WANG Shengyu, HUANG Yousheng, CHEN Lihua, et al. Effects of Solid Fermentation of Aspergillus niger on Release of Bound Phenols and Antioxidant Activity of By-products of Pueraria thomsonii[J]. Science and Technology of Food Industry, 2025, 46(5): 136−144. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024030344.
Citation: WANG Shengyu, HUANG Yousheng, CHEN Lihua, et al. Effects of Solid Fermentation of Aspergillus niger on Release of Bound Phenols and Antioxidant Activity of By-products of Pueraria thomsonii[J]. Science and Technology of Food Industry, 2025, 46(5): 136−144. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024030344.

Effects of Solid Fermentation of Aspergillus niger on Release of Bound Phenols and Antioxidant Activity of By-products of Pueraria thomsonii

More Information
  • Received Date: March 20, 2024
  • Available Online: January 01, 2025
  • In order to improve the utilization value of the by-products from the Pueraria thomsonii and clarifie the release law of bound phenols, Aspergillus niger was used for solid state fermentation of kudzu peel and kudzu dregs. The contents of bound phenols, activities of cellulase and β-glucosidase were measured during fermentation. The types and contents of bound phenols released after fermentation were investigated by high performance liquid chromatography (HPLC). The antioxidant activities of two by-products extracting solution of Pueraria thomsonii were measured during fermentation. The results showed that the fermentation of Aspergillus niger could effectively release the bound phenols in the by-products of Pueraria thomsonii, and the content of the released bound phenolic substances increased significantly with the increase of fermentation time (P<0.05). After fermentation for 7 days, the bound phenols content in the kudzu peel and kudzu dregs was 1.63±0.11 mg/g and 0.93±0.05 mg/g respectively. The maximum cellulase activity of kudzu peel was 662.74±17.06 U/g on the 6th day of fermentation and the highest β-glucosidase activity was 332.64±26.52 U/g on the 7th day of fermentation. The maximum cellulase activity of kudzu dregs was 885.79±66.06 U/g on the 7th day of fermentation and the highest β-glucosidase activity was 354.63±9.45 U/g on the 3rd day of fermentation. There was a positive correlation between the release of phenols and the activities of cellulase and β-glucosidase during fermentation. The liquid phase results showed that 3'-hydroxypuerarin, p-hydroxybenzoic acid, puerarin and daidzein were contained in the fermentation product extract solution. The scavenging ability of fermentation product extract solution for DPPH· and ABTS+· increased with the increase of fermentation time. The results showed that the by-products of Pueraria thomsonii solid fermented by Aspergillus niger could promote the release of bound phenols and improve the antioxidant activity of fermentation solution.
  • [1]
    陈慧, 何绍浪, 王馨悦, 等. 葛渣综合利用研究进展[J]. 江西农业学报,2023,35(9):162−168. [CHEN H, HE S L, WANG X Y, et al. Research progress in comprehensive utilization of Radix pueraria residues[J]. Acta Agriculturae Jiangxi,2023,35(9):162−168.]

    CHEN H, HE S L, WANG X Y, et al. Research progress in comprehensive utilization of Radix pueraria residues[J]. Acta Agriculturae Jiangxi, 2023, 35(9): 162−168.
    [2]
    岳世彦, 周荣荣, 南铁贵, 等. 粉葛与葛根中主要化学成分的含量比较[J]. 中国中药杂志,2022,47(10):2689−2697. [YUE S Y, ZHOU R R, NAN T G, et al. Comparison of major chemical components in Puerariae thomsonii radix and Puerariae lobatae radix[J]. China Journal of Chinese Materia Medica,2022,47(10):2689−2697.]

