WANG Luyao, ZHANG Duqin, NIU Meng, et al. Effects of Solid-state Fermentation on the Nutrients, Phenolics Content and Antioxidant Activity of Quinoa[J]. Science and Technology of Food Industry, 2022, 43(24): 130−138. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022020088.
Citation: WANG Luyao, ZHANG Duqin, NIU Meng, et al. Effects of Solid-state Fermentation on the Nutrients, Phenolics Content and Antioxidant Activity of Quinoa[J]. Science and Technology of Food Industry, 2022, 43(24): 130−138. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022020088.

Effects of Solid-state Fermentation on the Nutrients, Phenolics Content and Antioxidant Activity of Quinoa

More Information
  • Received Date: February 14, 2022
  • Available Online: October 22, 2022
  • In order to screen suitable strains for solid-state fermentation that can improve the nutritional components, phenolic content and antioxidant activity of quinoa, and provide a theoretical basis for the development of quinoa products, quinoa was treated by solid-state fermentation (SSF) with single and mixed microbial strains of Lactobacillus plantarum, Saccharomyces cerevisiae, Rhizopus oryzae, Aspergillus oryzae, and Neurospora sitophila were performed in quinoa for 30 and 48 h. Effects of SSF with different strains on the nutrients, phenolics content and antioxidant activity in quinoa were determined and analyzed. Results showed that: After SSF, the starch and insoluble dietary fiber content in quinoa decreased respectively from 54.61% to the lowest 39.32%, and 2.32% to the lowest 0.26%. While the soluble dietary fiber content increased from 2.58% to the highest 4.38%. With the extension of the fermentation time (from 30 to 48 h), contents of free polyphenols and flavonoids in quinoa increased by 1.72 and 1.72 times as much as those in unfermented quinoa respectively, and the contents of bound polyphenols and flavonoids increased by 2.88 and 1.84 times as much as those in unfermented quinoa respectively. Although the antioxidant activity and DPPH free radical scavenging ability of free phenols in quinoa decreased after fermentation, the total antioxidant activity, DPPH and ABTS+ free radical scavenging capacities of the bound phenols increased significantly (P<0.05). In general, the antioxidant activities of quinoa phenolics were significantly improved after SSF with mixed cultures for 48 h, especially for the fermented quinoa with three mixed strains of Lactobacillus plantarum, Saccharomyces cerevisiae and Neurospora sitophila for 48 h, which was the best combination of strains for SSF processing of quinoa.
  • [1]
    申瑞玲, 张文杰, 董吉林, 等. 藜麦的营养成分、健康促进作用及其在食品工业中的应用[J]. 中国粮油学报,2016,31(9):150−155. [SHEN R L, ZHANG W J, DONG J L, et al. Nutritional composition, health promoting effect of quinoa and its application in food industry[J]. Journal of the Chinese Cereals and Oils Association,2016,31(9):150−155. doi: 10.3969/j.issn.1003-0174.2016.09.027
    [2]
    GOMEZ-CARAVACA A M, IAFELICE G, VERARDO V, et al. Influence of pearling process on phenolic and saponin content in quinoa (Chenopodium quinoa Willd)[J]. Food Chemistry,2014,157:174−178. doi: 10.1016/j.foodchem.2014.02.023
    [3]
    张婷, 张艺沛, 何宗泽, 等. 挤压膨化藜麦粉工艺优化及品质分析[J]. 食品工业科技,2019,40(18):177−184. [ZHANG T, ZHANG Y P, HE Z Z, et al. Process optimization and quality analysis of extruded quinoa flour[J]. Science and Technology of Food Industry,2019,40(18):177−184. doi: 10.13386/j.issn1002-0306.2019.18.029
    [4]
    TI H, ZHANG R, ZHANG M, et al. Dynamic changes in the free and bound phenolic compounds and antioxidant activity of brown rice at different germination stages[J]. Food Chemistry,2014,161(10):337−344.
    [5]
    胡畔, 杨萍, 郭天时. 植物乳杆菌与米根霉混合固态发酵改善玉米粉理化加工特性[J]. 食品与发酵工业,2020,46(7):161−167. [HU P, YANG P, GUO T S. Change in physicochemical and processing properties of maize flour after solid fermentation with Lactobacillus plantarum and Rhizopus oryzae[J]. Food and Fermentation Industry,2020,46(7):161−167. doi: 10.13995/j.cnki.11-1802/ts.021712
    [6]
    ZHANG D, TAN B, ZHANG Y, et al. Improved nutritional and antioxidant properties of hulless barley following solid-state fermentation with Saccharomyces cerevisiae and Lactobacillus plantarum[J]. Journal of Food Processing and Preservation,2022,46(2):e16245.
    [7]
    DORDEVIC T M, SILER-MARINKOVIC S S, DIMITRIJEVIC-BRANKOVIC S I. Effect of fermentation on antioxidant properties of some cereals and pseudo cereals[J]. Food Chemistry,2010,119(3):957−963. doi: 10.1016/j.foodchem.2009.07.049
    [8]
    孙丹. 固态发酵苦荞中酚类物质、抗氧化性及抗炎活性的研究[D]. 昆明: 昆明理工大学, 2016.

