WANG Luyao, ZHANG Duqin, NIU Meng, et al. Effects of Solid-state Fermentation on the Nutrients, Phenolics Content and Antioxidant Activity of Quinoa[J]. Science and Technology of Food Industry, 2022, 43(24): 130−138. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022020088.
Citation: WANG Luyao, ZHANG Duqin, NIU Meng, et al. Effects of Solid-state Fermentation on the Nutrients, Phenolics Content and Antioxidant Activity of Quinoa[J]. Science and Technology of Food Industry, 2022, 43(24): 130−138. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022020088.

Effects of Solid-state Fermentation on the Nutrients, Phenolics Content and Antioxidant Activity of Quinoa

More Information
  • Received Date: February 14, 2022
  • Available Online: October 22, 2022
  • In order to screen suitable strains for solid-state fermentation that can improve the nutritional components, phenolic content and antioxidant activity of quinoa, and provide a theoretical basis for the development of quinoa products, quinoa was treated by solid-state fermentation (SSF) with single and mixed microbial strains of Lactobacillus plantarum, Saccharomyces cerevisiae, Rhizopus oryzae, Aspergillus oryzae, and Neurospora sitophila were performed in quinoa for 30 and 48 h. Effects of SSF with different strains on the nutrients, phenolics content and antioxidant activity in quinoa were determined and analyzed. Results showed that: After SSF, the starch and insoluble dietary fiber content in quinoa decreased respectively from 54.61% to the lowest 39.32%, and 2.32% to the lowest 0.26%. While the soluble dietary fiber content increased from 2.58% to the highest 4.38%. With the extension of the fermentation time (from 30 to 48 h), contents of free polyphenols and flavonoids in quinoa increased by 1.72 and 1.72 times as much as those in unfermented quinoa respectively, and the contents of bound polyphenols and flavonoids increased by 2.88 and 1.84 times as much as those in unfermented quinoa respectively. Although the antioxidant activity and DPPH free radical scavenging ability of free phenols in quinoa decreased after fermentation, the total antioxidant activity, DPPH and ABTS+ free radical scavenging capacities of the bound phenols increased significantly (P<0.05). In general, the antioxidant activities of quinoa phenolics were significantly improved after SSF with mixed cultures for 48 h, especially for the fermented quinoa with three mixed strains of Lactobacillus plantarum, Saccharomyces cerevisiae and Neurospora sitophila for 48 h, which was the best combination of strains for SSF processing of quinoa.
  • [1]
    申瑞玲, 张文杰, 董吉林, 等. 藜麦的营养成分、健康促进作用及其在食品工业中的应用[J]. 中国粮油学报,2016,31(9):150−155. [SHEN R L, ZHANG W J, DONG J L, et al. Nutritional composition, health promoting effect of quinoa and its application in food industry[J]. Journal of the Chinese Cereals and Oils Association,2016,31(9):150−155. doi: 10.3969/j.issn.1003-0174.2016.09.027
    [2]
    GOMEZ-CARAVACA A M, IAFELICE G, VERARDO V, et al. Influence of pearling process on phenolic and saponin content in quinoa (Chenopodium quinoa Willd)[J]. Food Chemistry,2014,157:174−178. doi: 10.1016/j.foodchem.2014.02.023
    [3]
    张婷, 张艺沛, 何宗泽, 等. 挤压膨化藜麦粉工艺优化及品质分析[J]. 食品工业科技,2019,40(18):177−184. [ZHANG T, ZHANG Y P, HE Z Z, et al. Process optimization and quality analysis of extruded quinoa flour[J]. Science and Technology of Food Industry,2019,40(18):177−184. doi: 10.13386/j.issn1002-0306.2019.18.029
    [4]
    TI H, ZHANG R, ZHANG M, et al. Dynamic changes in the free and bound phenolic compounds and antioxidant activity of brown rice at different germination stages[J]. Food Chemistry,2014,161(10):337−344.
