WANG Xi, LING Yingru, ZHANG Hao, et al. Determination of 11 Kinds of Organophosphorus Flame Retardants in Baby Rice Cereal by Ultra-high Performance Liquid Chromatography-tandem Mass Spectrometry[J]. Science and Technology of Food Industry, 2022, 43(17): 298−305. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110236.
Citation: WANG Xi, LING Yingru, ZHANG Hao, et al. Determination of 11 Kinds of Organophosphorus Flame Retardants in Baby Rice Cereal by Ultra-high Performance Liquid Chromatography-tandem Mass Spectrometry[J]. Science and Technology of Food Industry, 2022, 43(17): 298−305. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110236.

Determination of 11 Kinds of Organophosphorus Flame Retardants in Baby Rice Cereal by Ultra-high Performance Liquid Chromatography-tandem Mass Spectrometry

More Information
  • Received Date: November 18, 2021
  • Available Online: June 27, 2022
  • A method for the determination of 11 organophosphorus flame retardants in baby rice flour was established by ultra performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The samples were extracted by 0.5% formic acid acetonitrile solution by ultrasound. The extracted solution was purified by dispersive solid phase extraction packing and filtered by polytetrafluoroethylene membrane and detected by UPLC-MS/MS. Gradient elution was carried out with 5 mmol/L ammonium formate and acetonitrile. The target compounds were separated by ACQUITY UPLC® BEH C18 column (100 mm×2.1 mm, 1.7 μm), and multiple response monitoring (MRM) was conducted in the positive electrospray ionization mode. The external standard method was used for quantification. By optimizing chromatographic conditions, all the 11 kinds of organophosphorus flame retardants achieved baseline separation. The 11 kinds of organophosphorus flame retardants had a good linear relationship in the range of 0.5~100 μg/L (Tris (2-ethylhexyl) phosphate 0.05~10 μg/L) with correlation coefficient r>0.994. The limits of detection (3S/N) were 0.003~0.926 μg/kg and the limits of quantitation (10S/N) were 0.01~2.78 μg/kg. The average recoveries at three spiked levels (low, medium and high) were 63.2%~113.4% with the relative standard deviations all less than 10% (n=6). Four kinds of baby rice cereal were analyzed by the established method and the detection rate of triphenyl phosphate (TPhP) was up to 100%. Tributyl phosphate (TnBP) and tris (2-chloroisopropyl) phosphate (TCPP) were also detected in one of the samples. The method could be used for the determination of trace organophosphorus flame retardants in baby rice flour cereal with accurate and reliable results.
  • [1]
    TANG B, POMA G, BASTIAENSEN M, et al. Bioconcentration and biotransformation of organophosphorus flame retardants (PFRs) in common carp (Cyprinus carpio)[J]. Environ Int,2019,126:512−522. doi: 10.1016/j.envint.2019.02.063
    [2]
    HONG H Z, ZHAO Y C, HUANG L M, et al. Bone developmental toxicity of organophosphorus flame retardants TDCIPP and TPhP in marine medaka Oryzias melastigma[J]. Ecotox Environ Safe,2021,223:112605. doi: 10.1016/j.ecoenv.2021.112605
    [3]
    WANG J H, KHOKHAR I, REN C, et al. Characterization and 16S metagenomic analysis of organophosphorus flame retardants degrading consortia[J]. J Hazard Mater,2019,380:120881. doi: 10.1016/j.jhazmat.2019.120881
    [4]
    TANFG B, CHRISTIA C, MALARVANNAN G, et al. Legacy and emerging organophosphorus flame retardants and plasticizers in indoor microenvironments from Guangzhou, South China[J]. Environ Int,2020,143:105972. doi: 10.1016/j.envint.2020.105972
    [5]
    LIU Y E, TANG B, LIU Y, et al. Occurrence, biomagnification and maternal transfer of legacy and emerging organophosphorus flame retardants and plasticizers in water snake from an e-waste site[J]. Environ Int,2019,133:105240. doi: 10.1016/j.envint.2019.105240
    [6]
    王成云, 谢堂堂, 张伟亚, 等. 纺织品中6种禁用有机磷阻燃剂的同时测定[J]. 天津工业大学学报,2012,31(1):21−24, 32. [WANG C Y, XIE T T, ZHANG W Y, et al. Simultaneous determination of six banned organophosphorus flame retardants in textiles[J]. Journal of Tiangong University,2012,31(1):21−24, 32. doi: 10.3969/j.issn.1671-024X.2012.01.006

