HE Ting, WU Qimei, XIANG Liping, et al. Extraction of Volatile Compounds and Analysis of Aroma Characteristics in Fenggang Zinc-Selenium Tea[J]. Science and Technology of Food Industry, 2023, 44(18): 342−351. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100238.
Citation: HE Ting, WU Qimei, XIANG Liping, et al. Extraction of Volatile Compounds and Analysis of Aroma Characteristics in Fenggang Zinc-Selenium Tea[J]. Science and Technology of Food Industry, 2023, 44(18): 342−351. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022100238.

Extraction of Volatile Compounds and Analysis of Aroma Characteristics in Fenggang Zinc-Selenium Tea

More Information
  • Received Date: October 24, 2022
  • Available Online: July 13, 2023
  • In order to explore the variation of volatile components of Fenggang zinc-selenium tea during the production process. The combination of headspace solid phase microextraction (HS-SPME) with gas chromatography-mass spectrometry (GC-MS) was applied to detecte volatile components of Fenggang zinc-selenium tea during the production process, and optimize the extracting conditions. Principal component analysis and orthogonal partial least squares discriminant analysis were used to determine, distinguish and screen the volatile components of Fenggang zinc-selenium tea during the production process. The results showed that the best extraction process was as follows: Ratio of raw material to water was 1:6 (g/mL), extraction fiber 50/30 μm CAR/DVB/PDMS, extraction temperature at 90 ℃, extraction time for 70 min. A total of 91 volatile substances were identified by GC-MS that there were 37 kinds of common characteristic volatile components in the Fenggang zinc-selenium tea during the production process. Alcohols, ketones, esters and aldehydes were the main volatile components constituting the aroma of Fenggang zinc-selenium tea, among which alcohols were the most abundant and the highest content. Fenggang zinc-selenium tea could be divided into one category before processing and one category after processing by principal component analysis, and orthogonal partial least squares discriminant analysis showed that 15 volatile components contributed significantly to the odor of Fenggang zinc-selenium tea. Jasmonone, (S)-oxidized linalool, α-ionone, methyl salicylate, methyl heptenone, (E)-oxidized linalool, cedarol, β-cyclic citral, 2-pyrrol 6-trimethyl-6-vinyl tetrahydro-2H-furan-3-ol and methyl acetylsalicylate played an important role in the characteristic aroma quality of Fenggang zinc-selenium tea. This study can provide a theoretical basis for the production, processing, quality control of Fenggang zinc-selenium tea.
  • [1]
    张鹏云, 李蓉, 李浩洋, 等. 顶空固相微萃取-气相色谱串联质谱结合保留指数分析杭白菊挥发性成分[J]. 食品与发酵工业,2019,45(1):202−209. [ZHANG P Y, LI R, LI H Y, et al. Analysis of voltatile compounds in Chrsanthemum moriflium Ramat by HS-SPME-GC MS/MS combing retenyion index[J]. Food and Fermentation Industries,2019,45(1):202−209.

    ZHANG P Y, LI R, LI H Y, et al. Analysis of voltatile compounds in Chrsanthemum moriflium Ramat by HS-SPME-GC MS/MS combing retenyion index[J]. Food and Fermentation Industries, 2019, 45(1): 202-209.
    [2]
    徐飞, 李俄艳, 初众, 等. 顶空固相微萃取-气质联用分析香荚兰浸膏风味组分的条件优化[J]. 热带作物学报,2019,40(2):348−358. [XU F, LI E Y, CHU Z, et al. Optimization of flavor components of Vanilla concentrate by headspace solid phase microextraction-GC mass spectrometry analysis[J]. Chinese Journal of Tropical Crops,2019,40(2):348−358.

