Citation: | PENG Yaxuan, DUAN Shenglin, YANG Zongling, et al. Application Research Progress of Intestinal Organoids in Nutrient Absorption[J]. Science and Technology of Food Industry, 2022, 43(24): 405−411. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100295. |
[1] |
张秀梅, 翟运开, 赵杰, 等. 类器官模型国内外数据库近10年文献研究热点分析[J]. 中国组织工程研究,2021,25(8):107−113. [ZHAI Y K, ZHAO J, ZHAO M. Research hotspots of organoid models in recent 10 years: A search in domestic and foreign databases[J]. Journal of Clinical Rehabilitative Tissue Engineering Research,2021,25(8):107−113. doi: 10.3969/j.issn.2095-4344.3073
|
[2] |
RODRIGUES D B, FAILLA M L. Intestinal cell models for investigating the uptake, metabolism and absorption of dietary nutrients and bioactive compounds[J]. Current Opinion in Food Science,2021,41(4):169−179.
|
[3] |
SATO T, VRIES R G, SNIPPERT H J, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature,2009,459(7244):262−265. doi: 10.1038/nature07935
|
[4] |
KWON O, JUNG K B, LEE K R, et al. The development of a functional human small intestinal epithelium model for drug absorption[J]. Science Advances,2021,7(23):eabh1586. doi: 10.1126/sciadv.abh1586
|
[5] |
TAKAHASHI A, SAKAGUCHI H, HIGUCHI O, et al. Intestinal absorption of black chokeberry cyanidin 3-glycosides is promoted by capsaicin and capsiate in a rat ligated small intestinal loop model[J]. Food Chemistry,2019,277:323−326. doi: 10.1016/j.foodchem.2018.10.094
|
[6] |
STEINGOETTER A, ARNOLD M, SCHEUBLE N, et al. A rat model of human lipid emulsion digestion[J]. Frontiers in Nutrition,2019,6:170. doi: 10.3389/fnut.2019.00170
|
[7] |
FANG M, XIONG S, YIN T, et al. In vivo digestion and absorption characteristics of surimi gels with different degrees of cross-linking induced by transglutaminase (TGase)[J]. Food Hydrocolloids,2021,121:1−8.
|
[8] |
高云, 赵九龙, 高俊, 等. 肠类器官的研究与应用[J]. 国际消化病杂志,2017,37(2):87−91. [GAO Y, ZHAO J L, GAO J, et al. Research and application of intestinal organoids[J]. International Journal of Digestive Diseases,2017,37(2):87−91. doi: 10.3969/j.issn.1673-534X.2017.02.006
|
[9] |
CORRÒ C, NOVELLASDEMUNT L, LI V. A brief history of organoids[J]. AJP Cell Physiology,2020,319(1):C151−C165. doi: 10.1152/ajpcell.00120.2020
|
[10] |
王雨佳, 沈洪. 肠道类器官的培育、功能、在肠疾病模型和药物测试中的应用研究进展[J]. 山东医药,2019,59(15):84−87. [WANG Y J, SHEN H. Advances in the cultivation, function and application of intestinal organoids in intestinal disease models and drug testing[J]. Shandong Medical Journal,2019,59(15):84−87. doi: 10.3969/j.issn.1002-266X.2019.15.024
|
[11] |
RHEINWALD J G, GREEN H. Formation of a keratinizing epithelium in culture by a cloned cell line derived from a teratoma[J]. Cell,1975,6(3):317−330. doi: 10.1016/0092-8674(75)90183-X
|
[12] |
CAO L, GIBSON J D, MIYAMOTO S, et al. Intestinal lineage commitment of embryonic stem cells[J]. Differentiation,2011,81(1):1−10. doi: 10.1016/j.diff.2010.09.182
|
[13] |
SPENCE J R, MAYHEW C N, RANKIN S A, et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro[J]. Nature,2011,470(7332):105−109. doi: 10.1038/nature09691
|
[14] |
SR A, NMB B, HMS C, et al. Intestinal organoids: A new paradigm for engineering intestinal epithelium in vitro[J]. Biomaterials,2019,194:195−214. doi: 10.1016/j.biomaterials.2018.12.006
|
[15] |
BOONEKAMP K E, DAYTON T L, HANS C. Intestinal organoids as tools for enriching and studying specific and rare cell types: Advances and future directions[J]. Journal of Molecular Cell Biology,2020(8):8.
|
[16] |
ZHAO Q, GUAN J, WANG X. Intestinal stem cells and intestinal organoids[J]. Journal of Genetics and Genomics,2020,47(6):289−299. doi: 10.1016/j.jgg.2020.06.005
|
[17] |
GRIBBLE F M, REIMANN F. Function and mechanisms of enteroendocrine cells and gut hormones in metabolism[J]. Nature Reviews Endocrinology,2019,15:226−237. doi: 10.1038/s41574-019-0168-8
|
[18] |
KIM G A, SPENCE J R, TAKAYAMA S. Bioengineering for intestinal organoid cultures[J]. Current Opinion in Biotechnology,2017,47:51−58. doi: 10.1016/j.copbio.2017.05.006
|
[19] |
HAN S, KIM J, LI R, et al. Hydrophobic patterning-based 3D microfluidic cell culture assay[J]. Advanced Healthcare Materials,2018:e1800122.
