ZHENG Yi, LI Shiying, LI Chuang, et al. Lipid-Lowering Effect of Ginkgo biloba Peptides on High-Fat Diet Induced Hyperlipidemia in Mice[J]. Science and Technology of Food Industry, 2022, 43(17): 417−423. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120113.
Citation: ZHENG Yi, LI Shiying, LI Chuang, et al. Lipid-Lowering Effect of Ginkgo biloba Peptides on High-Fat Diet Induced Hyperlipidemia in Mice[J]. Science and Technology of Food Industry, 2022, 43(17): 417−423. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021120113.

Lipid-Lowering Effect of Ginkgo biloba Peptides on High-Fat Diet Induced Hyperlipidemia in Mice

More Information
  • Received Date: December 12, 2021
  • Available Online: July 03, 2022
  • This paper investigated the lipid-lowering effect of Ginkgo biloba peptides on high-fat diet induced hyperlipidemia in mice. Mice were randomly divided into six groups, including normal group, high-fat model group, Ginkgo biloba peptides low-dose (100 mg/kg), medium-dose (200 mg/kg), high-dose group (400 mg/kg) and positive control group (10 mg/kg simvastatin). A hyperlipidemia mice mode was established by feeding high-fat diet. Body weight, liver index, food intake, and apparent fat digestibility were measured. The kits were employed to determine the levels of the serum triglyceride (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C) and high density liptein cholesterol (HDL-C), interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and the levels of the liver tissue total antioxidant capacity (T-AOC), total superoxide dismutase (T-SOD) and malondialdehyde (MDA). The atherogenic index (AI) and coronary heart index (CHI) were calculated. The results showed that the low, medium and high doses of Ginkgo biloba peptides significantly reduced the body weight and liver index (P<0.05), increased the apparent fat digestibility (P<0.05), had no significant effect on the food intake (P>0.05), down-regulated the TC, TG and LDL-C levels (P<0.05), up-regulated the HDL-C level, down-regulated the inflammatory cytokine IL-6 and TNF-α levels (P<0.05), reduced AI and CHI (P<0.05), promoted the T-AOC and T-SOD levels, and reduced the MDA level (P<0.05) as compared with the high-fat model group. No significant difference was found in liver index, food intake, apparent fat digestibility, TG, TC, HDL-C, CHI, IL-6, and TNF-α between the high-dose group and the positive control group (P>0.05). Ginkgo biloba peptides has an auxiliary lipid-lowering effect on high-fat diet induced hyperlipidemia in mice, and the underlying mechanisms is related to improving the body's antioxidant capacity and inhibiting the expression of pro-inflammatory cytokines.
  • [1]
    《中国心血管健康与疾病报告》编写组. 《中国心血管健康与疾病报告2020》要点解读[J]. 中国心血管杂志,2021,26(3):209−218. [The Writing Committee of the Report on Cardiovascular Health and Diseases in China. Interpretation of report on cardiovascular health and diseases in China 2020[J]. Chinese Journal of Cardiovascular Medicine,2021,26(3):209−218.

    The Writing Committee of the Report on Cardiovascular Health and Diseases in China. Interpretation of report on cardiovascular health and diseases in China 2020[J]. Chinese Journal of Cardiovascular Medicine, 2021, 26(3): 209-218.
    [2]
    毛凡, 姜莹莹, 刘韫宁, 等. 中国居民心脑血管疾病流行现况及危险因素分析: 基于2017年中国心血管健康指数研究[J]. 中华预防医学杂志,2021,55(11):1280−1286. [MAO F, JIANG Y Y, LIU W N, et al. Status of cardiovascular disease epidemics and its risk factors prevention and control in China: An evaluation based on China cardiovascular health index of 2017[J]. Chinese Journal of Preventive Medicine,2021,55(11):1280−1286. doi: 10.3760/cma.j.cn112150-20210822-00817