    YUE S Y, ZHOU R R, NAN T G, et al. Comparison of major chemical components in Puerariae thomsonii radix and Puerariae lobatae radix[J]. China Journal of Chinese Materia Medica, 2022, 47(10): 2689−2697.
    [3]
    HAN X, SONG K, YU H, et al. Extraction and characterisation of kudzu root residue lignin based on deep eutectic solvents[J]. Phytochemical Analysis:PCA,2024,35(4):786−798. doi: 10.1002/pca.3328
    [4]
    WEN C, YU J S, MING C F, et al. Wheat bran, as the resource of dietary fiber:A review[J]. Critical Reviews in Food Science and Nutrition,2021,62(26):21−28.
    [5]
    NIU Y, FANG H, HUO T, et al. A novel fat replacer composed by gelatin and soluble dietary fibers from black bean coats with its application in meatballs[J]. LWT,2020,122:109000. doi: 10.1016/j.lwt.2019.109000
    [6]
    张帅, 罗静怡, 唐婷范, 等. 固态发酵葛根渣制备葛根素[J]. 食品研究与开发,2022,42(12):102−106. [ZHANG S, LUO J Y, TANG T F, et al. Puerarin preparation from Pueraria root residue through solid state fermentation[J]. Food Research and Development,2022,42(12):102−106.] doi: 10.12161/j.issn.1005-6521.2022.12.014

    ZHANG S, LUO J Y, TANG T F, et al. Puerarin preparation from Pueraria root residue through solid state fermentation[J]. Food Research and Development, 2022, 42(12): 102−106. doi: 10.12161/j.issn.1005-6521.2022.12.014
    [7]
    杨树平, 韩立军, 朱金卫, 等. 葛渣总黄酮提取及葛根素含量测定[J]. 食品科学,2011,32(14):303−306. [YANG S P, HAN L J, ZHU J W, et al. Optimization of total flavonoids extraction from Radix Puerariae and HPLC determination of puerarin[J]. Food Science,2011,32(14):303−306.]

    YANG S P, HAN L J, ZHU J W, et al. Optimization of total flavonoids extraction from Radix Puerariae and HPLC determination of puerarin[J]. Food Science, 2011, 32(14): 303−306.
    [8]
    FULGENCIO S. Dietary fiber as a carrier of dietary antioxidants:An essential physiological function[J]. Journal of Agricultural and Food Chemistry,2011,59(1):43−49. doi: 10.1021/jf1036596
    [9]
    徐茂. 地榆游离酚与结合酚的提取纯化、抑菌活性及应用研究[D]. 南昌:南昌大学, 2023. [XU M. Study on the extraction, purification, antibacterial activity, andapplication of free phenol and combined phenol from Sanguisorba officinalis L[D]. Nanchang:Nanchang University, 2023.]

    XU M. Study on the extraction, purification, antibacterial activity, andapplication of free phenol and combined phenol from Sanguisorba officinalis L[D]. Nanchang: Nanchang University, 2023.
    [10]
    王浩毓, 赵惠玲, 李宏全. 马齿苋结合态多酚和自由态多酚抑制肝癌细胞HepG-2增殖及诱导细胞凋亡的研究[J]. 山西农业大学学报(自然科学版),2019,39(4):70−78. [WANG H Y, ZHAO H L, LI H Q. The proliferation inhibition and apoptosis effects of bound polyphenol and free polyphenol from Portulaca oleracea L. on human hepatoma cell line HepG-2[J]. Journal of Shanxi Agricultural University (Natural Science Edition),2019,39(4):70−78.]

    WANG H Y, ZHAO H L, LI H Q. The proliferation inhibition and apoptosis effects of bound polyphenol and free polyphenol from Portulaca oleracea L. on human hepatoma cell line HepG-2[J]. Journal of Shanxi Agricultural University (Natural Science Edition), 2019, 39(4): 70−78.
    [11]
    高艳艳, 祝琳琳, 李想, 等. 酸水解和酶水解在多糖研究中的应用进展[J]. 中华中医药学刊,2022,40(5):142−146. [GAO Y Y, ZHU L L, LI X, et al. Application progress of acid hydrolysis and enzyme hydrolysis in study of polysaccharides[J]. Chinese Archives of Traditional Chinese Medicine,2022,40(5):142−146.]