    [5]
    胡畔, 杨萍, 郭天时. 植物乳杆菌与米根霉混合固态发酵改善玉米粉理化加工特性[J]. 食品与发酵工业,2020,46(7):161−167. [HU P, YANG P, GUO T S. Change in physicochemical and processing properties of maize flour after solid fermentation with Lactobacillus plantarum and Rhizopus oryzae[J]. Food and Fermentation Industry,2020,46(7):161−167. doi: 10.13995/j.cnki.11-1802/ts.021712
    [6]
    ZHANG D, TAN B, ZHANG Y, et al. Improved nutritional and antioxidant properties of hulless barley following solid-state fermentation with Saccharomyces cerevisiae and Lactobacillus plantarum[J]. Journal of Food Processing and Preservation,2022,46(2):e16245.
    [7]
    DORDEVIC T M, SILER-MARINKOVIC S S, DIMITRIJEVIC-BRANKOVIC S I. Effect of fermentation on antioxidant properties of some cereals and pseudo cereals[J]. Food Chemistry,2010,119(3):957−963. doi: 10.1016/j.foodchem.2009.07.049
    [8]
    孙丹. 固态发酵苦荞中酚类物质、抗氧化性及抗炎活性的研究[D]. 昆明: 昆明理工大学, 2016.

    SUN D. Study on phenols, antioxidant and anti-inflammatory activities of tartary buckwheat by solid-state fermentation[D]. Kunming: Kunming University of Science and Technology, 2016.
    [9]
    ZHANG D, TAN B. Effects of different solid-state fermentation ratios of S. cerevisiae and L. plantarum on physico-chemical properties of wheat bran and the quality of whole wheat bread[J]. Journal of the Science of Food and Agriculture,2021,101(11):4551−4560. doi: 10.1002/jsfa.11097
    [10]
    DULINSKI R, STARZYNSKA-JANISZEWSKA A, ŁUKASZ BYCZYNSKI, et al. Myo-inositol phosphates profile of buckwheat and quinoa seeds: Effects of hydrothermal processing and solid-state fermentation with Rhizopus oligosporus[J]. International Journal of Food Properties,2016,20(9):2088−2095.
    [11]
    AYYASH M, JOHNSON S K, LIU S Q, et al. Cytotoxicity, antihypertensive, antidiabetic and antioxidant activities of solid-state fermented lupin, quinoa and wheat by Bifidobacterium species: In-vitro investigations[J]. LWT, 2018, 95: 295-302.
    [12]
    XU L N, GUO S, WANG S W. Effects of solid-state fermentation on the nutritional components and antioxidant properties from quinoa[J]. Emirates Journal of Food and Agriculture,2019,31(1):39−45.
    [13]
    郑子懿, 李成武, 李琳, 等. 比较发芽和固态发酵对糙米营养及感官品质的影响[J]. 食品安全质量检测学报,2021,12(11):4467−4473. [ZHENG Z Y, LI C W, LI L, et al. Comparing the effects of germination and solid-state fermentation on the nutrition and sensory quality of brown rice[J]. Food Safety and Quality Detection Technology,2021,12(11):4467−4473. doi: 10.19812/j.cnki.jfsq11-5956/ts.2021.11.023
    [14]
    WANG L, CHEN J, XIE H, et al. Phytochemical profiles and antioxidant activity of adlay varieties[J]. Journal of Agricultural & Food Chemistry,2013,61(21):5103−5113.
    [15]
    MEYERS K J, WATKINS C B, PRITTS M P, et al. Antioxidant and antiproliferative activities of strawberries[J]. Journal of Agricultural and Food Chemistry,2003,51(23):6887−6892. doi: 10.1021/jf034506n
    [16]
    张金宏. 苹果渣中游离酚和结合酚的提取及其功能特性的研究[D]. 杨凌: 西北农林科技大学, 2016.

    ZHANG J H. Study on the extraction and functional characteristics of free phenol and bound phenol from apple pomace[D]. Yangling: Northwest A&F University, 2016.