    MAO F, JIANG Y Y, LIU W N, et al. Status of cardiovascular disease epidemics and its risk factors prevention and control in China: An evaluation based on China cardiovascular health index of 2017[J]. Chinese Journal of Preventive Medicine, 2021, 55(11): 1280-1286. doi: 10.3760/cma.j.cn112150-20210822-00817
    [3]
    邵素娟, 丁方莉, 刘迪迪, 等. 食物蛋白源降血脂肽的研究进展[J]. 食品工业科技,2018,39(1):323−326, 332. [SHAO S J, DING F L, LIU D D, et al. Research progress of hypolipidemic peptides in dietary proteins source[J]. Science and Technology of Food Industry,2018,39(1):323−326, 332.

    SHAO S J, DING F L, LIU D D, et al. Research progress of hypolipidemic peptides in dietary proteins source[J]. Science and Technology of Food Industry, 2018, 39(1): 323-326, 332.
    [4]
    张焕新, 臧大存, 刘靖, 等. 银杏肽的抗氧化性研究[J]. 食品研究与开发,2008,29(12):27−29. [ZHANG H X, ZANG D C, LIU J, et al. Antioxidant activity of ginkgo peptides[J]. Food Research and Development,2008,29(12):27−29. doi: 10.3969/j.issn.1005-6521.2008.12.009

    ZHANG H X, ZANG D C, LIU J, et al. Antioxidant activity of ginkgo peptides[J]. Food Research and Development, 2008, 29(12): 27-29. doi: 10.3969/j.issn.1005-6521.2008.12.009
    [5]
    贾韶千, 吴彩娥, 范龚健, 等. 双酶法制备银杏抗氧化肽工艺研究[J]. 食品科学,2011,32(21):201−206. [JIA S Q, WU C E, FAN G J, et al. Preparation of antioxidant peptides derived from Ginkgo biloba Kernel by dual-enzymatic method[J]. Food Science,2011,32(21):201−206.

    JIA S Q, WU C E, FAN G J, et al. Preparation of antioxidant peptides derived from Ginkgo biloba Kernel by dual-enzymatic method[J]. Food Science, 2011, 32(21): 201-206.
    [6]
    贾韶千, 吴彩娥, 范龚健, 等. 银杏抗氧化肽的分离纯化及活性鉴定[J]. 农业机械学报,2011,42(6):152−155. [JIA S Q, WU C E, FAN G J, et al. Purification and activity identification of ginkgo antioxidant peptide[J]. Transactions of the Chinese Society for Agricultural Machinery,2011,42(6):152−155.

    JIA S Q, WU C E, FAN G J, et al. Purification and activity identification of ginkgo antioxidant peptide[J]. Transactions of the Chinese Society for Agricultural Machinery, 2011, 42(6): 152-155.
    [7]
    MA F F, WANG H, WEI C K, et al. Three novel ACE inhibitory peptides isolated from Ginkgo biloba seeds: Purification, inhibitory kinetic and mechanism[J]. Frontiers in Pharmacology,2019,9:1579. doi: 10.3389/fphar.2018.01579
    [8]
    SUN W, WU C, FAN G, et al. Preparation of a functional beverage with α-glucosidase inhibitory peptides obtained from ginkgo seeds[J]. Journal of Food Science and Technology,2021,58(12):4495−4503. doi: 10.1007/s13197-020-04931-3
    [9]
    郑义, 李诗颖, 糜心怡, 等. 银杏肽对急性酒精性肝损伤小鼠的保护作用[J]. 食品与发酵工业,2021,47(21):109−114. [ZHENG Y, LI S Y, MI X Y, et al. Protective effect of Ginkgo biloba peptides on acute alcoholic liver injury in mice[J]. Food and Fermentation Industries,2021,47(21):109−114.

