PENG Yaxuan, DUAN Shenglin, YANG Zongling, et al. Application Research Progress of Intestinal Organoids in Nutrient Absorption[J]. Science and Technology of Food Industry, 2022, 43(24): 405−411. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100295.
Citation: PENG Yaxuan, DUAN Shenglin, YANG Zongling, et al. Application Research Progress of Intestinal Organoids in Nutrient Absorption[J]. Science and Technology of Food Industry, 2022, 43(24): 405−411. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100295.

Application Research Progress of Intestinal Organoids in Nutrient Absorption

More Information
  • Received Date: October 27, 2021
  • Available Online: October 16, 2022
  • The intestinal tract is not only the main part of nutrient digestion and absorption, but also an important immune and endocrine organ. The digestion and absorption of nutrients in the intestine is a crucial factor to achieve their efficient utilization. Constructing an appropriate in vitro intestinal model is of great significance to clarify the effective absorption site, absorption efficiency, and mechanism of nutrients. Organoids are widely used in various fields because they can highly simulate the genetic and apparent characteristics of target tissues or organs. This paper reviews the recent application research progress of intestinal organoids in nutrient digestion and absorption, with a view to providing a reference for the wide application of intestinal organoids in nutrient digestion and absorption.
  • [1]
    张秀梅, 翟运开, 赵杰, 等. 类器官模型国内外数据库近10年文献研究热点分析[J]. 中国组织工程研究,2021,25(8):107−113. [ZHAI Y K, ZHAO J, ZHAO M. Research hotspots of organoid models in recent 10 years: A search in domestic and foreign databases[J]. Journal of Clinical Rehabilitative Tissue Engineering Research,2021,25(8):107−113. doi: 10.3969/j.issn.2095-4344.3073
    [2]
    RODRIGUES D B, FAILLA M L. Intestinal cell models for investigating the uptake, metabolism and absorption of dietary nutrients and bioactive compounds[J]. Current Opinion in Food Science,2021,41(4):169−179.
    [3]
    SATO T, VRIES R G, SNIPPERT H J, et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche[J]. Nature,2009,459(7244):262−265. doi: 10.1038/nature07935
    [4]
    KWON O, JUNG K B, LEE K R, et al. The development of a functional human small intestinal epithelium model for drug absorption[J]. Science Advances,2021,7(23):eabh1586. doi: 10.1126/sciadv.abh1586
    [5]
    TAKAHASHI A, SAKAGUCHI H, HIGUCHI O, et al. Intestinal absorption of black chokeberry cyanidin 3-glycosides is promoted by capsaicin and capsiate in a rat ligated small intestinal loop model[J]. Food Chemistry,2019,277:323−326. doi: 10.1016/j.foodchem.2018.10.094
    [6]
    STEINGOETTER A, ARNOLD M, SCHEUBLE N, et al. A rat model of human lipid emulsion digestion[J]. Frontiers in Nutrition,2019,6:170. doi: 10.3389/fnut.2019.00170
    [7]
    FANG M, XIONG S, YIN T, et al. In vivo digestion and absorption characteristics of surimi gels with different degrees of cross-linking induced by transglutaminase (TGase)[J]. Food Hydrocolloids,2021,121:1−8.
    [8]
    高云, 赵九龙, 高俊, 等. 肠类器官的研究与应用[J]. 国际消化病杂志,2017,37(2):87−91. [GAO Y, ZHAO J L, GAO J, et al. Research and application of intestinal organoids[J]. International Journal of Digestive Diseases,2017,37(2):87−91. doi: 10.3969/j.issn.1673-534X.2017.02.006
    [9]
    CORRÒ C, NOVELLASDEMUNT L, LI V. A brief history of organoids[J]. AJP Cell Physiology,2020,319(1):C151−C165. doi: 10.1152/ajpcell.00120.2020
    [10]
    王雨佳, 沈洪. 肠道类器官的培育、功能、在肠疾病模型和药物测试中的应用研究进展[J]. 山东医药,2019,59(15):84−87. [WANG Y J, SHEN H. Advances in the cultivation, function and application of intestinal organoids in intestinal disease models and drug testing[J]. Shandong Medical Journal,2019,59(15):84−87. doi: 10.3969/j.issn.1002-266X.2019.15.024
    [11]
    RHEINWALD J G, GREEN H. Formation of a keratinizing epithelium in culture by a cloned cell line derived from a teratoma[J]. Cell,1975,6(3):317−330. doi: 10.1016/0092-8674(75)90183-X
    [12]
    CAO L, GIBSON J D, MIYAMOTO S, et al. Intestinal lineage commitment of embryonic stem cells[J]. Differentiation,2011,81(1):1−10. doi: 10.1016/j.diff.2010.09.182
