Citation: | HE Xinyu, LIU Donglian, LI Zhangyue, et al. Protective Effect of Total Glucosides of Peony on Treatment of Hyperuricemia and Associated Hepatic Injury[J]. Science and Technology of Food Industry, 2023, 44(11): 397−403. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022060082. |
[1] |
徐思博, 刘晓静. 高尿酸血症与非酒精性脂肪肝的关系研究进展[J]. 济宁医学院学报,2020,43(1):59−62,67. [XU S B, LIU X J. Study progress on the relationship between hyperuricemia and nonalcoholic fatty liver disease[J]. Journal of Jining Medical University,2020,43(1):59−62,67. doi: 10.3969/j.issn.1000-9760.2020.01.014
|
[2] |
GONG S L, SONG J Q, WANG L, et al. Hyperuricemia and risk of nonalcoholic fatty liver disease: A systematic review and meta-analysis[J]. Eur J Gastroenterol Hepatol,2016,28(2):132−138. doi: 10.1097/MEG.0000000000000507
|
[3] |
SARI D C R, SOETOKO A S, ROMI M M, et al. Uric acid induces liver fibrosis through activation of inflammatory mediators and proliferating hepatic stellate cell in mice[J]. Med J Malaysia,2020,75(1):14−18.
|
[4] |
ZHANG M Y, NIU J Q, WEN X Y, et al. Liver failure associated with benzbromarone: A case report and review of the literature[J]. World J Clin Cases,2019,7(13):1717−1725. doi: 10.12998/wjcc.v7.i13.1717
|
[5] |
ROBERT J F, LI Y J, ELIZABETH P, et al. Allopurinol hepatotoxicity is associated with human leukocyte antigen Class I alleles[J]. Liver Int,2021,41(8):1884−1893. doi: 10.1111/liv.14903
|
[6] |
王琨, 吴珊珊, 黎攀, 等. 茯苓对高尿酸血症大鼠肾损伤及肠道菌群的影响[J]. 食品科学,2022,43(21):171−179. [WANG K, WU S S, LI P, et al. Effects of Poria cocos on renal injury and gut microbiota in hyperuricemia rats[J]. Food Science,2022,43(21):171−179.
|
[7] |
YANAI H, ADACHI H, HAKOSHIMA M, et al. Molecular biological and clinical understanding of the pathophysiology and treatments of hyperuricemia and its association with metabolic syndrome, cardiovascular diseases and chronic kidney disease[J]. Int J Mol Sci,2021,22(17):9221. doi: 10.3390/ijms22179221
|
[8] |
杨盼. 基于数据分析对脾虚证、血虚证药食同源中医饮食护理的探讨[D]. 哈尔滨: 黑龙江中医药大学, 2017
YANG P. Based on data analysis, the discussion of spleen deficiency and blood deficiency syndrome medicine study on the diet nursing of traditional Chinese medicine[D]. Haerbin: Heilongjiang University of Chinese Medicine, 2017.
|
[9] |
PENG L, MA Z, CHU W, et al. Identification and hepatoprotective activity of total glycosides of paeony with high content of paeoniflorin extracted from Paeonia lactiflora Pall[J]. Food Chem Toxicol,2023,173:113624. doi: 10.1016/j.fct.2023.113624
|
[10] |
ZHANG L L, WEI W. Anti-inflammatory and immunoregulatory effects of paeoniflorin and total glucosides of paeony[J]. Pharmacol Ther,2020,207:107452. doi: 10.1016/j.pharmthera.2019.107452
|
[11] |
SHEN M Y, MEN R T, FAN X L, et al. Total glucosides of paeony decreases apoptosis of hepatocytes and inhibits maturation of dendritic cells in autoimmune hepatitis[J]. Biomed Pharmacother,2020,124:109911. doi: 10.1016/j.biopha.2020.109911
|
[12] |
高世乐, 胡宗涛, 董六一, 等. 白芍总苷防治放射性肝损伤形成的临床研究及其作用机制[J]. 中国中药杂志,2017,42(7):1390−1394. [GAO S L, HU Z T, DONG L Y, et al. Clinical efficacy and mechanism of total glucosides from white paeony for radioactive liver damage[J]. China Journal of Chinese Materia Medica,2017,42(7):1390−1394. doi: 10.19540/j.cnki.cjcmm.20170121.038
|
[13] |
刘冬恋, 秦琴, 杨婷, 等. 白芍总苷对高尿酸血症大鼠肾脏的保护作用[J]. 食品工业科技,2021,42(22):344−349. [LIU D L, QIN Q, YANG T, et al. Protective effect of total glucosides of paeony on renal in rats with hyperuricemic nephropathy[J]. Science and Technology of Food Industry,2021,42(22):344−349.
|
[14] |
包瑾芳. 自噬在高尿酸血症中的作用及3-MA干预机制初步探讨[D]. 上海: 上海交通大学, 2019
BAO J F. Pharmacological inhibition of autophagy by 3-MA attenuates hyperuricemic nephropathy[D]. Shanghai: Shanghai Jiaotong University, 2019.
