壳聚糖-海藻酸钠多孔膜摩擦性能研究[J]. 江西化工,2023,39(2):58−65. [MA Lingxiong. Effect of pH value on slow release of lubricating molecules and tribological properties of chitosan-sodium alginate porous membrane[J]. Jiangxi Chemical Industry,2023,39(2):58−65.] doi: 10.3969/j.issn.1008-3103.2023.02.014
MA Lingxiong. Effect of pH value on slow release of lubricating molecules and tribological properties of chitosan-sodium alginate porous membrane[J]. Jiangxi Chemical Industry, 2023, 39(2): 58−65. doi: 10.3969/j.issn.1008-3103.2023.02.014
|
[26] |
钟启明, 张佳雨, 郭城, 等. 海藻酸钠水凝胶3D打印效果和流变特征及其相关性分析[J]. 食品工业科技,2023,44(23):21−28. [ZHONG Qiming, ZHANG Jiayu, GUO Cheng, et al. Correlation analysis of 3D printability and rheological properties of sodium alginate hydrogels[J]. Science and Technology of Food Industry,2023,44(23):21−28.]
ZHONG Qiming, ZHANG Jiayu, GUO Cheng, et al. Correlation analysis of 3D printability and rheological properties of sodium alginate hydrogels[J]. Science and Technology of Food Industry, 2023, 44(23): 21−28.
|
[27] |
杨青峰. 聚乙烯醇/海藻酸钠基复合水凝胶的制备及吸附性能研究[D]. 淮南:安徽理工大学, 2022. [YANG Qingfeng. Preparation and adsorption performance of polyvinyl alcohol/sodium alginate based composite hydrogels[D]. Huainan:Anhui University of Science and Technology, 2022.]
YANG Qingfeng. Preparation and adsorption performance of polyvinyl alcohol/sodium alginate based composite hydrogels[D]. Huainan: Anhui University of Science and Technology, 2022.
|
[28] |
杨继建, 和法莲, 张婷, 等. 纳米活性炭/海藻酸钠复合纤维的制备与性能[J]. 材料导报,2022,36(S2):523−527. [YANG Jijian, HE Falian, ZHANG Ting, et al. Preparation and characterization of activated carbon nanoparticles/sodium alginate composite fiber[J]. Materials Reports,2022,36(S2):523−527.]
YANG Jijian, HE Falian, ZHANG Ting, et al. Preparation and characterization of activated carbon nanoparticles/sodium alginate composite fiber[J]. Materials Reports, 2022, 36(S2): 523−527.
|
[29] |
王雨生, 赵敬松, 栾茜玉, 等. 钙源及海藻酸钠/多孔玉米淀粉配比对其凝胶特性的影响[J]. 粮油食品科技,2022,30(5):139−148. [WANG Yusheng, ZHAO Jingsong, LUAN Qianyu, et al. Effects of calcium source and sodium alginate to porous corn starch ratio on the characteristics of sodium alginate-porous starch complex gel[J]. Science and Technology of Cereals, Oils and Foods,2022,30(5):139−148.]
WANG Yusheng, ZHAO Jingsong, LUAN Qianyu, et al. Effects of calcium source and sodium alginate to porous corn starch ratio on the characteristics of sodium alginate-porous starch complex gel[J]. Science and Technology of Cereals, Oils and Foods, 2022, 30(5): 139−148.
|
[30] |
KUO C K, MA P X. Ionically crosslinked alginate hydrogels as scaffolds for tissue engineering:Part 1. Structure, gelation rate and mechanical properties[J]. Biomaterials,2001,22(6):511−521. doi: 10.1016/S0142-9612(00)00201-5
|
[31] |
DRURY J L, DENNIS R G, MOONEY D J. The tensile properties of alginate hydrogels[J]. Biomaterials,2004,25(16):3187−3199. doi: 10.1016/j.biomaterials.2003.10.002
|
[32] |
于秋菊, 耿凤英, 张梦蝶. Box-Behnken 响应面法优化银杏酚酸提取工艺及其抗肿瘤活性的研究[J]. 化学研究与应用,2022,34(4):842−849. [YU Qiuju, GENG Fengying, ZHANG Mengdie. Box-Behnken response surface methodology for optimization of extraction technology of ginkgolic acid and antitumor activities[J]. Chemical Research and Application,2022,34(4):842−849.] doi: 10.3969/j.issn.1004-1656.2022.04.019
YU Qiuju, GENG Fengying, ZHANG Mengdie. Box-Behnken response surface methodology for optimization of extraction technology of ginkgolic acid and antitumor activities[J]. Chemical Research and Application, 2022, 34(4): 842−849. doi: 10.3969/j.issn.1004-1656.2022.04.019
|
[33] |
杨萍, 岳天义, 张萍, 等. 黑苦荞壳烘烤工艺条件优化与品质分析[J]. 西华大学学报(自然科学版),2022,41(4):72−81. [YANG Ping, YUE Tianyi, ZHANG Ping, et al. Optimization research and quality analysis of black tartary buckwheat husk roasting process conditions[J]. Journal of Xihua University(Natural Science Edition),2022,41(4):72−81.]