    WANG C Y, XIE T T, ZHANG W Y, et al. Simultaneous determination of six banned organophosphorus flame retardants in textiles[J]. Journal of Tiangong University, 2012, 31(1): 21-24, 32. doi: 10.3969/j.issn.1671-024X.2012.01.006
    [7]
    侯瑞, 李逸, 梁永津, 等. 鱼类样品中有机磷阻燃剂分析方法的优化研究[J]. 环境监控与预警,2020,12(5):93−104. [HOU R, LI Y, LIANG Y J, et al. Optimization of determining method for organophosphate flame retardants (OPFRs) in biological tissses[J]. Environmental Monitoring and Forewarning,2020,12(5):93−104.

    HOU R, LI Y, LIANG Y J, et al. Optimization of Determining Method for Organophosphate Flame Retardants (OPFRs) in biological tissses[J]. Environmental Monitoring and Forewarning, 2020, 12(5): 93-104.
    [8]
    何明靖, 杨婷, 杨志豪, 等. 有机磷酸酯在三峡库区土壤中污染特征[J]. 环境科学,2017,38(12):5256−5261. [HE M J, YANG T, YANG Z H, et al. Occurrence of organophosphate esters in soil of three Gorges Reservoir[J]. Environmental Science,2017,38(12):5256−5261. doi: 10.13227/j.hjkx.201705057

    HE M J, YANG T, YANG Z H, et al. Occurrence of organophosphate esters in soil of three Gorges Reservoir[J]. Environmental Science, 2017, 38(12): 5256-5261. doi: 10.13227/j.hjkx.201705057
    [9]
    王艺璇, 张芹, 宋宁慧, 等. 南京市雪水中有机磷阻燃剂的污染特征及健康风险评价[J]. 中国环境科学,2019,39(12):5101−5109. [WANG Y X, ZHANG Q, SONG N H, et al. Pollution characteristics and health risk assessment of organic phosphorus flame retardant in snow water of Nanjing[J]. China Environmental Science,2019,39(12):5101−5109. doi: 10.19674/j.cnki.issn1000-6923.2019.0594

    WANG Y X, ZHANG Q, SONG N H, et al. Pollution characteristics and health risk assessment of organic phosphorus flame retardant in snow water of Nanjing[J]. China Environmental Science, 2019, 39(12): 5101-5109. doi: 10.19674/j.cnki.issn1000-6923.2019.0594
    [10]
    PRESTON E V, MCCLEAN M D, HENN B C, et al. Associations between urinary diphenyl phosphate and thyroid function[J]. Environ Int,2017,101:158−164. doi: 10.1016/j.envint.2017.01.020
    [11]
    WU Y, SU G Y, TANG S, et al. The combination of in silico andin vivo approaches for the investigation of disrupting effects of tris (2-chloroethyl) phosphate (TCEP) toward core receptors of zebrafish[J]. Chemosphere,2017,168:122−130. doi: 10.1016/j.chemosphere.2016.10.038
    [12]
    LIU X, JI K, CHOI K. Endocrine disruption potentials of organophosphate flame retardants and related mechanisms in H295R and MVLN cell lines and in zebrafish[J]. Aquat Toxicol,2012,114:173−181.
    [13]
    KANAZAWA A, SAITO I, ARAKI A, et al. Association between indoor exposure to semi-volatile organic compounds and building-related symptoms among the occupants of residential dwellings[J]. Indoor Air,2010,20:72−84. doi: 10.1111/j.1600-0668.2009.00629.x
    [14]
    KOJIMA H, TAKEUCHI S, ITOH T, et al. In vitro endocrine disruption potential of organophosphate flame retardants via human nuclear receptors[J]. Toxicology,2013,314:76−83. doi: 10.1016/j.tox.2013.09.004
    [15]
    LIU Y E, LUO X J, HUANG L Q, et al. Organophosphorus flame retardants in fish from Rivers in the Pearl River Delta, South China[J]. Sci Total Enviro,2019,663:125−132. doi: 10.1016/j.scitotenv.2019.01.344
    [16]
    张丽, 张少峰, 于硕. 水环境中的有机磷阻燃剂及其生物富集和生物转化研究进展[J]. 生态毒理学报,2021,16(3):78−94. [ZHANG L, ZHANG S F, YU S. Organophosphorus flame retardents in aquatic environment: A Review on occurrence, bioaccumulation and metabolism[J]. Asian Journal of Ecotoxicology,2021,16(3):78−94.