    XU F, LI E Y, CHU Z, et al. Optimization of flavor components of Vanilla concentrate by headspace solid phase microextraction-GC mass spectrometry analysis[J]. Chinese Journal of Tropical Crops, 2019, 40(2): 348-358.
    [3]
    YU J, YANG J, LI M, et al. Protective effects of Chinese Fenggang zinc selenium tea on metabolic syndrome in high-sucrose-high-fat diet-induced obese rats[J]. Scientific Report,2018,8(1):3528. doi: 10.1038/s41598-018-21913-w
    [4]
    王晓宁, 赵茹茹, 张建永. 基于代谢组学技术研究凤冈锌硒茶对正常大鼠机体代谢调节规律[J]. 食品工业科技,2020,41(6):99−105. [WANG X N, ZHAO R R, ZHANG J Y. Global metabolic regulation of Fenggang zinc-selenium tea in normal rat based on metabolomics technology[J]. Science and Technology of Food Industry,2020,41(6):99−105.

    WANG X N, ZHAO R R, ZHANG J Y. Global metabolic regulation of Fenggang zinc-selenium tea in normal rat based on metabolomics technology[J]. Science and Technology of Food Industry, 2020, 41(6): 99-105.
    [5]
    罗冬兰, 邵勇, 巴良杰, 等. 贵州四种名优茶叶的电子鼻鉴别与香气成分分析[J]. 保鲜与加工,2020,20(3):183−190. [LUO D L, SHAO Y, BA L J, et al. Electronic nose identification and analysis of aroma components of four famous and excellent teas in Guizhou[J]. Storage and Process,2020,20(3):183−190.

    LUO D L, SHAO Y, BA L J, et al. Electronic nose identification and analysis of aroma components of four famous and excellent teas in Guizhou[J]. Storage and Process, 2020, 20(3): 183-190.
    [6]
    杨纯, 颜鸿飞, 吕小园, 等. 元素指纹图谱用于安化黑茶的原产地判别[J]. 食品科学,2020,41(16):286−291. [YANG C, YAN H F, LÜ X Y, et al. Geographical origin discrimination of Anhua dark tea by elemental fingerprint[J]. Food Science,2020,41(16):286−291.

    YANG C, YAN H F, LU X Y, et al. Geographical origin discrimination of Anhua dark tea by elemental fingerprint[J]. Food Science, 2020, 41(16): 286-291.
    [7]
    林家正, 涂政, 陈琳, 等. 红光萎凋对茶叶挥发性成分及其成品红茶品质的影响[J]. 茶叶科学,2021,41(3):393−405. [LIN J Z, TU Z, CHEN L, et al. The effect of red light withering on the volatile components of leaves and quality of blank tea product[J]. Journal of Tea Science,2021,41(3):393−405.

    LIN J Z, TU Z, CHEN L, et al. The effect of red light withering on the volatile components of leaves and quality of blank tea product[J]. Journal of Tea Science, 2021, 41(3): 393-405.
    [8]
    蒋宾, 鄢远珍, 刘琨毅, 等. 云南和福建白茶差异比较研究[J]. 西南大学学报(自然科学版),2021,43(4):62−72. [JIANG B, YAN Y Z, LIU K Y, et al. Comparison of the difference between Yunnan and Fujian white tea[J]. Journal of Southwest University(Natural Science Edition),2021,43(4):62−72.

    JIANG B, YAN Y Z, LIU K Y, et al. Comparison of the difference between Yunnan and Fujian white tea[J]. Journal of Southwest University(Natural Science Edition), 2021, 43(04): 62-72.
    [9]
    李永迪, 黄燕, 刘杏益, 等. 同时蒸馏萃取法和顶空固相微萃取法提取茯砖茶挥发性成分的比较分析[J]. 食品工业科技,2018,39(24):246−252. [LI Y D, HUANG Y, LIU X Y, et al. Comparative analysis of volatile components in fu brick tea by simultaneous distillation and headspace solid-phase micro-extraction[J]. Science and Technology of Food Industry,2018,39(24):246−252.