    [17]
    BOUAYED J, HOFFMANN L, BOHN T. Total phenolics, flavonoids, anthocyanins and antioxidant activity following simulated gastro-intestinal digestion and dialysis of apple varieties: Bioaccessibility and potential uptake[J]. Food Chemistry,2011,128(1):14−21. doi: 10.1016/j.foodchem.2011.02.052
    [18]
    THAIPONG K, BOONPRAKOB U, CROSBY K, et al. Comparison of ABTS+·, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts[J]. Journal of Food Composition & Analysis,2006,19(6):669−675.
    [19]
    RE R. Antioxidant activity applying an improved ABTS+· radical cation decolorization assay[J]. Free Radic Biol Med,1999,26:1231−1237. doi: 10.1016/S0891-5849(98)00315-3
    [20]
    CONTRERAS-JIMENEZ B, TORRES-VARGAS O L, RODRIGUEZ-GARCIA M E. Physicochemical characterization of quinoa (Chenopodium quinoa) flour and isolated starch[J]. Food Chemistry,2019,298:1249821−1249827.
    [21]
    张欢, 王端好, 陆光瑞, 等. 酸性蛋白酶对发酵黄豆酱品质的影响[J]. 中国酿造,2021,40(8):150−156. [ZHANG H, WANG D H, LU G R, et al. Effect of acid protease on the quality of fermented soybean paste[J]. China Brewing,2021,40(8):150−156. doi: 10.11882/j.issn.0254-5071.2021.08.027
    [22]
    余肖飞, 郭晓农, 张妍, 等. 响应面法优化藜麦秸秆饲料发酵工艺的研究[J]. 草业学报,2021,30(5):155−164. [YU X F, GUO X N, ZHANG Y, et al. Optimization of quinoa straw feed fermentation process by response surface methodology[J]. Acta Prataculturae Sinica,2021,30(5):155−164. doi: 10.11686/cyxb2020203
    [23]
    曾子毅, 丁诗瑶, 卢向阳, 等. 几株植物乳杆菌β-葡萄糖苷酶的特性研究[J]. 中国酿造,2019,38(1):75−79. [ZENG Z Y, DING S Y, LU X Y, et al. Characteristics of β-glucosidase from Lactobacillus plantarum[J]. China Brewing,2019,38(1):75−79. doi: 10.11882/j.issn.0254-5071.2019.01.015
    [24]
    DENG Y P, XIN J Y, LIU X L, et al. Optimization of culture conditions and medium composition for the synthesis of xylanase by resting neurospora sitophila cells: Analysis of the effects of sugars on xylanase production using the resting cell[J]. Journal of Biobased Materials & Bioenergy,2017,11:553−561.
    [25]
    张利, 王硕, 刘宝祥, 等. 酿酒酵母老化过程中酶活力变化研究[J]. 食品科技,2012,37(7):5−9. [ZHANG L, WANG S, LIU B X, et al. Changes in enzyme activity during Saccharomyces cerevisiae aging[J]. Food Science and Technology,2012,37(7):5−9.
    [26]
    吴立根, 王岸娜, 申瑞凌, 等. 藜麦碾磨加工与营养分布研究进展[J]. 食品研究与开发,2020,41(16):194−198. [WU L G, WANG A N, SHEN R L, et al. Research progress on grinding processing and nutrient distribution of quinoa[J]. Food Research and Development,2020,41(16):194−198. doi: 10.12161/j.issn.1005-6521.2020.16.032
    [27]
    SAGAR S, GOUDAR G, SREEDHAR M, et al. Characterization of nutritional content and in vitro antioxidant properties of Plantago ovata seeds[J]. International Journal of Food Sciences and Nutrition,2020,2(6):1−5.