    ZHANG L, ZHANG S F, YU S. Organophosphorus flame retardents in aquatic environment: A Review on occurrence, bioaccumulation and metabolism[J]. Asian Journal of Ecotoxicology, 2021, 16(3): 78-94.
    [17]
    BLUM A, BEHL M, BIRNBAUM L S, et al. Organophosphate ester flame retardants: Are they a regrettable substitution for polybrominated diphenyl ethers?[J]. Environ Sci Tech Let,2019,6(11):638−649. doi: 10.1021/acs.estlett.9b00582
    [18]
    陈世存, 陶芳, 丁锦建, 等. 新型有机磷阻燃剂环境污染物的研究进展[J]. 环境化学,2021,40(4):949−963. [CHEN S C, TAO F, DING J J, et al. Research progress of emerging organophosphate flame retardants environmental pollutants[J]. Environmental Chemistry,2021,40(4):949−963. doi: 10.7524/j.issn.0254-6108.2020111804

    CHEN S C, TAO F, DING J J, et al. Research progress of emerging organophosphate flame retardants environmental pollutants[J]. Environmental Chemistry, 2021, 40(4): 949-963. doi: 10.7524/j.issn.0254-6108.2020111804
    [19]
    李丽, 杨锦飞. 阻燃剂的限制法规及发展趋势[J]. 塑料助剂,2014(4):14−20. [LI L, YANG J F. Restrictive laws and regulations and development trends for flame retardants[J]. Plastics Additives,2014(4):14−20. doi: 10.3969/j.issn.1672-6294.2014.04.003

    LI L, YANG J F. Restrictive laws and regulations and development trends for flame retardants[J]. Plastics Additives, 2014(4): 14-20. doi: 10.3969/j.issn.1672-6294.2014.04.003
    [20]
    WEI G L, LI D Q, ZHUO M N, et al. Organophosphorus flame retardants and plasticizers: Sources, occurrence, toxicity and human exposure[J]. Environ Pollut,2015,196:29−34. doi: 10.1016/j.envpol.2014.09.012
    [21]
    杨吉双, 张庆合, 苏立强. 有机磷阻燃剂气相色谱-四极杆飞行时间质谱裂解机理研究[J]. 质谱学报,2021,42(1):36−47. [YANG J S, ZHANG Q H, SU L Q. Fragmentation mechanism of organic phosphorus flame retardant by gas chromatography-quadrupole time of flight mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society,2021,42(1):36−47. doi: 10.7538/zpxb.2019.0176