    [13]
    SPENCE J R, MAYHEW C N, RANKIN S A, et al. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro[J]. Nature,2011,470(7332):105−109. doi: 10.1038/nature09691
    [14]
    SR A, NMB B, HMS C, et al. Intestinal organoids: A new paradigm for engineering intestinal epithelium in vitro[J]. Biomaterials,2019,194:195−214. doi: 10.1016/j.biomaterials.2018.12.006
    [15]
    BOONEKAMP K E, DAYTON T L, HANS C. Intestinal organoids as tools for enriching and studying specific and rare cell types: Advances and future directions[J]. Journal of Molecular Cell Biology,2020(8):8.
    [16]
    ZHAO Q, GUAN J, WANG X. Intestinal stem cells and intestinal organoids[J]. Journal of Genetics and Genomics,2020,47(6):289−299. doi: 10.1016/j.jgg.2020.06.005
    [17]
    GRIBBLE F M, REIMANN F. Function and mechanisms of enteroendocrine cells and gut hormones in metabolism[J]. Nature Reviews Endocrinology,2019,15:226−237. doi: 10.1038/s41574-019-0168-8
    [18]
    KIM G A, SPENCE J R, TAKAYAMA S. Bioengineering for intestinal organoid cultures[J]. Current Opinion in Biotechnology,2017,47:51−58. doi: 10.1016/j.copbio.2017.05.006
    [19]
    HAN S, KIM J, LI R, et al. Hydrophobic patterning-based 3D microfluidic cell culture assay[J]. Advanced Healthcare Materials,2018:e1800122.
    [20]
    LIU H, WANG Y, CUI K, et al. Advances in hydrogels in organoids and organs-on-a-chip[J]. Advanced Materials,2019,31(50):1902042. doi: 10.1002/adma.201902042
    [21]
    PARK S E, GEORGESCU A, OH J M, et al. Polydopamine-based interfacial engineering of extracellular matrix hydrogels for construction and long-term maintenance of living three-dimensional tissues[J]. ACS Applied Materials & Interfaces,2019,11(27):23919−23925.
    [22]
    DATE S, SATO T. Mini-gut organoids: Reconstitution of stem cell niche[J]. Annual Review of Cell and Developmental Biology,2015,31(1):269−289. doi: 10.1146/annurev-cellbio-100814-125218
    [23]
    CAREY L W, MAXIME M MAHE, JORGE M, et al. An in vivo model of human small intestine using pluripotent stem cells[J]. Nature Medicine,2014,20(11):1310−1314. doi: 10.1038/nm.3737
    [24]
    MCCRACKEN K W, HOWELL J C, WELLS J M, et al. Generating human intestinal tissue from pluripotent stem cells in vitro[J]. Nature Protocols,2011,6(12):1920−1928. doi: 10.1038/nprot.2011.410
    [25]
    FENG L, XIAO X, LIU J, et al. Immunomodulatory effects of Lycium barbarum polysaccharide extract and its uptake behaviors at the cellular level[J]. Molecules, 25(6): 1351.
    [26]
    WILLIAMS K M, GOKULAN K, CERMIGLIA C E, et al. Size and dose dependent effects of silver nanoparticle exposure on intestinal permeability in an in vitro model of the human gut epithelium[J]. Journal of Nanobiotechnology,2016,14(1):62. doi: 10.1186/s12951-016-0214-9
    [27]
    YANG L, LIU Y, WANG M, et al. Quercetin-induced apoptosis of HT-29 colon cancer cells via inhibition of the Akt-CSN6-Myc signaling axis[J]. Molecular Medicine Reports,2016,14(5):4559−4566. doi: 10.3892/mmr.2016.5818
    [28]
    HASAN N M, JOHNSON K F, YIN J, et al. Obesity phenotypes are preserved in intestinal stem cell enteroids from morbidly obese patients[J] BioRxiv [Preprint], 2020.
    [29]
    ZIETEK T, RATH E, HALLER D, et al. Intestinal organoids for assessing nutrient transport, sensing and incretin secretion[J]. Scientific Reports,2015,5:1−10. doi: 10.9734/JSRR/2015/14076
    [30]
    FILIPPELLO A, MAURO S D, SCAMPORRINO A, et al. High glucose exposure impairs L-cell differentiation in intestinal organoids: molecular mechanisms and clinical implications[J]. International Journal of Molecular Sciences,2021,22(13):6660. doi: 10.3390/ijms22136660
    [31]
    KAR S K, HEE B, LOONEN L, et al. Effects of undigested protein-rich ingredients on polarised small intestinal organoid monolayers[J]. Journal of Animal Science and Biotechnology,2020:11.
    [32]
    WANG Y, HOU Q, WU Y, et al. Methionine deficiency and its hydroxy analogue influence chicken intestinal 3-dimensional organoid development[J]. Animal Nutrition,2021,8:38−51.
    [33]
    彭丽媛. 牛乳铁蛋白肽对肠粘膜屏障的保护作用及其机制研究[D]. 杭州: 浙江工商大学, 2020