    [28]
    许锡凯, 辛嘉英, 任佳欣, 等. 好食脉孢霉发酵麦麸制备可溶性膳食纤维及其理化性质[J]. 食品工业科技,2021,42(2):170−176. [XU X K, XIN J Y, REN J X, et al. Preparation and physicochemical properties of soluble dietary fiber from wheat bran fermented by Neurospora sativa[J]. Science and Technology of Food Industry,2021,42(2):170−176. doi: 10.13386/j.issn1002-0306.2020030170
    [29]
    ZHANG H, ZHANG X, CAO X R, et al. Semi-solid state fermentation and enzymatic hydrolysis impeded the destroy of wheat bran on gluten polymerization[J]. LWT,2018,98:306−313. doi: 10.1016/j.lwt.2018.08.047
    [30]
    延莎, 邢洁雯, 王晓闻. 不同菌种发酵对藜麦蛋白质特性及脂质构成的影响[J]. 中国农业科学,2020,53(10):2045−2054. [YAN S, XING J W, WANG X W. Effects of different strains fermentation on protein characteristics and lipid composition of quinoa[J]. Scientia Agricultura Sinica,2020,53(10):2045−2054. doi: 10.3864/j.issn.0578-1752.2020.10.011
    [31]
    吴学凤, 潘丽军, 姜绍通, 等. 发酵法制备小麦麸皮膳食纤维[J]. 食品科学,2012,33(17):169−173. [WU X F, PAN L J, JIANG S T, et al. Preparation of dietary fiber from wheat bran by fermentation[J]. Food Science,2012,33(17):169−173.
    [32]
    ĐORĐEVIĆ T M, ŠILER-MARINKOVIĆ S S, DIMITRIJEVIĆ-BRANKOVIĆ S I. Effect of fermentation on antioxidant properties of some cereals and pseudo cereals[J]. Food Chemistry,2009,119(3):957−963.
    [33]
    FLORIAN H, ARENDT E K. Germination of cereal grains as a way to improve the nutritional value: A review[J]. Critical Reviews in Food Science and Nutrition,2013,53(8):853−861. doi: 10.1080/10408398.2011.562060
    [34]
    REPO-CARRASCO-VALENCIA R, HELLSTRÖM J K, PIHLAVA J M, et al. Flavonoids and other phenolic compounds in Andean indigenous grains: Quinoa (Chenopodium quinoa), kañiwa (Chenopodium pallidicaule) and kiwicha (Amaranthus caudatus)[J]. Food Chemistry,2010,120(1):128−133. doi: 10.1016/j.foodchem.2009.09.087
    [35]
    AYYASH M, JOHNSON S K, LIU S Q, et al. In vitro investigation of bioactivities of solid-state fermented lupin, quinoa and wheat using Lactobacillus spp[J]. Food Chemistry,2019,275:50−58. doi: 10.1016/j.foodchem.2018.09.031
    [36]
    CARCIOCHI R A, GALVÁN-D'ALESSANDRO L, VANDENDRIESSCHE P, et al. Effect of germination and fermentation process on the antioxidant compounds of quinoa seeds[J]. Plant Foods for Human Nutrition,2016,71(4):361−367. doi: 10.1007/s11130-016-0567-0
    [37]
    李光耀, 柴新想, 程伟, 等. 固态发酵技术强化麸皮酚类物质释放的研究进展[J]. 食品与发酵工业,2021(9):311−316. [LI G Y, CHAI X X, CHENG W, et al. Research progress of solid state fermentation technology to enhance the release of phenols from bran[J]. Food and Fermentation Industries,2021(9):311−316. doi: 10.13995/j.cnki.11-1802/ts.029195
    [38]
    RIZZELLO C G, LORUSSO A, RUSSO V, et al. Improving the antioxidant properties of quinoa flour through fermentation with selected autochthonous lactic acid bacteria[J]. International Journal of Food Microbiology,2017,241:252−261. doi: 10.1016/j.ijfoodmicro.2016.10.035
  • Related Articles

    [1]JIN Xin, ZHANG Nan, MEI Xiaoliang, SUN Shihao, ZHAO Liwen, YAN Baofei. Effect of Pogostemon cablin Aqueous Extract on Gut Barrier in Mouse Model of Ulcerative Colitis[J]. Science and Technology of Food Industry, 2024, 45(24): 319-327. DOI: 10.13386/j.issn1002-0306.2023100226