    SUN D. Study on phenols, antioxidant and anti-inflammatory activities of tartary buckwheat by solid-state fermentation[D]. Kunming: Kunming University of Science and Technology, 2016.
    [9]
    ZHANG D, TAN B. Effects of different solid-state fermentation ratios of S. cerevisiae and L. plantarum on physico-chemical properties of wheat bran and the quality of whole wheat bread[J]. Journal of the Science of Food and Agriculture,2021,101(11):4551−4560. doi: 10.1002/jsfa.11097
    [10]
    DULINSKI R, STARZYNSKA-JANISZEWSKA A, ŁUKASZ BYCZYNSKI, et al. Myo-inositol phosphates profile of buckwheat and quinoa seeds: Effects of hydrothermal processing and solid-state fermentation with Rhizopus oligosporus[J]. International Journal of Food Properties,2016,20(9):2088−2095.
    [11]
    AYYASH M, JOHNSON S K, LIU S Q, et al. Cytotoxicity, antihypertensive, antidiabetic and antioxidant activities of solid-state fermented lupin, quinoa and wheat by Bifidobacterium species: In-vitro investigations[J]. LWT, 2018, 95: 295-302.
    [12]
    XU L N, GUO S, WANG S W. Effects of solid-state fermentation on the nutritional components and antioxidant properties from quinoa[J]. Emirates Journal of Food and Agriculture,2019,31(1):39−45.
    [13]
    郑子懿, 李成武, 李琳, 等. 比较发芽和固态发酵对糙米营养及感官品质的影响[J]. 食品安全质量检测学报,2021,12(11):4467−4473. [ZHENG Z Y, LI C W, LI L, et al. Comparing the effects of germination and solid-state fermentation on the nutrition and sensory quality of brown rice[J]. Food Safety and Quality Detection Technology,2021,12(11):4467−4473. doi: 10.19812/j.cnki.jfsq11-5956/ts.2021.11.023
    [14]
    WANG L, CHEN J, XIE H, et al. Phytochemical profiles and antioxidant activity of adlay varieties[J]. Journal of Agricultural & Food Chemistry,2013,61(21):5103−5113.
    [15]
    MEYERS K J, WATKINS C B, PRITTS M P, et al. Antioxidant and antiproliferative activities of strawberries[J]. Journal of Agricultural and Food Chemistry,2003,51(23):6887−6892. doi: 10.1021/jf034506n
    [16]
    张金宏. 苹果渣中游离酚和结合酚的提取及其功能特性的研究[D]. 杨凌: 西北农林科技大学, 2016.