|
[20] |
LIU H, WANG Y, CUI K, et al. Advances in hydrogels in organoids and organs-on-a-chip[J]. Advanced Materials,2019,31(50):1902042. doi: 10.1002/adma.201902042
|
[21] |
PARK S E, GEORGESCU A, OH J M, et al. Polydopamine-based interfacial engineering of extracellular matrix hydrogels for construction and long-term maintenance of living three-dimensional tissues[J]. ACS Applied Materials & Interfaces,2019,11(27):23919−23925.
|
[22] |
DATE S, SATO T. Mini-gut organoids: Reconstitution of stem cell niche[J]. Annual Review of Cell and Developmental Biology,2015,31(1):269−289. doi: 10.1146/annurev-cellbio-100814-125218
|
[23] |
CAREY L W, MAXIME M MAHE, JORGE M, et al. An in vivo model of human small intestine using pluripotent stem cells[J]. Nature Medicine,2014,20(11):1310−1314. doi: 10.1038/nm.3737
|
[24] |
MCCRACKEN K W, HOWELL J C, WELLS J M, et al. Generating human intestinal tissue from pluripotent stem cells in vitro[J]. Nature Protocols,2011,6(12):1920−1928. doi: 10.1038/nprot.2011.410
|
[25] |
FENG L, XIAO X, LIU J, et al. Immunomodulatory effects of Lycium barbarum polysaccharide extract and its uptake behaviors at the cellular level[J]. Molecules, 25(6): 1351.
|
[26] |
WILLIAMS K M, GOKULAN K, CERMIGLIA C E, et al. Size and dose dependent effects of silver nanoparticle exposure on intestinal permeability in an in vitro model of the human gut epithelium[J]. Journal of Nanobiotechnology,2016,14(1):62. doi: 10.1186/s12951-016-0214-9
|
[27] |
YANG L, LIU Y, WANG M, et al. Quercetin-induced apoptosis of HT-29 colon cancer cells via inhibition of the Akt-CSN6-Myc signaling axis[J]. Molecular Medicine Reports,2016,14(5):4559−4566. doi: 10.3892/mmr.2016.5818
|
[28] |
HASAN N M, JOHNSON K F, YIN J, et al. Obesity phenotypes are preserved in intestinal stem cell enteroids from morbidly obese patients[J] BioRxiv [Preprint], 2020.
|
[29] |
ZIETEK T, RATH E, HALLER D, et al. Intestinal organoids for assessing nutrient transport, sensing and incretin secretion[J]. Scientific Reports,2015,5:1−10. doi: 10.9734/JSRR/2015/14076
|
[30] |
FILIPPELLO A, MAURO S D, SCAMPORRINO A, et al. High glucose exposure impairs L-cell differentiation in intestinal organoids: molecular mechanisms and clinical implications[J]. International Journal of Molecular Sciences,2021,22(13):6660. doi: 10.3390/ijms22136660
|
[31] |
KAR S K, HEE B, LOONEN L, et al. Effects of undigested protein-rich ingredients on polarised small intestinal organoid monolayers[J]. Journal of Animal Science and Biotechnology,2020:11.
|
[32] |
WANG Y, HOU Q, WU Y, et al. Methionine deficiency and its hydroxy analogue influence chicken intestinal 3-dimensional organoid development[J]. Animal Nutrition,2021,8:38−51.
|
[33] |
彭丽媛. 牛乳铁蛋白肽对肠粘膜屏障的保护作用及其机制研究[D]. 杭州: 浙江工商大学, 2020
PENG L Y, Research on protection and mechanism of bovine lactoferricin on intestinal barrier[D]. Hangzhou: Zhejiang Gongshang University, 2020.
|
[34] |
JUNG H P, TAKENORI K, TASUKU K, et al. Promotion of intestinal epithelial cell turnover by commensal bacteria: Role of short-chain fatty acids[J]. PLoS One,2016,11(5):1−22.
|
[35] |
SEMIR B, MIYEKO D M, JATIN R, et al. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors[J]. Nature: International Weekly Journal of Science,2016,531:53−58.
|
[36] |
JATTAN J, RODIA C, LI D, et al. Using primary murine intestinal enteroids to study dietary TAG absorption, lipoprotein synthesis, and the role of apoC-III in the intestine[J]. Journal of Lipid Research,2017,58(5):853−865. doi: 10.1194/jlr.M071340
|
[37] |
LI D, DONG H L, KOHAN A B. The isolation, culture, and propagation of murine intestinal enteroids for the study of dietary lipid metabolism[J]. Methods in Molecular Biology (Clifton, N. J.),2019:1576.