    ZHENG Y, LI S Y, MI X Y, et al. Protective effect of Ginkgo biloba peptides on acute alcoholic liver injury in mice[J]. Food and Fermentation Industries, 2021, 47(21): 109-114.
    [10]
    李诗颖, 陈琳, 糜心怡, 等. 提取方法对银杏蛋白功能特性及抗氧化活性的影响[J]. 食品工业科技,2021,42(20):37−43. [LI S Y, CHEN L, MI X Y, et al. Effects of extraction methods on functional properties and antioxidant activity of Ginkgo biloba proteins[J]. Science and Technology of Food Industry,2021,42(20):37−43.

    LI S Y, CHEN L, MI X Y, et al. Effects of extraction methods on functional properties and antioxidant activity of Ginkgo biloba proteins[J]. Science and Technology of Food Industry, 2021, 42(20): 37-43.
    [11]
    田许, 杨玉辉, 王雅楠, 等. 鱼胶原蛋白肽对高脂膳食小鼠肝脏脂肪代谢和氧化还原状态的影响[J]. 食品科学,2019,40(3):149−157. [TIAN X, YANG Y H, WANG Y N, et al. Effects of fish collagen peptides on hepatic lipid metabolism and redox status in mice fed with high-fat diet[J]. Food Science,2019,40(3):149−157. doi: 10.7506/spkx1002-6630-20170807-093

    TIAN X, YANG Y H, WANG Y N, et al. Effects of fish collagen peptides on hepatic lipid metabolism and redox status in mice fed with high-fat diet[J]. Food Science, 2019, 40(3): 149-157. doi: 10.7506/spkx1002-6630-20170807-093
    [12]
    GHONEIM M M, HASSAN A I, MAHMOUD M G, et al. Effect of polysaccharide from Bacillus subtilis sp. on cardiovascular diseases and atherogenic indices in diabetic rats[J]. BMC Complementary and Alternative Medicine,2016,16(1):112. doi: 10.1186/s12906-016-1093-1
    [13]
    钱珊珊, 冯雪, 于彤, 等. 大豆活性肽对肥胖小鼠降脂作用的研究[J]. 食品工业科技,2021,42(3):310−314, 319. [QIAN S S, FENG X, YU T, et al. Study on the lipid-lowering effect of soybean active peptide on obese mice[J]. Science and Technology of Food Industry,2021,42(3):310−314, 319.

    QIAN S S, FENG X, YU T, et al. Study on the lipid-lowering effect of soybean active peptide on obese mice[J]. Science and Technology of Food Industry, 2021, 42(3): 310-314, 319.
    [14]
    DUAN R, GUAN X, HUANG K, et al. Flavonoids from whole-grain oat alleviated high-fat diet-induced hyperlipidemia via regulating bile acid metabolism and gut microbiota in mice[J]. Journal of Agricultural and Food Chemistry,2021,69(27):7629−7640. doi: 10.1021/acs.jafc.1c01813
    [15]
    LIU C, SHEN Y J, TU Q B, et al. Pedunculoside, a novel triterpene saponin extracted from Ilex rotunda, ameliorates high-fat diet induced hyperlipidemia in rats[J]. Biomedicine & Pharmacotherapy,2018,101:608−616.
    [16]
    ZHANG X L, WU Y F, WANG Y S, et al. The protective effects of probiotic-fermented soymilk on high-fat diet-induced hyperlipidemia and liver injury[J]. Journal of Functional Foods,2017,30:220−227. doi: 10.1016/j.jff.2017.01.002
    [17]
    魏连会, 宋淑敏, 董艳, 等. 火麻籽多肽对高脂饮食喂养大鼠血脂的影响[J]. 食品科学,2021,42(11):161−167. [WEI L H, SONG S M, DONG Y, et al. Effect of hemp seed peptide on blood lipids in high-fat diet fed rats[J]. Food Science,2021,42(11):161−167. doi: 10.7506/spkx1002-6630-20200421-266