    ZHANG J H. Study on the extraction and functional characteristics of free phenol and bound phenol from apple pomace[D]. Yangling: Northwest A&F University, 2016.
    [17]
    BOUAYED J, HOFFMANN L, BOHN T. Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake[J]. Food Chemistry,2011,128(1):14−21. doi: 10.1016/j.foodchem.2011.02.052
    [18]
    THAIPONG K, BOONPRAKOB U, CROSBY K, et al. Comparison of ABTS+·, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts[J]. Journal of Food Composition & Analysis,2006,19(6):669−675.
    [19]
    RE R. Antioxidant activity applying an improved ABTS+· radical cation decolorization assay[J]. Free Radic Biol Med,1999,26:1231−1237. doi: 10.1016/S0891-5849(98)00315-3
    [20]
    CONTRERAS-JIMENEZ B, TORRES-VARGAS O L, RODRIGUEZ-GARCIA M E. Physicochemical characterization of quinoa (Chenopodium quinoa) flour and isolated starch[J]. Food Chemistry,2019,298:1249821−1249827.
    [21]
    张欢, 王端好, 陆光瑞, 等. 酸性蛋白酶对发酵黄豆酱品质的影响[J]. 中国酿造,2021,40(8):150−156. [ZHANG H, WANG D H, LU G R, et al. Effect of acid protease on the quality of fermented soybean paste[J]. China Brewing,2021,40(8):150−156. doi: 10.11882/j.issn.0254-5071.2021.08.027
    [22]
    余肖飞, 郭晓农, 张妍, 等. 响应面法优化藜麦秸秆饲料发酵工艺的研究[J]. 草业学报,2021,30(5):155−164. [YU X F, GUO X N, ZHANG Y, et al. Optimization of quinoa straw feed fermentation process by response surface methodology[J]. Acta Prataculturae Sinica,2021,30(5):155−164. doi: 10.11686/cyxb2020203
    [23]
    曾子毅, 丁诗瑶, 卢向阳, 等. 几株植物乳杆菌β-葡萄糖苷酶的特性研究[J]. 中国酿造,2019,38(1):75−79. [ZENG Z Y, DING S Y, LU X Y, et al. Characteristics of β-glucosidase from Lactobacillus plantarum[J]. China Brewing,2019,38(1):75−79. doi: 10.11882/j.issn.0254-5071.2019.01.015
    [24]
    DENG Y P, XIN J Y, LIU X L, et al. Optimization of culture conditions and medium composition for the synthesis of xylanase by resting neurospora sitophila cells: Analysis of the effects of sugars on xylanase production using the resting cell[J]. Journal of Biobased Materials & Bioenergy,2017,11:553−561.
    [25]
    张利, 王硕, 刘宝祥, 等. 酿酒酵母老化过程中酶活力变化研究[J]. 食品科技,2012,37(7):5−9. [ZHANG L, WANG S, LIU B X, et al. Changes in enzyme activity during Saccharomyces cerevisiae aging[J]. Food Science and Technology,2012,37(7):5−9.
    [26]
    吴立根, 王岸娜, 申瑞凌, 等. 藜麦碾磨加工与营养分布研究进展[J]. 食品研究与开发,2020,41(16):194−198. [WU L G, WANG A N, SHEN R L, et al. Research progress on grinding processing and nutrient distribution of quinoa[J]. Food Research and Development,2020,41(16):194−198. doi: 10.12161/j.issn.1005-6521.2020.16.032
    [27]
    SAGAR S, GOUDAR G, SREEDHAR M, et al. Characterization of nutritional content and in vitro antioxidant properties of Plantago ovata seeds[J]. International Journal of Food Sciences and Nutrition,2020,2(6):1−5.
    [28]
    许锡凯, 辛嘉英, 任佳欣, 等. 好食脉孢霉发酵麦麸制备可溶性膳食纤维及其理化性质[J]. 食品工业科技,2021,42(2):170−176. [XU X K, XIN J Y, REN J X, et al. Preparation and physicochemical properties of soluble dietary fiber from wheat bran fermented by Neurospora sativa[J]. Science and Technology of Food Industry,2021,42(2):170−176. doi: 10.13386/j.issn1002-0306.2020030170
    [29]
    ZHANG H, ZHANG X, CAO X R, et al. Semi-solid state fermentation and enzymatic hydrolysis impeded the destroy of wheat bran on gluten polymerization[J]. LWT,2018,98:306−313. doi: 10.1016/j.lwt.2018.08.047
    [30]
    延莎, 邢洁雯, 王晓闻. 不同菌种发酵对藜麦蛋白质特性及脂质构成的影响[J]. 中国农业科学,2020,53(10):2045−2054. [YAN S, XING J W, WANG X W. Effects of different strains fermentation on protein characteristics and lipid composition of quinoa[J]. Scientia Agricultura Sinica,2020,53(10):2045−2054. doi: 10.3864/j.issn.0578-1752.2020.10.011
    [31]
    吴学凤, 潘丽军, 姜绍通, 等. 发酵法制备小麦麸皮膳食纤维[J]. 食品科学,2012,33(17):169−173. [WU X F, PAN L J, JIANG S T, et al. Preparation of dietary fiber from wheat bran by fermentation[J]. Food Science,2012,33(17):169−173.
    [32]
    ĐORĐEVIĆ T M, ŠILER-MARINKOVIĆ S S, DIMITRIJEVIĆ-BRANKOVIĆ S I. Effect of fermentation on antioxidant properties of some cereals and pseudo cereals[J]. Food Chemistry,2009,119(3):957−963.
    [33]
    FLORIAN H, ARENDT E K. Germination of cereal grains as a way to improve the nutritional value: A review[J]. Critical Reviews in Food Science and Nutrition,2013,53(8):853−861. doi: 10.1080/10408398.2011.562060
    [34]
    REPO-CARRASCO-VALENCIA R, HELLSTRÖM J K, PIHLAVA J M, et al. Flavonoids and other phenolic compounds in Andean indigenous grains: Quinoa (Chenopodium quinoa), kañiwa (Chenopodium pallidicaule) and kiwicha (Amaranthus caudatus)[J]. Food Chemistry,2010,120(1):128−133. doi: 10.1016/j.foodchem.2009.09.087
    [35]
    AYYASH M, JOHNSON S K, LIU S Q, et al. In vitro investigation of bioactivities of solid-state fermented lupin, quinoa and wheat using Lactobacillus spp[J]. Food Chemistry,2019,275:50−58. doi: 10.1016/j.foodchem.2018.09.031
    [36]
    CARCIOCHI R A, GALVÁN-D'ALESSANDRO L, VANDENDRIESSCHE P, et al. Effect of germination and fermentation process on the antioxidant compounds of quinoa seeds[J]. Plant Foods for Human Nutrition,2016,71(4):361−367. doi: 10.1007/s11130-016-0567-0
    [37]
    李光耀, 柴新想, 程伟, 等. 固态发酵技术强化麸皮酚类物质释放的研究进展[J]. 食品与发酵工业,2021(9):311−316. [LI G Y, CHAI X X, CHENG W, et al. Research progress of solid state fermentation technology to enhance the release of phenols from bran[J]. Food and Fermentation Industries,2021(9):311−316. doi: 10.13995/j.cnki.11-1802/ts.029195
    [38]
    RIZZELLO C G, LORUSSO A, RUSSO V, et al. Improving the antioxidant properties of quinoa flour through fermentation with selected autochthonous lactic acid bacteria[J]. International Journal of Food Microbiology,2017,241:252−261. doi: 10.1016/j.ijfoodmicro.2016.10.035
  • Related Articles