|
[15] |
刘冬恋, 郭秋鸿, 夏阳淼, 等. 慢性高尿酸血症肾损害大鼠模型的建立[J]. 中国实验动物学报,2021,29(3):364−370. [LIU D L, GUO Q H, XIA Y M, et al. Establishment of a rat model of chronic hyperuricemia with renal damage[J]. Acta Laboratorium Animalis Scientia Sinica,2021,29(3):364−370. doi: 10.3969/j.issn.1005-4847.2021.03.011
|
[16] |
冯学轩, 刘月姝, 饶子亮, 等. 急、慢性高尿酸血症模型的建立[J]. 中国比较医学杂志,2020,30(1):74−80. [FENG X X, LIU Y S, RAO Z L, et al. Establishment of mouse and rat models of acute and chronic experimental hyperuricemia[J]. Chin J Comp Med,2020,30(1):74−80. doi: 10.3969/j.issn.1671-7856.2020.01.012
|
[17] |
党娅, 尤丽, 杨彬彦. 蓝莓花青素对2型糖尿病小鼠肝、肾损伤的改善作用[J]. 食品工业科技,2022,43(20):387−394. [DANG Y, YOU L, YANG B Y. The improvement effect of blueberry anthocyanin on liver and kidney injury in type 2 diabetic mice[J]. Science and Technology of Food Industry,2022,43(20):387−394. doi: 10.13386/j.issn1002-0306.2022020171
|
[18] |
孙宏莱, 刘悦, 刘德江, 等. 毛水苏多糖对糖尿病小鼠肾脏的保护作用[J]. 食品工业科技,2021,42(17):373−380. [SUN H L, LIU Y, LIU D J, et al. Protective effect of polysaccharides from stachys baicalensis on kidneys of diabetic disease mice[J]. Science and Technology of Food Industry,2021,42(17):373−380. doi: 10.13386/j.issn1002-0306.2021050278
|
[19] |
石慧, 梁晓珊, 黄丽文, 等. 一种高尿酸血症大鼠模型诱导方法的改良和效果评价研究[J]. 中国应用生理学杂志,2020,36(3):223−227. [SHI H, LIANG X S, HUANG L W, et al. The optimization and assessment of the method for inducing hyperuricemia in rats[J]. Chinese Journal of Applied Physiology,2020,36(3):223−227. doi: 10.12047/j.cjap.5933.2020.049
|
[20] |
XU C F, WAN X Y, XU L, et al. Xanthine oxidase in non-alcoholic fatty liver disease and hyperuricemia: One stone hits two birds[J]. J Hepatol,2015,62(6):1412−1419. doi: 10.1016/j.jhep.2015.01.019
|
[21] |
谢羡, 朱乐玫, 丁旭, 等. 番茄红素对反式脂肪酸致小鼠肝脏损伤的修复作用[J]. 中华全科医学,2018,16(10):1604−1607, 1744. [XIE X, ZHU L M, DING X, et al. Repair effect of Lycopene on liver injury induced by trans fatty acids in mice[J]. Chinese Journal of General Practice,2018,16(10):1604−1607, 1744. doi: 10.16766/j.cnki.issn.1674-4152.000436
|
[22] |
王灿, 苗志敏, 李长贵, 等. 人体血尿酸水平对血清谷丙转氨酶和谷草转氨酶水平的影响[J]. 山东医药,2010,50(29):1−3. [WANG C, MIAO Z M, LI C G, et al. Impact of uric acid on alanine amiotransferase and aspartate aminotransferase[J]. Shandong Medical Journal,2010,50(29):1−3. doi: 10.3969/j.issn.1002-266X.2010.29.001
|
[23] |
CUI N, CUI J, SUN J, et al. Triglycerides and total cholesterol concentrations in association with hyperuricemia in Chinese adults in qingdao, China[J]. Risk Manag Healthc Policy,2020,13:165−173. doi: 10.2147/RMHP.S243381
|
[24] |
吴晶魁, 杨乔. 中药水蛭对高脂血症大鼠脂质代谢及肝脏的影响[J]. 中国中药杂志,2018,43(4):794−799. [WU J K, YANG Q. Effect of leech on lipid metabolism and liver in hyperlipidemia rats[J]. China Journal of Chinese Materia Medica,2018,43(4):794−799. doi: 10.19540/j.cnki.cjcmm.20171123.001
|
[25] |
SAMARGHANDIA S, AZIMI-NEZHAD M, FARKHONDEH T, et al. Anti-oxidative effects of curcumin on immobilization-induced oxidative stress in rat brain, liver and kidney[J]. Biomed Pharmacother,2017,87:223−229. doi: 10.1016/j.biopha.2016.12.105
|
[26] |
马玲, 周勇, 王莉, 等. α-硫辛酸减轻高尿酸血症大鼠氧化应激损伤[J]. 基础医学与临床,2015,35(8):1037−1041. [MA L, ZHOU Y, WANG L, et al. α-lipoic acid alleviates oxidative stress in hyperuricemia rats[J]. Basic and Clinical Medicine,2015,35(8):1037−1041.