    GAO Y Y, ZHU L L, LI X, et al. Application progress of acid hydrolysis and enzyme hydrolysis in study of polysaccharides[J]. Chinese Archives of Traditional Chinese Medicine, 2022, 40(5): 142−146.
    [12]
    TANYAWAN S, KRITTAPORN W, KANOKPHAT A, et al. Protein glycation inhibitory activity and antioxidant capacity of clove extract[J]. Journal of food Science and Technology,2015,52(6):3843−3850.
    [13]
    VINOD K, VIVEK A, SAURABH S, et al. Recent developments on solid-state fermentation for production of microbial secondary metabolites:Challenges and solutions[J]. Bioresource Technology,2020,323:124566.
    [14]
    AJILA M C, GASSARA F, BRAR K S, et al. Polyphenolic antioxidant mobilization in apple pomace by different methods of solid-state fermentation and evaluation of its antioxidant activity[J]. Food and Bioprocess Technology,2012,5(7):2697−2707. doi: 10.1007/s11947-011-0582-y
    [15]
    WANG L, WU Y, LIU Y, et al. Complex enzyme-assisted extraction releases antioxidative phenolic compositions from guava leaves[J]. Molecules,2017,22(10):1648−1648. doi: 10.3390/molecules22101648
    [16]
    王懿文, 谢纯良, 朱作华, 等. 黑曲霉固态发酵对金银花多酚类物质释放及增效作用[J]. 食品研究与开发,2023,44(22):23−29. [WANG Y W, XIE C L, ZHU Z H, et al. Solid-state fermentation of Lonicerae japonica by Aspergillus niger:Effects on release of polyphenolsand improving function[J]. Food Research and Development,2023,44(22):23−29.]

    WANG Y W, XIE C L, ZHU Z H, et al. Solid-state fermentation of Lonicerae japonica by Aspergillus niger: Effects on release of polyphenolsand improving function[J]. Food Research and Development, 2023, 44(22): 23−29.
    [17]
    张熙, 韩双艳. 黑曲霉发酵产酶研究进展[J]. 化学与生物工程,2016,33(1):13−16. [ZHANG X, HAN S Y. Research progress on fermentation production of enzyme by Aspergillus niger[J]. Chemistry Bioengineering,2016,33(1):13−16.]

    ZHANG X, HAN S Y. Research progress on fermentation production of enzyme by Aspergillus niger[J]. Chemistry Bioengineering, 2016, 33(1): 13−16.
    [18]
    GUI M F, WEN Q C, BIAO D, et al. Effects of Daqu inoculated with Aspergillus niger and Saccharomyces cerevisiae on microbial community, aroma compounds and physicochemical parameters of fermented grains during the brewing process of Chinese special-flavor Baijiu[J]. Journal of The Science of Food and Agriculture,2022,103(1):273−282.
    [19]
    顿倩. 黑豆膳食纤维结合的多酚构成和微生物代谢规律的研究[D]. 南昌:南昌大学, 2019. [DUN Q. Study on composition and microbial metabolism of bound phenolics binding to dietary fibre of black bean[D]. Nanchang:Nanchang University, 2019.]

    DUN Q. Study on composition and microbial metabolism of bound phenolics binding to dietary fibre of black bean[D]. Nanchang: Nanchang University, 2019.
    [20]
    王振宇. 莲子结合酚对3T3-L1细胞和肥胖小鼠脂质代谢的影响及作用机制的研究[D]. 福州:福建农林大学, 2019. [WANG Z Y. The effects and mechanism of lotus seeds bound phenolics on lipid metabolism in 3T3-L1 preadiposes and obese mice[D]. Fuzhou:Fujian Agriculture and Forestry University, 2019.]

    WANG Z Y. The effects and mechanism of lotus seeds bound phenolics on lipid metabolism in 3T3-L1 preadiposes and obese mice[D]. Fuzhou: Fujian Agriculture and Forestry University, 2019.
    [21]
    阎欲晓, 粟桂娇, 何勇强. 黑曲霉固态发酵对甘蔗叶酚类物质释放及抗氧化活性的影响[J]. 食品科学,2020,41(16):110−116. [YAN Y X, SU G J, HE Y Q. Effects of solid-state fermentation with Aspergillus niger on phenolics release and antioxidant activity of sugarcane leaves[J]. Food Science,2020,41(16):110−116.]

    YAN Y X, SU G J, HE Y Q. Effects of solid-state fermentation with Aspergillus niger on phenolics release and antioxidant activity of sugarcane leaves[J]. Food Science, 2020, 41(16): 110−116.
    [22]
    DZUGAN M, TOMCZYK M, SOWA P, et al. Antioxidant activity as biomarker of honey variety[J]. Molecules,2018,23(8):2069−2083. doi: 10.3390/molecules23082069
    [23]
    XUE P Y, LIAO W, CHEN Y, et al. Release characteristic and mechanism of bound polyphenols from insoluble dietary fiber of navel orange peel via mixed solid-state fermentation with Trichoderma reesei and Aspergillus niger[J]. LWT,2022,161:113387−113397. doi: 10.1016/j.lwt.2022.113387
    [24]
    邢晨, 王俐娟, 王晓琴. 可食用植物不同形态酚类化合物研究进展[J]. 食品科学,2020,41(5):266−275. [XING C, WANG L J, WANG X Q. Recent studies on free and bound phenolic compounds in edible plants:A review[J]. Food Science,2020,41(5):266−275.]