    [2]ZHAO Danyu, YI Huilan. Mitigative Effect of Grape Skin Extract on Arsenic-induced Small Intestinal Toxicity in a Mouse Model[J]. Science and Technology of Food Industry, 2024, 45(4): 305-312. DOI: 10.13386/j.issn1002-0306.2023040011
    [3]BAI Dongwen, BAO Xiaowei, ZENG Lanjun, LIU Xiaolu, LI Yixin, SUN Jiali, JIN Weiquan, JIANG Junfeng. Effects of Cistanche deserticola Extract on D-Galactose-Induced Aging Model Mice[J]. Science and Technology of Food Industry, 2022, 43(20): 380-386. DOI: 10.13386/j.issn1002-0306.2022010264
    [4]HU Fenqing, LI Cuibai, DANG Lingjing, ZOU Cheng, ZHAO Qing, SHAO Yuefeng. Research Progress of Anti-lung Cancer Effect of Quercetin in Vitro[J]. Science and Technology of Food Industry, 2022, 43(18): 416-424. DOI: 10.13386/j.issn1002-0306.2021080017
    [5]ZHANG Weijie, XIE Xingfei, YAN He. Effect of a Compound Chinese Herbal Medicine on Cognitive Dysfunction and Gut Microbiota in the Model Mouse with Alzheimer’s Disease[J]. Science and Technology of Food Industry, 2021, 42(13): 345-350. DOI: 10.13386/j.issn1002-0306.2020080074
    [6]BAO Xiao-wei, LI Jian-ying, REN Wei, WEI Chen-ye, ZENG Lan-jun, ZHANG Ya-tao. Antioxidant Effects of Hippophae rhamnoides Polysaccharide on Aging Mouse Induced by D-galactose[J]. Science and Technology of Food Industry, 2020, 41(4): 293-297,306. DOI: 10.13386/j.issn1002-0306.2020.04.050
    [7]LIU Gong-cheng, WANG Zuo-wei, LI Ting-ting, DU Jin-ying, DU Xiao-gang, CAO Xiao-han, ZENG Xian-yin. Effect of polysaccharides from the leaves of Paris polyphylla on immune function and antioxidant capacities of mouse spleen tissue in a D-galactose-induced aging mouse model[J]. Science and Technology of Food Industry, 2015, (16): 366-369. DOI: 10.13386/j.issn1002-0306.2015.16.066
    [8]JIN Sheng-lang, QUE Fei, WANG Ying, WEI Xiao-xiao. Anti-aging effect of total polysaccharide from Dendranthema morifolium on aging mouse induced by D-galactose[J]. Science and Technology of Food Industry, 2015, (10): 349-351. DOI: 10.13386/j.issn1002-0306.2015.10.065
    [9]DAI Yi, CAO Dian-jie, XIA Lian-feng. Study on the antioxidant activities of Erzi Juhua Yin and the contents of luteolin and quercetin[J]. Science and Technology of Food Industry, 2015, (05): 282-285. DOI: 10.13386/j.issn1002-0306.2015.05.051
    [10]Antioxidant effect of total flavonoids from Huizhou Gongju on aging mouse induced by D-galactose[J]. Science and Technology of Food Industry, 2012, (15): 357-359. DOI: 10.13386/j.issn1002-0306.2012.15.018
  • Cited by

    Periodical cited type(4)

    1. 姜振旭,王朝兴,王宇亮,赵宏,沈宇,孙诗晴,马永哲,宋明明,张宇. 基于GEO数据库结合网络药理学和分子对接技术探究玉竹抗抑郁作用机制. 食品工业科技. 2025(01): 359-366 . 本站查看
    2. 卜佳亮,申林,孟媛,朴英实. 基于网络药理学和分子对接技术探讨人参有效成分治疗特应性皮炎的作用机制. 皮肤性病诊疗学杂志. 2025(01): 33-41 .
    3. 赵钜阳,方胥伟,顾丽雅,杨斐然,高世勇,李文兰. 基于网络药理学及分子对接技术研究槐花的抗肥胖作用机制. 食品工业科技. 2024(24): 42-49 . 本站查看
    4. 刘浩,杨洪柳,柳志诚,王文琪,梁敬臣,刘永刚. 基于网络药理学和分子对接研究黄芩治疗白癜风的作用机制. 现代药物与临床. 2023(08): 1872-1880 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (246) PDF downloads (28) Cited by(8)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return