|
[38] |
QI Y, LOHMAN J, BRATLIE K M, et al. Vitamin C and B3 as new biomaterials to alter intestinal stem cells[J]. Journal of Biomedical Materials Research Part A,2019,107(9):1886−1897. doi: 10.1002/jbm.a.36715
|
[39] |
YAMADA S, KANDA Y. Retinoic acid promotes barrier functions in human iPSC-derived intestinal epithelial monolayers-ScienceDirect[J]. Journal of Pharmacological Sciences,2019,140(4):337−344. doi: 10.1016/j.jphs.2019.06.012
|
[40] |
SITTIPO P, KIM H K, HAN J, et al. Vitamin D3 suppresses intestinal epithelial stemness via ER stress induction in intestinal organoids[J]. Stem Cell Research & Therapy,2021,12(1):1−11.
|
[41] |
SEIWERT N, WECKLEIN S, DEMUTH P, et al. Heme oxygenase 1 protects human colonocytes against ROS formation, oxidative DNA damage and cytotoxicity induced by heme iron, but not inorganic iron[J]. Cell Death & Disease,2020,11(9):1−16.
|
[42] |
PIERSON H, MUCHENDITSI A, KIM B E, et al. The function of ATPase copper transporter ATP7B in intestine[J]. Gastroenterology,2017:168−180.
|
[43] |
CAI T, QI Y, JERGENS A, et al. Effects of six common dietary nutrients on murine intestinal organoid growth[J]. PLoS One,2018,13(2):1−14.
|
[44] |
PRASAD N R, KARTHIKEYAN A, KARTHIKEYAN S, et al. Inhibitory effect of caffeic acid on cancer cell proliferation by oxidative mechanism in human HT-1080 fibrosarcoma cell line[J]. Molecular and Cellular Biochemistry,2011,349(1−2):11−19. doi: 10.1007/s11010-010-0655-7
|
[45] |
FENG Z, LI T, WU C, et al. Monosodium l-glutamate and dietary fat exert opposite effects on the proximal and distal intestinal health in growing pigs[J]. Appl Physiol Nutr Metab,2015,40(4):353−363. doi: 10.1139/apnm-2014-0434
|
[46] |
王稣嫱. 绿原酸对LPS诱导小鼠肠上皮损伤的保护机制研究[D]. 杭州: 浙江工商大学, 2020
WANG S Q. Protective mechanism of chlorogenic acid on LPS-induced intestinal epithelial injury of mouse[D]. Hangzhou: Zhejiang Gongshang University, 2020.
|
[47] |
KACZMAREK J L, LIU X, CHARRON C S, et al. Broccoli consumption affects the human gastrointestinal microbiota[J]. Journal of Nutritional Biochemistry,2019,63:27−34. doi: 10.1016/j.jnutbio.2018.09.015
|
[48] |
KOLLURI S K, JIN U H, SAFE S. Role of the aryl hydrocarbon receptor in carcinogenesis and potential as an anti-cancer drug target[J]. Archives of Toxicology,2017,91(7):2497−2513. doi: 10.1007/s00204-017-1981-2
|
[49] |
PARK J H, LEE J M, LEE E J, et al. Indole-3-carbinol promotes goblet-cell differentiation regulating Wnt and Notch signaling pathways AhR-dependently[J]. Molecules and Cells,2018,41(4):290−300.
|
[50] |
ZHANG B, ZHU X, TIAN X, et al. Procyanidin B2 promotes intestinal injury repair and attenuates colitis-associated tumorigenesis via suppression of oxidative stress in mice[J]. Antioxidants & Redox Signaling,2020,35(2):1−41.
|
[51] |
CASANOVA M À, GONZALEZ A N, SERRANO J, et al. Long term exposure to a grape seed proanthocyanidin extract enhances L-cell differentiation in intestinal organoids[J]. Molecular Nutrition & Food Research,2020,64(16):1−21.
|
[52] |
孔秀楠. 食用黄色素对小肠肠道细胞增殖分化的影响[D]. 杭州: 浙江工商大学, 2020
KONG X N. Effect of yellow food colorants on proliferation and differentiation of small intestinal cells[D]. Hangzhou: Zhejiang Gongshang University, 2020.
|
[53] |
KONG X, WANG X, QIN Y, et al. Effects of sunset yellow on proliferation and differentiation of intestinal epithelial cells in murine intestinal organoids[J]. Journal of Applied Toxicology,2020,41(6):953−963.
|
[54] |
张丽颖. 山梨酸钾和糖精钠联合对小鼠小肠细胞生长发育的影响[D]. 杭州: 浙江工商大学, 2020
ZHANG L Y. Effects of the combination of potassium sorbate and saccharin sodium on the growth and development of mice small intestinal epithelial cells[D]. Hang Zhou: Zhejiang Gongshang University, 2020.
|