|
[27] |
徐燕, 蔡吓强, 解千金, 等. 表没食子儿茶素没食子酸酯和维生素C联用对高尿酸血症小鼠血尿酸水平的影响[J]. 茶叶科学,2020,40(3):407−414. [XU Y, CAI X Q, XIE Q J, et al. The intergative effects of epigallocatechin-3-gallate and vitamin C on serum uric acid levels in hyperuricemic mice[J]. Journal of Tea Science,2020,40(3):407−414. doi: 10.3969/j.issn.1000-369X.2020.03.011
|
[28] |
ZHOU T, LI X, LI G, et al. Injectable and thermosensitive TGF-β1-loaded PCEC hydrogel system for in vivo cartilage repair[J]. Sci Rep,2017,7(1):10553. doi: 10.1038/s41598-017-11322-w
|
[29] |
ZHAO Y, TANG Y, LIU S, et al. Foodborne TiO2 nanoparticles induced more severe hepatotoxicity in fructose-induced metabolic syndrome mice via exacerbating oxidative stress-mediated intestinal barrier damage[J]. Foods,2021,10(5):986. doi: 10.3390/foods10050986
|
[30] |
史民康, 雷宇平, 张仲萍. 浅析集约化鸡场鸡肾脏病变的病因及防治[J]. 中国动物检疫,2011,28(2):67−68. [SHI M K, LEI Y P, ZHANG Z P. Etiology and prevention of kidney disease in intensive chicken farms[J]. China Animal Health Inspection,2011,28(2):67−68. doi: 10.3969/j.issn.1005-944X.2011.02.033
|
[31] |
NASOORI A, PEDRAM B, KAMYABI-MOGHADDAM Z, et al. Clinicopathologic characterization of visceral gout of various internal organs-a study of 2 cases from a venom and toxin research center[J]. Diagn Pathol,2015,10:23. doi: 10.1186/s13000-015-0251-y
|
[32] |
任敏霞, 吴素香, 詹淑玉, 等. 白芍总苷及其所含主要成分芍药苷和芍药内酯苷对四氯化碳致小鼠急性肝损伤的保护作用[J]. 中华中医药学刊,2020,38(5):244−247, 283. [REN M X, WU S X, ZHAN S Y, et al. Protective effects of total glucosides of paeony and its main components paeoniflorin and albiflorin in carbon tetrachloride-induced acute liver injury[J]. Chinese Archives of Traditional Chinese Medicine,2020,38(5):244−247, 283. doi: 10.13193/j.issn.1673-7717.2020.05.058
|
[33] |
CHEN G, JIA P. Allopurinol decreases serum uric acid level and intestinal glucose transporter-5 expression in rats with fructose-induced hyperuricemia[J]. Pharmacol Rep,2016,68(4):782−786. doi: 10.1016/j.pharep.2016.04.014
|
[34] |
TOMOKI N, NAOTO N, TETSURO S, et al. Xanthine oxidase inhibition attenuates insulin resistance and diet-induced steatohepatitis in mice[J]. Sci Rep,2020,10(1):815. doi: 10.1038/s41598-020-57784-3
|
[35] |
SANDRA S, LESMANA C R A, PURNAMASARI D, et al. Hyperuricemia as an independent risk factor for non- alcoholic fatty liver disease (NAFLD) progression evaluated using controlled attenuation parameter-transient elastography: Lesson learnt from tertiary referral center[J]. Diab Metab Syndr: Clin Res Revi,2019,13(1):424−428.
|
[36] |
LUKAS W U, BERNADETTE F, MORITZ M, et al. Hepatic steatosis in lean patients: Risk factors and impact on mortality[J]. Dig Dis Sci,2020,65(9):2712−2718. doi: 10.1007/s10620-019-06000-y
|
[37] |
VALERIO N, ANTONELLA M, RITA D V, et al. Liver zonation in children with non-alcoholic fatty liver disease: Associations with dietary fructose and uric acid concentrations[J]. Liver Int,2018,38(6):1102−1109. doi: 10.1111/liv.13661
|
[1] | cover[J]. Science and Technology of Food Industry, 2022, 43(24). |
[2] | cover[J]. Science and Technology of Food Industry, 2022, 43(22). |
[3] | cover[J]. Science and Technology of Food Industry, 2022, 43(19). |
[4] | cover[J]. Science and Technology of Food Industry, 2022, 43(18). |
[5] | cover[J]. Science and Technology of Food Industry, 2022, 43(17). |
[6] | cover[J]. Science and Technology of Food Industry, 2022, 43(13). |
[7] | cover[J]. Science and Technology of Food Industry, 2022, 43(11). |
[8] | Cover[J]. Science and Technology of Food Industry, 2022, 43(9). |
[9] | cover[J]. Science and Technology of Food Industry, 2022, 43(8). |
[10] | cover[J]. Science and Technology of Food Industry, 2022, 43(7). |