    XING C, WANG L J, WANG X Q. Recent studies on free and bound phenolic compounds in edible plants: A review[J]. Food Science, 2020, 41(5): 266−275.
    [25]
    李丹青, 范娜. 黑曲霉发酵对麦麸多酚及其抗氧化活性的影响[J]. 商洛学院学报,2016,30(6):48−52. [LI D Q, FAN N. Effect of Aspergillus niger fermentation of polyphenols and antioxidant activity of wheat bran[J]. Journal of Shangluo University,2016,30(6):48−52.]

    LI D Q, FAN N. Effect of Aspergillus niger fermentation of polyphenols and antioxidant activity of wheat bran[J]. Journal of Shangluo University, 2016, 30(6): 48−52.
    [26]
    谢欢, 涂宗财, 张露, 等. 黑曲霉发酵制备高可溶性膳食纤维豆渣工艺优化及其水合性质研究[J]. 中国粮油学报,2017,32(4):116−121. [XIE H, TU Z C, ZHANG L, et al. Process optimization of preparation of soluble dietary fiber bean dregs by Aspergilus niger and hydration properties[J]. Journal of the Chinese Cereals and Oils Association,2017,32(4):116−121.]

    XIE H, TU Z C, ZHANG L, et al. Process optimization of preparation of soluble dietary fiber bean dregs by Aspergilus niger and hydration properties[J]. Journal of the Chinese Cereals and Oils Association, 2017, 32(4): 116−121.
    [27]
    符慧珍, 邓梅, 张名位, 等. 黑曲霉改性葛渣膳食纤维的工艺优化及其理化功能特性[J]. 中国农业科学,2023,56(12):2380−2394. [FU H Z, DENG M, ZHANG M W, et al. The optimal fermentation technique of Radix Puerariae residues by Aspergillus niger for dietary fiber modification and the consequent changes of physicochemical and functional properties of dietary fibers[J]. Scientia Agricultura Sinica,2023,56(12):2380−2394.]

    FU H Z, DENG M, ZHANG M W, et al. The optimal fermentation technique of Radix Puerariae residues by Aspergillus niger for dietary fiber modification and the consequent changes of physicochemical and functional properties of dietary fibers[J]. Scientia Agricultura Sinica, 2023, 56(12): 2380−2394.
    [28]
    PAMELA C. Renewable resources; reports outline renewable resources findings from metropolitan autonomous university (In vitro digestibility of ultrasound-treated corn starch)[J]. Ecology Environment & Conservation, 2017, 69(9-10).
    [29]
    ACOSTA-ESTRADA A B, GUTIÉRREZ-URIBE A J, SERNA-SALDÍVAR O S. Bound phenolics in foods, a review[J]. Food Chemistry,2014,152:46−55. doi: 10.1016/j.foodchem.2013.11.093
    [30]
    许涵婷, 唐语谦, 胡腾根, 等. 荔枝果渣可溶性膳食纤维去结合酚前后结构和功能性质的比较[J]. 现代食品科技,2023,39(8):206−212. [XU H T, TANG Y Q, HU T G, et al. Comparison of the structure and functional properties of soluble dietary fiber from lychee pomace before and after the removal of bound phenolics[J]. Modern Food Science and Technology,2023,39(8):206−212.]

    XU H T, TANG Y Q, HU T G, et al. Comparison of the structure and functional properties of soluble dietary fiber from lychee pomace before and after the removal of bound phenolics[J]. Modern Food Science and Technology, 2023, 39(8): 206−212.
    [31]
    郭天时. 米糖膳食纤维的微粉—酶法改性及其理化功能性质的变化研究[D]. 哈尔滨:哈尔滨商业大学, 2017. [GUO T S. Micronized-enzymatic modification of rice bran dietary fibre and changes of its physicochemical and functional properties[D]. Harbin:Harbin University of Commerce, 2017.]