    WEI L H, SONG S M, DONG Y, et al. Effect of hemp seed peptide on blood lipids in high-fat diet fed rats[J]. Food Science, 2021, 42(11): 161-167. doi: 10.7506/spkx1002-6630-20200421-266
    [18]
    林云鉴, 乐国伟, 施用晖, 等. 猪骨胶原蛋白肽缓解高脂饮食诱导小鼠肝脏氧化应激的基因芯片分析[J]. 天然产物研究与开发,2012,24(4):454−459. [LIN Y J, LE G W, SHI Y H, et al. Inhibition of liver oxidative stress by pig bone collagen peptide-a microarray study[J]. Natural Product Research and Development,2012,24(4):454−459. doi: 10.3969/j.issn.1001-6880.2012.04.007

    LIN Y J, LE G W, SHI Y H, et al. Inhibition of liver oxidative stress by pig bone collagen peptide-a microarray study[J]. Natural Product Research and Development, 2012, 24(4): 454-459. doi: 10.3969/j.issn.1001-6880.2012.04.007
    [19]
    SIASOS G, SIASOS G, TOUSOULIS D, et al. Inflammatory markers in hyperlipidemia: From experimental models to clinical practice[J]. Current Pharmaceutical Design,2011,17(37):4132−4146. doi: 10.2174/138161211798764780
    [20]
    PAPAPANAGIOTOU A, SIASOS G, KASSI E, et al. Novel inflammatory markers in hyperlipidemia: Clinical implications[J]. Current Medicinal Chemistry,2015,22(23):2727−2743. doi: 10.2174/0929867322666150520095008
    [21]
    LI J J, LI Y S, CHU J M, et al. Changes of plasma inflammatory markers after withdrawal of statin therapy in patients with hyperlipidemia[J]. Clinica Chimica Acta,2006,366(1):269−273.
    [22]
    SWERDLOW D I, HOLMES M V, KUCHENBAECKER K B, et al. The interleukin-6 receptor as a target for prevention of coronary heart disease: A mendelian randomisation analysis[J]. The Lancet,2012,379(9822):1214−1224. doi: 10.1016/S0140-6736(12)60110-X
    [23]
    YANG S, LIU L, MENG L, et al. Capsaicin is beneficial to hyperlipidemia, oxidative stress, endothelial dysfunction, and atherosclerosis in Guinea pigs fed on a high-fat diet[J]. Chemico-Biological Interactions,2019,297:1−7. doi: 10.1016/j.cbi.2018.10.006
    [24]
    BUMRUNGPERT A, LILITCHAN S, TUNTIPOPIPAT S, et al. Ferulic acid supplementation improves lipid profiles, oxidative stress, and inflammatory status in hyperlipidemic subjects: A randomized, double-blind, placebo-controlled clinical trial[J]. Nutrients,2018,10(6):713. doi: 10.3390/nu10060713
    [25]
    YANG R L, SHI Y H, HAO G, et al. Increasing oxidative stress with progressive hyperlipidemia in human: Relation between malondialdehyde and atherogenic index[J]. Journal of Clinical Biochemistry and Nutrition,2008,43(3):154−158. doi: 10.3164/jcbn.2008044
    [26]
    YOUNG I. Measurement of total antioxidant capacity[J]. Journal of Clinical Pathology,2001,54(5):339−339. doi: 10.1136/jcp.54.5.339
    [27]
    VALKO M, LEIBFRITZ D, MONCOL J, et al. Free radicals and antioxidants in normal physiological functions and human disease[J]. The International Journal of Biochemistry & Cell Biology,2007,39(1):44−84.
    [28]
    HALL M E, BLOUNT J D, FORBES S, et al. Does oxidative stress mediate the trade-off between growth and self-maintenance in structured families?[J]. Functional Ecology,2010,24(2):365−373. doi: 10.1111/j.1365-2435.2009.01635.x
    [29]
    毛瑞雪, 珠娜, 刘欣然, 等. 裸燕麦低聚肽改善血脂异常作用[J]. 中国公共卫生,2021,37(4):690−693. [MAO R X, ZHU N, LIU X R. Improvement effects of naked oat oligopeptides on dyslipidemia and its mechanism in rats[J]. Chinese Journal of Public Health,2021,37(4):690−693. doi: 10.11847/zgggws1127372