    LI Y D, HUANG Y, LIU X Y, et al. Comparative analysis of volatile components in fu brick tea by simultaneous distillation and headspace solid-phase micro-extraction[J]. Science and Technology of Food Industry, 2018, 39(24): 246-252.
    [10]
    ERDEM P, TAĞAÇ A A, BOZKURT S S, et al. Chitosan and dicationic ionic liquid intercalated clay-coated solid-phase microextraction fiber for determination of sixteen polycyclic aromatic hydrocarbons in coffee and tea samples[J]. Talanta,2021,235:122764. doi: 10.1016/j.talanta.2021.122764
    [11]
    WANG M Q, MA W J, SHI J, et al. Characterization of the key aroma compounds in Longjing tea using stir bar sorptive extraction (SBSE) combined with gas chromatography-mass spectrometry (GC-MS), gas chromatography-olfactometry (GC-O), odor activity value (OAV), and aroma recombination[J]. Food Research International,2020,130:108908. doi: 10.1016/j.foodres.2019.108908
    [12]
    蒋容港, 黄燕, 金友兰, 等. 茯砖茶呈香挥发性物质及其来源[J]. 食品与生物技术学报,2021,40(9):101−111. [JIANG R G, HUANG Y, JIN Y L, et al. Study of aroma compounds and their source in fu brick tea[J]. Journal of Food Science and Biotechnology,2021,40(9):101−111.

    JIANG R G, HUANG Y, JIN Y L, et al. Study of aroma compounds and their source in fu brick tea[J]. Journal of Food Science and Biotechnology, 2021, 40(9): 101-111.
    [13]
    YANG P, SONG H, LIN Y, et al. Differences of characteristic aroma compounds in Rougui tea leaves with different roasting temperatures analyzed by switchable GC-O-MS and GC×GC-O-MS and sensory evaluation[J]. Food & Function,2021,12(11):4797−4807.
    [14]
    石亚丽, 白艳, 马婉君, 等. 安吉白茶挥发性成分及关键呈香成分分析[J]. 食品科学,2022,43(20):261−268. [SHI Y L, BAI Y, MA W J, et al. Analysis of volatile components and key aroma-active compounds of Anjibaicha[J]. Food Science,2022,43(20):261−268.

    SHI Y L, BAI Y, MA W J, et al. Analysis of volatile components and key aroma-active compounds of Anjibaicha[J]. Food Science, 2022, 43(20): 261-268.
    [15]
    YANG Y, RONG Y, LIU F, et al. Rapid characterization of the volatile profiles in Pu-erh tea by gas phase electronic nose and microchamber/thermal extractor combined with TD-GC-MS[J]. Journal of Food Science,2021,86(6):2358−2373. doi: 10.1111/1750-3841.15723
    [16]
    LIU H, XU Y, WU J, et al. GC-IMS and olfactometry analysis on the tea aroma of Yingde black teas harvested in different seasons[J]. Food Research International (Ottawa, Ont.),2021,150(Pt A):110784.
    [17]
    苏丹, 黄刚骅, 李亚莉, 等. 紫娟(熟茶)人工发酵过程中挥发性香气组分特征分析[J]. 食品科学,2021,42(12):166−172. [SU D, HUANG G H, LI Y L, et al. Charateristic aroma components in ripe Zijuan tea during aritificial fermentation[J]. Food Science,2021,42(12):166−172.

    SU D, HUANG G H, LI Y L, et al. Charateristic aroma components in ripe zijuan tea during aritificial fermentation[J]. Food Science, 2021, 42(12): 166-172.
    [18]
    ZHANG W, CAO J, LI Z, et al. HS-SPME and GC/MS volatile component analysis of Yinghong No. 9 dark tea during the pile fermentation process[J]. Food Chemistry,2021,357:129654. doi: 10.1016/j.foodchem.2021.129654
    [19]
    马士成, 王梦琪, 刘春梅, 等. 六堡茶挥发性成分中关键香气成分分析[J]. 食品科学,2020,41(20):191−197. [MA S C, WNAG M Q, LIU C M, et al. Analysis of volatile composition and key aroma compounds of Liupao tea[J]. Food Science,2020,41(20):191−197.