    PENG L Y, Research on protection and mechanism of bovine lactoferricin on intestinal barrier[D]. Hangzhou: Zhejiang Gongshang University, 2020.
    [34]
    JUNG H P, TAKENORI K, TASUKU K, et al. Promotion of intestinal epithelial cell turnover by commensal bacteria: Role of short-chain fatty acids[J]. PLoS One,2016,11(5):1−22.
    [35]
    SEMIR B, MIYEKO D M, JATIN R, et al. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors[J]. Nature: International Weekly Journal of Science,2016,531:53−58.
    [36]
    JATTAN J, RODIA C, LI D, et al. Using primary murine intestinal enteroids to study dietary TAG absorption, lipoprotein synthesis, and the role of apoC-III in the intestine[J]. Journal of Lipid Research,2017,58(5):853−865. doi: 10.1194/jlr.M071340
    [37]
    LI D, DONG H L, KOHAN A B. The isolation, culture, and propagation of murine intestinal enteroids for the study of dietary lipid metabolism[J]. Methods in Molecular Biology (Clifton, N. J.),2019:1576.
    [38]
    QI Y, LOHMAN J, BRATLIE K M, et al. Vitamin C and B3 as new biomaterials to alter intestinal stem cells[J]. Journal of Biomedical Materials Research Part A,2019,107(9):1886−1897. doi: 10.1002/jbm.a.36715
    [39]
    YAMADA S, KANDA Y. Retinoic acid promotes barrier functions in human iPSC-derived intestinal epithelial monolayers-ScienceDirect[J]. Journal of Pharmacological Sciences,2019,140(4):337−344. doi: 10.1016/j.jphs.2019.06.012
    [40]
    SITTIPO P, KIM H K, HAN J, et al. Vitamin D3 suppresses intestinal epithelial stemness via ER stress induction in intestinal organoids[J]. Stem Cell Research & Therapy,2021,12(1):1−11.
    [41]
    SEIWERT N, WECKLEIN S, DEMUTH P, et al. Heme oxygenase 1 protects human colonocytes against ROS formation, oxidative DNA damage and cytotoxicity induced by heme iron, but not inorganic iron[J]. Cell Death & Disease,2020,11(9):1−16.
    [42]
    PIERSON H, MUCHENDITSI A, KIM B E, et al. The function of ATPase copper transporter ATP7B in intestine[J]. Gastroenterology,2017:168−180.
    [43]
    CAI T, QI Y, JERGENS A, et al. Effects of six common dietary nutrients on murine intestinal organoid growth[J]. PLoS One,2018,13(2):1−14.
    [44]
    PRASAD N R, KARTHIKEYAN A, KARTHIKEYAN S, et al. Inhibitory effect of caffeic acid on cancer cell proliferation by oxidative mechanism in human HT-1080 fibrosarcoma cell line[J]. Molecular and Cellular Biochemistry,2011,349(1−2):11−19. doi: 10.1007/s11010-010-0655-7
    [45]
    FENG Z, LI T, WU C, et al. Monosodium l-glutamate and dietary fat exert opposite effects on the proximal and distal intestinal health in growing pigs[J]. Appl Physiol Nutr Metab,2015,40(4):353−363. doi: 10.1139/apnm-2014-0434
    [46]
    王稣嫱. 绿原酸对LPS诱导小鼠肠上皮损伤的保护机制研究[D]. 杭州: 浙江工商大学, 2020

    WANG S Q. Protective mechanism of chlorogenic acid on LPS-induced intestinal epithelial injury of mouse[D]. Hangzhou: Zhejiang Gongshang University, 2020.
    [47]
    KACZMAREK J L, LIU X, CHARRON C S, et al. Broccoli consumption affects the human gastrointestinal microbiota[J]. Journal of Nutritional Biochemistry,2019,63:27−34. doi: 10.1016/j.jnutbio.2018.09.015
    [48]
    KOLLURI S K, JIN U H, SAFE S. Role of the aryl hydrocarbon receptor in carcinogenesis and potential as an anti-cancer drug target[J]. Archives of Toxicology,2017,91(7):2497−2513. doi: 10.1007/s00204-017-1981-2
    [49]
    PARK J H, LEE J M, LEE E J, et al. Indole-3-carbinol promotes goblet-cell differentiation regulating Wnt and Notch signaling pathways AhR-dependently[J]. Molecules and Cells,2018,41(4):290−300.
    [50]
    ZHANG B, ZHU X, TIAN X, et al. Procyanidin B2 promotes intestinal injury repair and attenuates colitis-associated tumorigenesis via suppression of oxidative stress in mice[J]. Antioxidants & Redox Signaling,2020,35(2):1−41.
    [51]
    CASANOVA M À, GONZALEZ A N, SERRANO J, et al. Long term exposure to a grape seed proanthocyanidin extract enhances L-cell differentiation in intestinal organoids[J]. Molecular Nutrition & Food Research,2020,64(16):1−21.
    [52]
    孔秀楠. 食用黄色素对小肠肠道细胞增殖分化的影响[D]. 杭州: 浙江工商大学, 2020