    GUO T S. Micronized-enzymatic modification of rice bran dietary fibre and changes of its physicochemical and functional properties[D]. Harbin: Harbin University of Commerce, 2017.
    [32]
    EISHEEKH M M, BEDAIWY M Y, EINAGAR A A, et al. Saccharification of pre-treated wheat straw via optimized enzymatic production using Aspergillus niger:Chemical analysis of Lignocellulosic matrix[J]. Biocatalysis and Biotransformation,2023,41(4):309−321. doi: 10.1080/10242422.2022.2087511
    [33]
    赵一帆, 罗磊, 马潇, 等. 基于黑曲霉固态发酵的绿豆皮降解及理化特性提升机理[J]. 中国粮油学报,2024,39(3):64−70. [ZHAO Y F, LUO L, MA X, et al. The mechanism of mung bean husk degradation and physicochemical characteristics improvement based on Aspergillus niger solid-state fermentation[J]. Journal of the Chinese Cereals and Oils Association,2024,39(3):64−70.]

    ZHAO Y F, LUO L, MA X, et al. The mechanism of mung bean husk degradation and physicochemical characteristics improvement based on Aspergillus niger solid-state fermentation[J]. Journal of the Chinese Cereals and Oils Association, 2024, 39(3): 64−70.
    [34]
    XU Z, XIONG X, ZENG Q, et al. Alterations in structural and functional properties of insoluble dietary fibers-bound phenolic complexes derived from lychee pulp by alkaline hydrolysis treatment[J]. LWT,2020,127:109335. doi: 10.1016/j.lwt.2020.109335
    [35]
    RAZGONOVA M P, ZINVHENKO Y N, KOZAK D K, et al. Autofluorescence-based investigation of spatial distribution of phenolic compounds in soybeans using confocal laser microscopy and a high-resolution mass spectrometric approach[J]. Molecules,2022,27(23):8228−8228. doi: 10.3390/molecules27238228
    [36]
    王胜宇, 杨梅, 胡鹤宇, 等. 粉葛加工副产物中结合态酚类物质的提取工艺优化、组成及抗氧化活性分析[J]. 食品工业科技,2024,45(17):1−9. [WANG S Y, YANG M, HU H Y, et al. Optimization of extraction process, composition and antioxidant activity analysis of conjugated phenols from the by-product residue of Pueraria thomsonii[J]. Science and Technology of Food Industry,2024,45(17):1−9.]

    WANG S Y, YANG M, HU H Y, et al. Optimization of extraction process, composition and antioxidant activity analysis of conjugated phenols from the by-product residue of Pueraria thomsonii[J]. Science and Technology of Food Industry, 2024, 45(17): 1−9.
    [37]
    周礼仕, 潘小燕, 邱雯曦, 等. 粉葛与葛根HPLC指纹图谱[J]. 山东化工,2022,51(17):119−122. [ZHOU L S, PAN X Y, QIU W X, et al. Study on HPLC fingerprint of Pueraraiae thomsonii radix and Pueraraiae lobatae radix[J]. Shandong Chemical Industry,2022,51(17):119−122.]

    ZHOU L S, PAN X Y, QIU W X, et al. Study on HPLC fingerprint of Pueraraiae thomsonii radix and Pueraraiae lobatae radix[J]. Shandong Chemical Industry, 2022, 51(17): 119−122.
    [38]
    WEI Z L, XIAO L Z, XIAO Q H, et al. Effects of steam explosion pretreatment on the composition and biological activities of tartary buckwheat bran phenolics.[J]. Food & Function,2020,11(5):4648−4658.
    [39]
    FU X, CHEN H. Air-steam explosion enhancing the extraction efficiency of chlorogenic acid from leaves of Eucommia ulmoides Oliver[J]. Separation and Purification Technology,2015,146:317−325. doi: 10.1016/j.seppur.2015.03.054
    [40]
    LEÓNMEDINA D C J, SEPÚLVEDA L, MORLETTCHÁVEZ J, et al. Solid-state fermentation with Aspergillus niger GH1 to enhance polyphenolic content and antioxidative activity of Castilla rose (Purshia plicata)[J]. Plants (Basel, Switzerland),2020,9(11):1518−1518.
    [41]
    XI Z T, FU Y L, XIU M L, et al. Effects of six different microbial strains on polyphenol profiles, antioxidant activity, and bioaccessibility of blueberry pomace with solid-state fermentation[J]. Frontiers in Nutrition,2023,10:1282438. doi: 10.3389/fnut.2023.1282438
    [42]
    JAKOBEK L, MATIĆ P. Non-covalent dietary fiber-polyphenol interactions and their influence on polyphenol bioaccessibility[J]. Trends in Food Science Technology,2018,83:235−83247.
    [43]
    黄再强, 王甜甜, 马逾英, 等. 基于多指标成分含量与抗氧化活性的葛根类药材质量评价研究[J]. 中草药,2018,49(7):1667−1676. [HUANG Z Q, WANG T T, MA Y Y, et al. Quality evaluation study of Pueraria Radix and Pueraria thomsonii by component contents and anti-oxidant activity[J]. Chinese Traditional and Herbal Drugs,2018,49(7):1667−1676.]