    MAO R X, ZHU N, LIU X R. Improvement effects of naked oat oligopeptides on dyslipidemia and its mechanism in rats[J]. Chinese Journal of Public Health, 2021, 37(4): 690-693. doi: 10.11847/zgggws1127372
    [30]
    李迪, 刘睿, 李慧, 等. 吉林人参低聚肽对高脂血症大鼠的影响[J]. 食品科学,2017,38(5):227−232. [LI D, LIU R, LI H, et al. Hypolipidemic effect of oligopeptide derived from Panax ginseng grown in Jilin province on rats with hyperlipidemia[J]. Food Science,2017,38(5):227−232. doi: 10.7506/spkx1002-6630-201705037

    LI D, LIU R, LI H, et al. Hypolipidemic effect of oligopeptide derived from Panax ginseng grown in Jilin province on rats with hyperlipidemia[J]. Food Science, 2017, 38(5): 227-232. doi: 10.7506/spkx1002-6630-201705037
  • Related Articles

    [1]SUN Renjie, TIAN Maoyu, HE Qin, WU Dezhi, CHEN Weishi. Optimization of Dendrobium officinale Granule Formula Process by Combining Analytic Hierarchy Process and Entropy Weight Method with Orthogonal Experiment[J]. Science and Technology of Food Industry, 2024, 45(8): 227-234. DOI: 10.13386/j.issn1002-0306.2023050347
    [2]ZHANG Xiaoyang, ZHANG Yiwen, ZHU Siyao, WANG Mian, LÜ Yongmei, YU Xiaohong. Screening of Three Chitinase-producing Strains, Optimization of Their Chitinase-producing Conditions and Application in the Hydrolysis of Shrimp Shells[J]. Science and Technology of Food Industry, 2023, 44(5): 98-106. DOI: 10.13386/j.issn1002-0306.2022050078
    [3]SHAN Qianyi, SHEN Yueming, ZHANG Mingxing, TANG Jiacheng, CHEN Yanjie, BAO Jianqiang. Optimization of Ultrasonic-Compound Enzyme Hydrolysis Method for Extracting Chinese Softshell Turtle Oil by Orthogonal Experiment[J]. Science and Technology of Food Industry, 2022, 43(22): 256-264. DOI: 10.13386/j.issn1002-0306.2022030035
    [4]QIAO Shuang-yu, LONG Ming-hua, ZHANG Hui-min, ZHAO Ti-yue, SUN Qiao-jian, HE Gang-jian, LIANG Yong-sheng. Optimization of the Pre-treatment Process for Determination of PAHs in Vegetables by Orthogonal Test[J]. Science and Technology of Food Industry, 2019, 40(23): 104-110,118. DOI: 10.13386/j.issn1002-0306.2019.23.018
    [5]DING Jie, CHEN Jing, SHA Rui, NIU Ben, LIANG Ning, HONG Xia. Optimization of tartaric acid extraction of anthocyanins from soybean hulls by orthogonal experiment[J]. Science and Technology of Food Industry, 2017, (13): 163-166. DOI: 10.13386/j.issn1002-0306.2017.13.030
    [6]DENG Si- jie, HANS Gregrensen. Optimization on the ultrasonic- assisted extraction of total flavonoids from Iberis amara based on orthogonal experimental design[J]. Science and Technology of Food Industry, 2016, (03): 275-278. DOI: 10.13386/j.issn1002-0306.2016.03.049
    [7]LIANG Wen-hui, HUANG Xiang, LIN Li-chun, XIA Nian-yi, ZHANG Xun, PENG Chun-lin, QIU Tian, SHI Xiao-yu, DENG Xiang-yi. Optimization of extracting conditions of flavonoids from Gingko Callus by orthogonal experiment[J]. Science and Technology of Food Industry, 2015, (09): 209-213. DOI: 10.13386/j.issn1002-0306.2015.09.037
    [8]NIU Gai-gai, DENG Jian-chao, LI Lai-hao, YANG Xian-qing, WU Yan-yan, HAO Shu-xian, QI Bo, LIN Wan-ling. Optimization of microwave extraction technology of caulerpin from feathery fern frond by orthogonal experiment design[J]. Science and Technology of Food Industry, 2014, (18): 241-244. DOI: 10.13386/j.issn1002-0306.2014.18.044
    [9]DONG Hong-min, LI Su-qing, NIU Xiao-yong, SHEN Li-wen, LI Lu, QIN Wen. Optimizing ultrasonic extraction of plysaccharides from Chuanminshen violaceum based on orthogonal experiments design[J]. Science and Technology of Food Industry, 2014, (08): 306-309. DOI: 10.13386/j.issn1002-0306.2014.08.061
    [10]Research on quadric orthogonal regression experiment on MAP craft of waxberry[J]. Science and Technology of Food Industry, 2012, (19): 326-328. DOI: 10.13386/j.issn1002-0306.2012.19.066
  • Cited by