    YANG J S, ZHANG Q H, SU L Q. Fragmentation mechanism of organic phosphorus flame retardant by gas chromatography-quadrupole time of flight mass spectrometry[J]. Journal of Chinese Mass Spectrometry Society, 2021, 42(1): 36-47. doi: 10.7538/zpxb.2019.0176
    [22]
    RODIL R, QUINTANA J B, REEMTSMA T. Liquid chromatography-tandem mass spectrometry determination of nonionic organophosphorus flame retardants and plasticizers in wastewater samples[J]. Anal Chem,2005,77:3083−3089. doi: 10.1021/ac048247s
    [23]
    LIU Y E, HUANG L Q, LUO X J, et al. Determination of organophosphorus flame retardants in fish by freezing-lipid precipitation, solid-phase extraction and gas chromatography-mass spectrometry[J]. J Chromatogr A,2018,1532:68−73. doi: 10.1016/j.chroma.2017.12.001
    [24]
    MA J, ZHU H K, KANNAN K. Organophosphorus flame retardants and plasticizers in breast milk from the United States[J]. Environ Sci Technol Lett,2019,6:525−531. doi: 10.1021/acs.estlett.9b00394
    [25]
    慕俊泽, 李宣, 张斌, 等. 气相色谱法测定纺织品中的三种有机磷阻燃剂[J]. 色谱,2007,25(3):389−391. [MU J Z, LI X, ZHANG B, et al. Determination of three organophosphorus flame retardants in textiles by gas chromatography[J]. Chinese Journal of Chromatography,2007,25(3):389−391. doi: 10.3321/j.issn:1000-8713.2007.03.022

    MU J Z, LI X, ZHANG B, et al. Determination of three organophosphorus flame retardants in textiles by gas chromatography[J]. Chinese Journal of Chromatography, 2007, 25(3): 389-391. doi: 10.3321/j.issn:1000-8713.2007.03.022
    [26]
    王成云, 冀红略, 杨左军, 等. 锂离子电池电解液中有机磷阻燃剂的测定[J]. 电池,2020,50(1):94−97. [WANG C Y, JI H L, YANG Z J, et al. Determination of organophosphorus flame retardants in electrolyte of lithium ion battery[J]. Battery Bimonthly,2020,50(1):94−97. doi: 10.19535/j.1001-1579.2020.01.023

    WANG C Y, JI H L, YANG Z J, et al. Determination of organophosphorus flame retardants in electrolyte of lithium ion battery[J]. Battery Bimonthly, 2020, 50(1): 94-97. doi: 10.19535/j.1001-1579.2020.01.023
    [27]
    许珊珊, 孙文芳, 杨雯, 等. 高效液相色谱-串联质谱法测定蔬菜中9 种有机磷阻燃剂的含量[J]. 理化检验-化学分册,2021,57(6):500−506. [XU S S, SUN W F, YANG W, et al. Determination of 9 organophosphorus flame retardants in vegetables by high performance liquid chromatography-tandem mass spectrometry[J]. Physical Testing and Chemical Analysis (Part B: Chemical Analysis),2021,57(6):500−506.

    XU S S, SUN W F, YANG W, et al. Determination of 9 organophosphorus flame retardants in vegetables by high performance liquid chromatography-tandem mass spectrometry[J]. Physical Testing and Chemical Analysis(Part B: Chemical Analysis), 2021, 57(6): 500-506.
    [28]
    MEEKERS J D, STAPLETON M. House dust concentrations of organophosphate flame retardants in relation to hormone levels and semen quality parameters[J]. Environ Health Perspect,2010,118:318. doi: 10.1289/ehp.0901332
    [29]
    BRANDSMA S H, BOER J D, MARTIN J M, et al. Organophosphorus flame retardants (PFRs) and plasticizers in house and car dust and the influence of electronic equipment[J]. Chemosphere,2014,116:3−9. doi: 10.1016/j.chemosphere.2014.02.036
    [30]
    BRANDSMA S H, SELLSTRÖM U, WITCA D, et al. Dust measurement of two organophosphorus flame retardants, resorcinol Bis (diphenylphosphate) (RBDPP) and bisphenol A Bis (diphenylphosphate) (BPA-BDPP), used as alternatives for BDE-209[J]. Environ Sci Technol,2013,47:14434−14441. doi: 10.1021/es404123q
    [31]
    HOU R, XU Y, WANG Z. Review of OPFRs in animals and humans: Absorption, bioaccumulation, metabolism, and internal exposure research[J]. Chemosphere,2016,153:78−90. doi: 10.1016/j.chemosphere.2016.03.003
    [32]
    ANDRESEN J, GRUNDMANN A, BESTER K. Organophosphorus flame retardants and plasticisers in surface waters[J]. Sci Total Environ,2004,332:155−166. doi: 10.1016/j.scitotenv.2004.04.021
    [33]
    POMA G, GLYNN A, MALARVANNAN G, et al. Dietary intake of phosphorus flame retardants (PFRs) using Swedish food market basket estimations[J]. Food Chem Toxicol,2017,100:1−7. doi: 10.1016/j.fct.2016.12.011
    [34]
    LI J H, ZHAO L M, LETCHER R J, et al. A review on organophosphate Ester (OPE) flame retardants and plasticizers in foodstuffs: Levels, distribution, human dietary exposure, and future directions[J]. Environ Int,2019,127:35−51. doi: 10.1016/j.envint.2019.03.009
    [35]
    杨吉双, 张庆合, 苏立强. 食品中有机磷酸酯阻燃剂检测技术的研究进展[J]. 色谱,2020,38(12):1369−1380. [YANG J S, ZHANG Q H, SU L Q. Advances in the development of detection techniques for organophosphate ester flame retardants in food[J]. Chinese Journal of Chromatography,2020,38(12):1369−1380.