YANG Ping, YUE Tianyi, ZHANG Ping, et al. Optimization research and quality analysis of black tartary buckwheat husk roasting process conditions[J]. Journal of Xihua University(Natural Science Edition), 2022, 41(4): 72−81.
|
[34] |
WANG L, ZHANG X, XIA Y, et al. Cooking-inspired versatile design of an ultrastrong and tough polysaccharide hydrogel through programmed supramolecular interactions[J]. Advanced Materials,2019,31(41):1902381. doi: 10.1002/adma.201902381
|
[35] |
RAMAMOORTHY M, RAJIV S. In-vitro release of fragrant l-carvone from electrospun poly (ϵ-caprolactone)/wheat cellulose scaffold[J]. Carbohydrate Polymers,2015,133:328−336. doi: 10.1016/j.carbpol.2015.07.015
|
[36] |
CHEN L, HUANG W, HAO M, et al. Rapid and ultrasensitive activity detection of α-amylase based on γ-cyclodextrin crosslinked metal-organic framework nanozyme[J]. International Journal of Biological Macromolecules, 2023,242:124881.
|
[37] |
WANG S, YU L, WANG S, et al. Strong, tough, ionic conductive, and freezing-tolerant all-natural hydrogel enabled by cellulose-bentonite coordination interactions[J]. Nature Communications,2022,13(1):3408. doi: 10.1038/s41467-022-30224-8
|
[38] |
OHM Y, PAN C, FORD M J, et al. An electrically conductive silver-polyacrylamide-alginate hydrogel composite for soft electronics[J]. Nature Electronics,2021,4(3):185−192. doi: 10.1038/s41928-021-00545-5
|
[39] |
YUE L, ZHANG X, WANG Y, et al. Cellulose nanocomposite modified conductive self-healing hydrogel with enhanced mechanical property[J]. European Polymer Journal,2021,146:110258. doi: 10.1016/j.eurpolymj.2020.110258
|
[40] |
ZHU Y, GUO Y, CAO K, et al. A general strategy for synthesizing biomacromolecular ionogel membranes via solvent-induced self-assembly[J]. Nature Synthesis, 2023, 2(9):864−872.
|
[41] |
杨金艳. 壳聚糖水凝胶的制备及其对重金属的吸附研究[D]. 成都:成都理工大学, 2016. [YANG Jinyan. Preparation of novel chitosan hydrogel and its adsorption properties for heavy metals[D]. Chengdu:Chengdu University of Technology, 2016.]
YANG Jinyan. Preparation of novel chitosan hydrogel and its adsorption properties for heavy metals[D]. Chengdu: Chengdu University of Technology, 2016.
|
[42] |
CHEN Y, REN H, RONG D, et al. Stretchable all-in-one supercapacitor enabled by poly (ethylene glycol)-based hydrogel electrolyte with low-temperature tolerance[J]. Polymer,2023,270:125796. doi: 10.1016/j.polymer.2023.125796
|
[43] |
KWEON O Y, SAMANTA S K, WON Y, et al. Stretchable and self-healable conductive hydrogels for wearable multimodal touch sensors with thermoresponsive behavior[J]. ACS Applied Materials & Interfaces,2019,11(29):26134−26143.
|
[44] |
ZHOU L N, SONG W Z, SUN D J, et al. Transparent, stretchable, and recyclable triboelectric nanogenerator based on an acid-and alkali-resistant hydrogel[J]. ACS Applied Electronic Materials,2022,5(1):216−226.