    MA S C, WNAG M Q, LIU C M, et al. Analysis of volatile composition and key aroma compounds of Liupao tea[J]. Food Science, 2020, 41(20): 191-197.
    [20]
    崔继来, 周洁, 周倩倩, 等. 信阳毛尖茶品质成分分析[J]. 信阳师范学院学报(自然科学版),2022,35(2):259−268. [CUI J L, ZHOU J, ZHOU Q Q, et al. The quality compounds analysis of Xinyang Maojian tea[J]. Journal of Xinyang Normal University(Natural Science Edition),2022,35(2):259−268.

    CUI J L, ZHOU J, ZHOU Q Q, et al. The quality compounds analysis of Xinyang maojian tea[J]. Journal of Xinyang Normal University(Natural Science Edition), 2022, 35(2): 259-268.
    [21]
    ZHU J, NIU Y, XIAO Z. Characterization of the key aroma compounds in Laoshan green teas by application of odour activity value (OAV), gas chromatography-mass spectrometry-olfactometry (GC-MS-O) and comprehensive two-dimensional gas chromatography mass spectrometry (GC×GC-qMS)[J]. Food Chemistry,2021,339:128136. doi: 10.1016/j.foodchem.2020.128136
    [22]
    YANG Y Q, YIN H X, YUAN H B, et al. Characterization of the volatile components in green tea by IRAE-HS-SPME/GC-MS combined with multivariate analysis[J]. PLoS One,2018,13(3):e0193393. doi: 10.1371/journal.pone.0193393
    [23]
    欧阳珂, 张成, 廖雪利, 等. 基于感官组学分析玉米香型南川大茶树工夫红茶特征香气[J]. 茶叶科学,2022,42(3):397−408. [OUYANG K, ZHANG C, LIAO X L, et al. Characterization of the key aroma in corn-scented congou blank tea manufactured from Camellia nanchunaica by sensory omics techniques[J]. Journal of Tea Science,2022,42(3):397−408.

    OUYANG K, ZHANG C, LIAO X L, et al. Characterization of the key aroma in corn-scented congou blank tea manufactured from Camellia nanchunaica by sensory omics techniques[J]. Journal of Tea Science, 2022, 42(3): 397-408.
    [24]
    蔺志远, 施江, 谭俊峰, 等. 提香温度对绿茶(香茶)干燥效能及风味品质的影响[J]. 食品科学,2020,41(23):153−158. [LIN Z Y, SHI J, TAN J F, et al. Effect of drying temperature on drying efficiency, energy consumption and flavor quality of Xiangcha, a kind of green tea[J]. Food Science,2020,41(23):153−158.

    LIN Z Y, SHI J, TAN J F, et al. Effect of drying temperature on drying efficiency, energy consumption and flavor quality of xiangcha, a kind of green tea[J]. Food Science, 2020, 41(23): 153-158.
    [25]
    GUO X, HO C T, WAN X, et al. Changes of volatile compounds and odor profiles in Wuyi rock tea during processing[J]. Food Chemistry,2021,341(Pt 1):128230.
    [26]
    QI D, MIAO A, CAO J, et al. Study on the effects of rapid aging technology on the aroma quality of white tea using GC-MS combined with chemometrics: In comparison with natural aged and fresh white tea[J]. Food Chemistry,2018,265:189−199. doi: 10.1016/j.foodchem.2018.05.080
    [27]
    WANG J, LI X, WU Y, et al. HS-SPME/GC-MS reveals the season effects on volatile compounds of green tea in high-latitude region[J]. Foods (Basel, Switzerland),2022,11(19):3016.
    [28]
    韦康, 王丽鸳, 余继忠, 等. 基于GC-MS对中茗66和龙井43的香气成分比较分析[J]. 食品与生物技术学报,2019,38(8):39−45. [WEI K, WANG L Y, YU J Z, et al. Comparative analysis of aroma components in tea cultivar Zhongming66 and Longjing43 by GC-MS[J]. Journal of Food Science and Biotechnology,2019,38(8):39−45.