    Periodical cited type(12)

    1. 赵忠祥,王家林. 酶解法制备油莎豆粕抗氧化肽工艺优化. 现代农业科技. 2024(17): 154-158 .
    2. 伍津瑶,殷明月,杨美花,康晶晶. 茶树菇降压肽制备工艺优化. 食品与机械. 2024(11): 172-179 .
    3. 段帅,吴晓彤. 油莎豆粕抗氧化肽的制备及其稳定性研究. 中国粮油学报. 2023(01): 80-89 .
    4. 颜阿娜,洪燕婷,王琳,黄茂坤. 鲭鱼酶解工艺双响应面法优化及抗氧化活性研究. 通化师范学院学报. 2023(04): 59-67 .
    5. 张敏君,段雪伟,王燕,杨慧文,刘冰,向文静,由天辉. 构树根皮活性成分乙醇提取工艺优化及其抗氧化活性分析. 食品工业科技. 2023(11): 196-203 . 本站查看
    6. 王燕,段雪伟,张敏君,杨慧文,刘冰,由天辉. 响应面法优化黑玉米粒多糖提取工艺及其抗氧化活性分析. 食品工业科技. 2023(22): 191-200 . 本站查看
    7. 詹炜君,金星鹏,陈俪锟,陈丽. 马鲛鱼黄嘌呤氧化酶抑制肽的制备工艺优化及抗氧化活性研究. 食品安全质量检测学报. 2023(22): 278-287 .
    8. 陈冰冰,欧颖仪,叶灏铎,金昶言,梁兴唐,尹艳镇,郑韵英,曹庸,苗建银. 富硒辣木叶蛋白ACE抑制肽的酶解工艺优化及活性研究. 食品工业科技. 2022(03): 1-9 . 本站查看
    9. 沈晓静,黄璐璐,聂凡秋,王青,杨俊滔,颜成慧,姜薇薇. 云南小粒咖啡花多糖提取工艺优化及其抗氧化活性分析. 食品工业科技. 2022(04): 238-245 . 本站查看
    10. 许依能,纪登杰,杨威,马洁,陈丽. 超声辅助酶法制备南极磷虾抗菌肽的工艺优化. 中国食品添加剂. 2022(05): 73-80 .
    11. 段帅,张德建,姚玉军,吴晓彤. 油莎豆营养价值及加工应用研究进展. 食品科技. 2022(07): 149-154 .
    12. 陈冰冰,杨奕,李嘉颐,金昶言,程缤霈,邓泳琪,林碧敏,梁东,唐德剑,孟莉,苗建银. 富硒辣木籽蛋白降压肽的酶法制备、硒含量及稳定性研究. 食品与机械. 2022(08): 213-221 .

    Other cited types(8)

Catalog

    Article Metrics

    Article views (460) PDF downloads (26) Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return