|
[45] |
JIANG X, XIANG N, ZHANG H, et al. Preparation and characterization of poly(vinyl alcohol)/sodium alginate hydrogel with high toughness and electric conductivity[J]. Carbohydrate Polymers,2018,186:377−383. doi: 10.1016/j.carbpol.2018.01.061
|
[46] |
HAN Y, SUN L, WEN C, et al. Flexible conductive silk-PPy hydrogel toward wearable electronic strain sensors[J]. Biomedical Materials,2022,17(2):024107. doi: 10.1088/1748-605X/ac5416
|
[1] | WANG Xueli, LEI Chao, SHEN Kaiwei, CHENG Yanwei, LIU Xueting, LI Zhen, YU Lu. Degradation Performance of Biogenic Amines in Fermented Food by Lactobacillus casei FV006[J]. Science and Technology of Food Industry, 2023, 44(14): 137-144. DOI: 10.13386/j.issn1002-0306.2022090136 |
[2] | WANG Xiaojie, MENG Fanqiang, ZHOU Libang, LU Zhaoxin. Optimization of Brevibacillin Fermentation Medium with Brevibacillus laterosporus by Response Surface Methodology[J]. Science and Technology of Food Industry, 2022, 43(4): 153-160. DOI: 10.13386/j.issn1002-0306.2021070335 |
[3] | WU Jun-lin, BAI Jian-ling, MO Shu-ping, ZHANG Ju-mei. Optimization of fermentation medium of lactic acid bacteria cultured in high concentration[J]. Science and Technology of Food Industry, 2018, 39(9): 96-101. DOI: 10.13386/j.issn1002-0306.2018.09.017 |
[4] | ZHU Yun-peng, TIAN You-ming, HONG Qing-lin, NI Hui, XIAO An-feng, YANG Qiu-ming. Optimization of medium composition and culture conditions for Aspergillus tubingensis production[J]. Science and Technology of Food Industry, 2018, 39(3): 82-86,91. DOI: 10.13386/j.issn1002-0306.2018.03.017 |
[5] | HU Yan-xin, LIU Xiao-li, WANG Ying, DONG Ming-sheng, ZHOU Jian-zhong. Optimization on fermentation conditions and medium for bacteriocin produced by Lactobacillus farcimini[J]. Science and Technology of Food Industry, 2016, (10): 255-259. DOI: 10.13386/j.issn1002-0306.2016.10.043 |
[6] | WANG Can, ZHANG Wei, ZHANG Ming-liang, HUANG Jian-zhong. Optimization of Schizochytrium sp. FJU-512 fermentation medium producing DHA[J]. Science and Technology of Food Industry, 2015, (04): 171-174. DOI: 10.13386/j.issn1002-0306.2015.04.029 |
[7] | DONG Ting, ZHOU Zhi-jiang, HAN Ye. Optimization of fermentation medium and fermentation conditions for Pediococcus acidilactici PA003[J]. Science and Technology of Food Industry, 2014, (14): 192-196. DOI: 10.13386/j.issn1002-0306.2014.14.034 |
[8] | LIU Ying-ying, LIU Ying, ZHANG Guang, SUN Bing-yu, WANG Jin-feng, SHI Yan-guo. Optimum fermentation medium of high-yielding neutral protease of mucor[J]. Science and Technology of Food Industry, 2014, (06): 166-170. DOI: 10.13386/j.issn1002-0306.2014.06.032 |
[9] | AN Jun-ying, LIU Ying, ZHU Wen-juan, HU Xue-qiong, YE Li-zhen. Optimization of fermentation medium of Bacillus amyloliquefaciens ZJHD-06 by response surface methodology[J]. Science and Technology of Food Industry, 2014, (01): 191-195. DOI: 10.13386/j.issn1002-0306.2014.01.031 |
[10] | Optimization of solid state fermentation medium to produce β-galactosidase by Aspergillus oryzae[J]. Science and Technology of Food Industry, 2013, (08): 232-235. DOI: 10.13386/j.issn1002-0306.2013.08.033 |
1. |
谢雨佳,彭小杰,李明逸,李政,王娟,肖珊珊,张少辉. 乳清蛋白源抗真菌多肽的制备工艺优化. 中国乳品工业. 2024(06): 59-64 .
![]() |