    WEI K, WANG L Y, YU J Z, et al. Comparative analysis of aroma components in tea cultivar zhongming66 and longjing43 by GC-MS[J]. Journal of Food Science and Biotechnology, 2019, 38(8): 39-45.
    [29]
    QI K, XU M, YIN H, et al. Online monitoring the key intermediates and volatile compounds evolved from green tea roasting by synchrotron radiation photoionization mass spectrometry[J]. Journal of the American Society for Mass Spectrometry,2021,32(6):1402−1411. doi: 10.1021/jasms.1c00012
    [30]
    韩沙沙, 郑伟, 南易, 等. 基于UHPLC-Q-TOF/MS-E技术分析武夷岩茶的化学成分[J]. 现代食品科技,2022,38(6):234−247,190. [HAN S S, ZHENG W, NAN Y, et al. Analysis of chemical components of Wuyi rock tea based on UHPLC-Q-TQF/MSE[J]. Modern Food Science and Technology,2022,38(6):234−247,190.

    HAN S S, ZHENG W, NAN Y, et al. Analysis of chemical components of Wuyi rock tea based on UHPLC-Q-TQF/MSE[J]. Modern Food Science and Technology, 2022, 38(6): 234-247, 190.
    [31]
    谢关华, 陆安霞, 欧阳珂, 等. GC-MS结合化学计量学用于探究六大茶类香气形成的差异[J]. 食品与发酵工业,2021,47(20):260−270. [XIE G H, LU A X, OUYANG K, et al. Analysis of the aroma formation in six categories of teas by GC-MS combined with chemometrics[J]. Food and Fermentation Industries,2021,47(20):260−270.

    XIE G H, LU A X, OUYANG K, et al. Analysis of the aroma formation in six categories of teas by GC-MS combined with chemometrics [J]. Food and Fermentation Industries, 2021, 47(20): 260-270.
    [32]
    岳翠男, 秦丹丹, 蔡海兰, 等. 赣北工夫红茶滋味特征及关键化合物分析[J]. 食品与发酵工业,2021,47(2):260−267. [YUE C N, QIN D D, CAI H L, et al. Taste characteristics and key compounds analysis of Congou black tea in northern Jiangxi Province[J]. Food and Fermentation Industries,2021,47(2):260−267.

    YUE C N, QIN D D, CAI H L, et al. Taste characteristics and key compounds analysis of Congou blacktea in northern Jiangxi province[J]. Food and Fermentation Industries, 2021, 47(2): 260-267.
  • Related Articles