    [1]WANG Shengyu, HUANG Yousheng, CHEN Lihua, DONG Huanhuan, GUAN Yongmei, ZHU Weifeng. Effects of Solid Fermentation of Aspergillus niger on Release of Bound Phenols and Antioxidant Activity of By-products of Pueraria thomsonii[J]. Science and Technology of Food Industry, 2025, 46(5): 136-144. DOI: 10.13386/j.issn1002-0306.2024030344
    [2]CAI Yueyue, MERHABA Abla, GAO Lu, YANG Lixin. Analysis of Phenolic Content and Its Antioxidant and Anti-inflammatory Activities during the Fermentation Process of Rosa rugosa 'Dianhong'[J]. Science and Technology of Food Industry, 2024, 45(11): 213-221. DOI: 10.13386/j.issn1002-0306.2023070005
    [3]CAO Zhuoyang, LIN Xiaojuan, ZHANG Hongjing, WAN Jiajia, CHEN Jicheng. Effects of Ultra-high Static Pressure and in Vitro Digestion on Phenolics, Antioxidant Activity and Structure from Sesame[J]. Science and Technology of Food Industry, 2022, 43(3): 33-39. DOI: 10.13386/j.issn1002-0306.2021040138
    [4]GOU Mei-ling, ZHANG Jing. Effects of Germination on the Nutrient and Antioxidant Activity of Barley[J]. Science and Technology of Food Industry, 2020, 41(3): 86-89,97. DOI: 10.13386/j.issn1002-0306.2020.03.016
    [5]DANG Bin. Analysis on Phenols and Antioxidant Activities of Quinoa Resources in Qinghai[J]. Science and Technology of Food Industry, 2019, 40(17): 30-37. DOI: 10.13386/j.issn1002-0306.2019.17.006
    [6]LIU Wei, ZHONG Qi, FU Wei, LUO Ling, LIU Xu, ZHANG Hong. Effect of Cultivation Altitudes on Phenolics Compounds Content, Antioxidant Activities and Ester Aromatic Components of Merlot and Cabernet Sauvignon Wines[J]. Science and Technology of Food Industry, 2018, 39(20): 47-54. DOI: 10.13386/j.issn1002-0306.2018.20.009
    [7]LIN Su-ying, XIE Wen-yan, HE Song-tao, CAI Li-na, XIE Xiao-mei, WU Jin-cheng. Phenolic contents and antioxidant activity in the fruit of different loquat cultivars[J]. Science and Technology of Food Industry, 2016, (18): 149-152. DOI: 10.13386/j.issn1002-0306.2016.18.020
    [8]FU Xiao-yan, SUI Yong, XIE Bi-jun, SUN Zhi-da. Comparison of content, composition and antioxidant activity of germinated oat phenols by different extraction methods[J]. Science and Technology of Food Industry, 2014, (15): 54-57. DOI: 10.13386/j.issn1002-0306.2014.15.002
    [9]茶多酚对色拉油的抗氧化作用[J]. Science and Technology of Food Industry, 1999, (06): 27-28. DOI: 10.13386/j.issn1002-0306.1999.06.069
    [10]柿叶乙醇提取物在猪油中的抗氧化性研究[J]. Science and Technology of Food Industry, 1999, (05): 22-23. DOI: 10.13386/j.issn1002-0306.1999.05.006
  • Cited by