    HUANG Z Q, WANG T T, MA Y Y, et al. Quality evaluation study of Pueraria Radix and Pueraria thomsonii by component contents and anti-oxidant activity[J]. Chinese Traditional and Herbal Drugs, 2018, 49(7): 1667−1676.
    [44]
    HEIM E K, TAGLIFERRO R A, BOBILYA J D. Flavonoid antioxidants:Chemistry, metabolism and structure-activity relationships[J]. The Journal of Nutritional Biochemistry,2002,13(10):572−584. doi: 10.1016/S0955-2863(02)00208-5
  • Other Related Supplements

  • Cited by

    Periodical cited type(11)

    1. 苏敏,李红丽,白亚敏,黄大亮,刘元,吴彦蕾. 基于液相色谱-串联高分辨质谱技术的食品中污染物检测技术研究进展. 食品安全质量检测学报. 2025(04): 44-52 .
    2. 张君. 我国南方部分地区蓝莓种植过程中农药残留检测结果分析. 河北农机. 2024(03): 136-138 .
    3. 张申平,秦宇,顾颖娟. QuEChERS-超高效液相色谱-四极杆/静电场轨道阱质谱法测定牛羊乳及其乳粉中21种兽药. 乳业科学与技术. 2024(02): 24-29 .
    4. 李红洲,国果,李博岩,梁桂娟,李志远. 超高效液相色谱-四极杆-飞行时间-高分辨质谱法分析6种李果实中的代谢物差异性. 食品安全质量检测学报. 2024(11): 63-73 .
    5. 刘宇航,于寒冰,杨红菊,马啸,温雅君,孙志伟,习佳林,熊慧勤,肖志勇. 高效液相色谱-四极杆-飞行时间质谱法快速筛查蔬菜中124种药物与个人护理品残留量. 食品安全质量检测学报. 2024(16): 175-184 .
    6. 朱春雨,吴移山,郑景娇. 高效液相色谱-串联质谱法测定鸡蛋中地克珠利、妥曲珠利及其代谢物残留量. 食品安全质量检测学报. 2024(16): 211-218 .
    7. 肖泳,曾小明,李政,袁列江,邓航,王淑霞,潘照. 超高效液相色谱-四极杆/静电场轨道阱高分辨质谱法测定鸡蛋中94种农药残留. 食品与发酵工业. 2024(21): 333-340 .
    8. 王颖怡,吴玉田,孟春杨,周贻兵,刘利亚. HPLC-MS/MS技术同时测定鸡蛋中5种抗球虫药. 食品工业. 2023(06): 291-294 .
    9. 李晓慧,李建洪,王洪萍,金芬. 植物源性食品中化学性危害物质的色谱-质谱检测技术研究进展. 分析测试学报. 2023(10): 1357-1369 .
    10. 周雪莼,胡婷婷,王佳慧,白静,杨颖,侯宇,张哲,张勋. 高效液相色谱-高分辨质谱法快速筛查动物源性药食同源产品中32种抗生素兽药残留. 吉林中医药. 2023(12): 1469-1474 .
    11. 范轶欧,迟英欣,杨路平,焦燕妮. 高分辨质谱技术在环境和食品风险物质非靶向筛查检测中应用的研究进展. 预防医学论坛. 2023(12): 955-960 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (40) PDF downloads (5) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return