    YANG J S, ZHANG Q H, SU L Q. Advances in the development of detection techniques for organophosphate ester flame retardants in food[J]. Chinese Journal of Chromatography, 2020, 38(12): 1369-1380.
    [36]
    王溪, 阮丽萍, 李放, 等. 凝胶渗透色谱净化-高效液相色谱荧光法检测生肉中15 种多环芳烃[J]. 江苏预防医学,2019,30(3):259−261, 279. [WANG X, RUAN L P, LI F, et al. Determination of 15 kinds of polycyclic aromatic hydrocarbons in fresh meat by online gel permeation chromatography purification-high performance liquid chromatography[J]. Jiangsu Journal of Preventive Medicine,2019,30(3):259−261, 279.

    WANG X, RUAN L P, LI F, et al. Determination of 15 kinds of polycyclic aromatic hydrocarbons in fresh meat by online gel permeation chromatography purification-high performance liquid chromatography[J]. Jiangsu Journal of Preventive Medicine, 2019, 30(3): 259-261, 279.
    [37]
    SHAO B, CHEN D, ZHANG J, et al. Determination of 76 pharmaceutical drugs by liquid chromatography-tandem mass spectrometry in slaughterhouse wastewater[J]. J Chromatogr A,2009,1216(47):8312. doi: 10.1016/j.chroma.2009.08.038
    [38]
    李艳明, 王坤, 朱富强, 等. 通过式固相萃取-超高效液相色谱-串联质谱法测定猪肉中多种受体激动剂药物残留[J]. 食品工业科技,2021,42(14):264−271. [LI Y M, WANG K, ZHU F Q, et al. Determination of multiple receptor agonist drug resid-ues in pork by pass-type SPE and ultra performance liquid chromatography-tandem mass spectrometry[J]. Science and Technology of Food Industry,2021,42(14):264−271. doi: 10.13386/j.issn1002-0306.2020090182

    LI Y M, WANG K, ZHU F Q, et al. Determination of multiple receptor agonist drug resid--ues in pork by pass-type SPE and ultra performance liquid chromatography-tandem mass spectrometry[J]. Science and Technology of Food Industry, 2021, 42(14): 264-271. doi: 10.13386/j.issn1002-0306.2020090182
  • Related Articles