    KONG X N. Effect of yellow food colorants on proliferation and differentiation of small intestinal cells[D]. Hangzhou: Zhejiang Gongshang University, 2020.
    [53]
    KONG X, WANG X, QIN Y, et al. Effects of sunset yellow on proliferation and differentiation of intestinal epithelial cells in murine intestinal organoids[J]. Journal of Applied Toxicology,2020,41(6):953−963.
    [54]
    张丽颖. 山梨酸钾和糖精钠联合对小鼠小肠细胞生长发育的影响[D]. 杭州: 浙江工商大学, 2020

    ZHANG L Y. Effects of the combination of potassium sorbate and saccharin sodium on the growth and development of mice small intestinal epithelial cells[D]. Hang Zhou: Zhejiang Gongshang University, 2020.
  • Related Articles

    [1]LIU Wuzhen, LI Ti, GENG Qin, CHEN Jun, HAN Jialong, LIU Chengmei, DAI Taotao. Effects of Naringenin and Its Glycosides on Functional Properties of Oat Protein and Their Interaction Mechanism[J]. Science and Technology of Food Industry. DOI: 10.13386/j.issn1002-0306.2024010144
    [2]ZHANG Quantong, ZHENG Yao, YANG Liu, ZHANG Shuaishuai, GUO Quanyou. Rapid Detection of Astaxanthin in Antarctic Krill Meal by Computer Vision Combined with Convolutional Neural Network[J]. Science and Technology of Food Industry. DOI: 10.13386/j.issn1002-0306.2024030200
    [3]HAN Bin, LENG Dongmei, XU Yuqian, SHEN Jianyang, LI Xin, ZHENG Xiaochun, WANG Wei, ZHANG Dequan, HOU Chengli. Research Progress in Monitoring Technology of Cold Chain Logistics for Meat Products[J]. Science and Technology of Food Industry. DOI: 10.13386/j.issn1002-0306.2024030448
    [4]FAN Liqi, LIU Yang, YANG Bao, YU Yi, LI Wu, LIU Lei, LI Zhunchun, ZHA Ao, XU Jucai. Preparation and Characteristics of Acid-soluble Soybean Protein Hydrolysates[J]. Science and Technology of Food Industry. DOI: 10.13386/j.issn1002-0306.2023120341
    [5]LI Xingyang, WANG Beiqi, GUO Chao, CAO Hui, YU Ruilian, WANG Qin. Optimization of Extraction Process of Isaria cicadae Miquel Spore Oil and Effect on Inflammation and Oxidative Damage of Intestinal Epithelial Cells[J]. Science and Technology of Food Industry. DOI: 10.13386/j.issn1002-0306.2024040177
    [6]LIU Lijun, ZHAN Jiahao, SHUAI Jinhao, JIANG Shenhua, CHEN Si, LIU Changjin, ZHANG Ailin, HAO Shu. Effect of Gardenia Yellow Pigment on Dextran Sodium Sulfate-Induced Colitis in Rats and Its Effect on Intestinal Flora[J]. Science and Technology of Food Industry. DOI: 10.13386/j.issn1002-0306.2024030188
    [7]WANG Shengyu, HUANG Yousheng, CHEN Lihua, DONG Huanhuan, GUAN Yongmei, ZHU Weifeng. Effects of Solid Fermentation of Aspergillus Niger on Release of Conjugated Phenolics and Antioxidant Activity of By-products of Pueraria Thomsonii[J]. Science and Technology of Food Industry. DOI: 10.13386/j.issn1002-0306.2024030344
    [8]QIN Yufei, YU Ning, KANG Wenhan, LI Yang, HU Fengxin, ZHANG Jiukai, CHEN Ying. Progress in Molecular Characterization and Epitope Identification of Major Buckwheat Allergens[J]. Science and Technology of Food Industry. DOI: 10.13386/j.issn1002-0306.2024030468

Catalog

    Article Metrics

    Article views (343) PDF downloads (41) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return