    Periodical cited type(12)

    1. 赵忠祥,王家林. 酶解法制备油莎豆粕抗氧化肽工艺优化. 现代农业科技. 2024(17): 154-158 .
    2. 伍津瑶,殷明月,杨美花,康晶晶. 茶树菇降压肽制备工艺优化. 食品与机械. 2024(11): 172-179 .
    3. 段帅,吴晓彤. 油莎豆粕抗氧化肽的制备及其稳定性研究. 中国粮油学报. 2023(01): 80-89 .
    4. 颜阿娜,洪燕婷,王琳,黄茂坤. 鲭鱼酶解工艺双响应面法优化及抗氧化活性研究. 通化师范学院学报. 2023(04): 59-67 .
    5. 张敏君,段雪伟,王燕,杨慧文,刘冰,向文静,由天辉. 构树根皮活性成分乙醇提取工艺优化及其抗氧化活性分析. 食品工业科技. 2023(11): 196-203 . 本站查看
    6. 王燕,段雪伟,张敏君,杨慧文,刘冰,由天辉. 响应面法优化黑玉米粒多糖提取工艺及其抗氧化活性分析. 食品工业科技. 2023(22): 191-200 . 本站查看
    7. 詹炜君,金星鹏,陈俪锟,陈丽. 马鲛鱼黄嘌呤氧化酶抑制肽的制备工艺优化及抗氧化活性研究. 食品安全质量检测学报. 2023(22): 278-287 .
    8. 陈冰冰,欧颖仪,叶灏铎,金昶言,梁兴唐,尹艳镇,郑韵英,曹庸,苗建银. 富硒辣木叶蛋白ACE抑制肽的酶解工艺优化及活性研究. 食品工业科技. 2022(03): 1-9 . 本站查看
    9. 沈晓静,黄璐璐,聂凡秋,王青,杨俊滔,颜成慧,姜薇薇. 云南小粒咖啡花多糖提取工艺优化及其抗氧化活性分析. 食品工业科技. 2022(04): 238-245 . 本站查看
    10. 许依能,纪登杰,杨威,马洁,陈丽. 超声辅助酶法制备南极磷虾抗菌肽的工艺优化. 中国食品添加剂. 2022(05): 73-80 .
    11. 段帅,张德建,姚玉军,吴晓彤. 油莎豆营养价值及加工应用研究进展. 食品科技. 2022(07): 149-154 .
    12. 陈冰冰,杨奕,李嘉颐,金昶言,程缤霈,邓泳琪,林碧敏,梁东,唐德剑,孟莉,苗建银. 富硒辣木籽蛋白降压肽的酶法制备、硒含量及稳定性研究. 食品与机械. 2022(08): 213-221 .

    Other cited types(8)

Catalog

    Article Metrics

    Article views (246) PDF downloads (28) Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return