    [1]HUANG Minghao, HUANG Taiqi, DENG Lijuan. Optimization of Solanum lyratum Crude Polysaccharide Extraction Process Using Response Surface Methodology and Analysis ofIts In Vitro Antioxidant Activity[J]. Science and Technology of Food Industry, 2023, 44(22): 219-225. DOI: 10.13386/j.issn1002-0306.2023040182
    [2]WANG Yan, DUAN Xuewei, ZHANG Minjun, YANG Huiwen, LIU Bing, YOU Tianhui. Optimization of Extraction Process of Polysaccharide from Black Corn Kernel by Response Surface Method and Analysis of Its Antioxidant Activity[J]. Science and Technology of Food Industry, 2023, 44(22): 191-200. DOI: 10.13386/j.issn1002-0306.2023020118
    [3]Liming ZHAO, Xuyao GUO, Yingmin MAO, Daqing ZHAO, Baotai HUANG, Jiaqi LI, Li LIU, Bin QI. Optimization of Extraction Process and Antioxidant Activity of Polysaccharide from Panax quinquefolium Fruit by Response Surface Methodology[J]. Science and Technology of Food Industry, 2023, 44(13): 160-166. DOI: 10.13386/j.issn1002-0306.2022070318
    [4]MO Yi-fan, YAO Ling-yun, FENG Tao, SONG Shi-qing, SUN Min. Optimization of Flash Extraction Process of Total Flavonoids from Fig (Ficus carica L.) and Its Antioxidant Activities[J]. Science and Technology of Food Industry, 2020, 41(12): 186-191,220. DOI: 10.13386/j.issn1002-0306.2020.12.030
    [5]XU Hai-tang, LIAO Hua-zhen, ZHAO Yan-zhi, ZHANG Jin-yan, ZHOU Ju-ying. Optimization Extraction of Polysaccharide from Sophora tonkinensis Gagnep by Response Surface Methodology and Its Antioxidant Activity of Fractionated Alcohol Precipitation Components[J]. Science and Technology of Food Industry, 2019, 40(22): 157-162. DOI: 10.13386/j.issn1002-0306.2019.22.028
    [6]JIA Fu-huai, TU Hong-jian, WANG Jun, TAO Gang, JI Cun-rui, WANG Cai-xia, XIONG Fei-fei, YAN Yong-qiu. Optimization of Ultrasonic-Flash Synergistic Extraction and Antitumor Activity of Polysaccharide from Fibrous Root of Bletilla striata[J]. Science and Technology of Food Industry, 2019, 40(20): 188-195,208. DOI: 10.13386/j.issn1002-0306.2019.20.030
    [7]DU Hong-xia, TAO Jin-qiang, WANG Xiang, LIU Yan-xiu, YU Xuan. Response surface optimized extraction of flavonoids from ginseng flower and antioxidant activities[J]. Science and Technology of Food Industry, 2018, 39(12): 216-221,230. DOI: 10.13386/j.issn1002-0306.2018.12.038
    [8]SHI Xuan, CHENG Xiao-qing, YANG Yong, TAN Hong-jun, LIANG Xu-ming, SHI Wen-juan, SU Zhi-min. Optimization the extraction process of polysaccharide by response surface methodology from the Tremella fuciformis pedicel and its antioxidant activity[J]. Science and Technology of Food Industry, 2017, (02): 297-301. DOI: 10.13386/j.issn1002-0306.2017.02.049
    [9]GONG Jian. Study on the optimization of enzymatic extraction technology of polysaccharide from Camellia japonica L.by response surface methodology and investigation on its antioxidant activity[J]. Science and Technology of Food Industry, 2015, (17): 197-201. DOI: 10.13386/j.issn1002-0306.2015.17.031
    [10]KE Chun-lin, LI Zuo-mei, LU Bin-yu, QIAN Shi-quan, ZHANG Bin, YUAN Jing. Study on optimization of extraction conditions for polysaccharide from pomegranate flowers and its antioxidant activities[J]. Science and Technology of Food Industry, 2015, (08): 286-289. DOI: 10.13386/j.issn1002-0306.2015.08.051
  • Cited by

    Periodical cited type(1)

    1. 刘丽桃,傅春燕,刘诗薇,周秀娟,谢雨芊,欧阳玉珍,王彪,葛金文. 响应面法优化降脂通脉方多糖的提取工艺研究. 中医药导报. 2024(12): 58-62 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (227) PDF downloads (25) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return