    [1]CHEN Jiangkui, LI Jing, YIN Chunyan, LIAN Qimeng, YE Jia. Effects of Four Kinds of Antioxidants on the Oxidative Stability of Xanthoceras sorbifolia Bunge Oil and Analysis of Its Fatty Acid Compositions[J]. Science and Technology of Food Industry, 2022, 43(12): 70-76. DOI: 10.13386/j.issn1002-0306.2021090033
    [2]LI Yuan-yuan, PAN Ling, ZHANG Yan. Effects of natural antioxidants on the oxidative stability and flavor characteristics of peanut oil[J]. Science and Technology of Food Industry, 2018, 39(5): 241-249.
    [3]WU Chen, CHEN Yi, MEI Jiang, ZHANG Zhi-hong, WANG Yu-ting. Studies of oxidative stability and the mechanisms of antioxidants in emulsions[J]. Science and Technology of Food Industry, 2015, (24): 380-384. DOI: 10.13386/j.issn1002-0306.2015.24.075
    [4]LEI Jing-ling, ZHAO Zhong-xing, WANG Chao-yang, ZHU Chang-jie, FENG Li-jin, LU Qiang-ji. Study on thermal stability and thermal inactivation kinetics of immobilized earthworm fibrinolytic enzyme[J]. Science and Technology of Food Industry, 2015, (21): 107-110. DOI: 10.13386/j.issn1002-0306.2015.21.013
    [5]MIAO Sen, WANG Lu, WANG Xiao-biao, QI Tian, ZHAO Zhi-wei, WU Yun. Research of the influence factors of thermal stability of Fresh Mare's Milk[J]. Science and Technology of Food Industry, 2015, (15): 213-218. DOI: 10.13386/j.issn1002-0306.2015.15.036
    [6]WANG Meng, DU Bing, CAO Wei. Research of activity and thermal stability of GOD in jujube and buckwheat honeys[J]. Science and Technology of Food Industry, 2015, (09): 83-86. DOI: 10.13386/j.issn1002-0306.2015.09.009
    [7]LIU Li-li, LI Si-dong, TANG Bing, YANG Xi-hong, LI Pu-wang, YANG Zi-ming. Study on the thermal stability of chitosan/gelatin composite films for food preservation[J]. Science and Technology of Food Industry, 2014, (08): 310-312. DOI: 10.13386/j.issn1002-0306.2014.08.062
    [8]Enzymatic characteristics and thermal stability model of polyphenol oxidase from potato[J]. Science and Technology of Food Industry, 2012, (19): 92-96. DOI: 10.13386/j.issn1002-0306.2012.19.035
    [9]Study on screening of efficient multiple antioxidants and stability of algal oil[J]. Science and Technology of Food Industry, 2012, (18): 318-321. DOI: 10.13386/j.issn1002-0306.2012.18.046
    [10]一品红红色素的提取及其稳定性研究[J]. Science and Technology of Food Industry, 1999, (06): 24-26. DOI: 10.13386/j.issn1002-0306.1999.06.068
  • Cited by

    Periodical cited type(11)

    1. 杨集镪,曾穗雯. 原子荧光光谱仪测定食品中汞含量的研究. 食品安全导刊. 2023(01): 111-113 .
    2. 程梦蓉,蒋国振,王婧,吴静,姬玲霞. 直接测汞仪测定大米粉中总汞含量的不确定度评定. 粮食与食品工业. 2023(03): 53-58 .
    3. 梁良,杜雨馨,杨子建. 基于支持向量机的多环芳烃光谱定量分析. 激光杂志. 2023(06): 220-224 .
    4. 金凯. 测汞仪直接测定水中汞的不确定度评定. 现代食品. 2023(23): 166-169 .
    5. 赵忠良. 原子荧光仪在地质矿物硒元素测定中的应用. 化工管理. 2022(18): 103-105 .
    6. 姚成虎,王滢,杨启鹏,洪成山,王岁岁,孙涓,毛小庆. 电感耦合等离子质谱法测定蟹黄中4种重金属含量的不确定度评定. 现代农业科技. 2022(18): 155-159+164 .
    7. 张阔,冯金奎,鄂立军. 照度测量不确定度研究. 中国特种设备安全. 2022(10): 22-25+41 .
    8. 王娟,华蓉,游金坤,邓雅元,孙达锋,杨璐敏,吴素蕊. 影响食用菌总汞含量测定准确度的关键技术探索. 中国食用菌. 2022(11): 60-66 .
    9. 贺璐,郑静. 电感耦合等离子体发射光谱法测定食品中钙、镁、磷、铁、锌、锰含量的不确定度评定. 化学分析计量. 2022(12): 83-87 .
    10. 李娟,辜芸,谭洪涛,周鸿. 婴幼儿食品中总汞含量检测方法的研究. 实验与检验医学. 2022(05): 524-525+546 .
    11. 程君,卢嘉砾,余松柏. 催化热解-冷原子吸收分光光度法测定石膏中总汞的不确定度评定. 中国水泥. 2022(S1): 16-21 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (107) PDF downloads (14) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return