GAO Jianfei, ZHOU Wei, WEN Ximei, et al. Analysis of the Secondary Metabolites in Kadsura coccinea Fruit and Their Accumulation Difference in Peel, Pulp and Seed Organs[J]. Science and Technology of Food Industry, 2022, 43(12): 27−35. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100173.
Citation: GAO Jianfei, ZHOU Wei, WEN Ximei, et al. Analysis of the Secondary Metabolites in Kadsura coccinea Fruit and Their Accumulation Difference in Peel, Pulp and Seed Organs[J]. Science and Technology of Food Industry, 2022, 43(12): 27−35. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021100173.

Analysis of the Secondary Metabolites in Kadsura coccinea Fruit and Their Accumulation Difference in Peel, Pulp and Seed Organs

More Information
  • Received Date: October 17, 2021
  • Available Online: April 12, 2022
  • In order to explore Kadsura coccinea fruit development and utilization, widely-targeted metabolomics was used to identify the compounds in different organs of K. coccinea fruit, according to their structural distribution and categories, the diversity and abundance of the secondary metabolites were analyzed. Results: A total of 307 secondary metabolites were identified in the fruit of K. coccinea, among which phenolic acids (38.8%) and flavonoids (27.7%) were the dominant. In particular, 272 were found in the peel, 286 in the pulp, 201 in the seed, and 180 in all three parts. The amount of phenolic acids, flavonoids, and terpenoidswas significantly lower in seed than in pulp and peel, resulting in a lower diversity of secondary metabolites. The abundance of secondary metabolites in the peel (81.62×107) was much higher than that in the pulp (25.61×107) and seed (24.38×107), mainly due to the high enrichment offlavonoids (quercetins, catechins and cyanidins) and the significant up-regulation of alkaloids. The metabolic components were mainly phenolic acids and flavonoids. The peel of K. coccinea was rich in flavonoids (quercetin, catechins and cyanidins, etc), and the seeds were rich in lignins. All three parts contained triterpenoids with novel structures, indicating that the fruit had significant utilization potential and research value.
  • [1]
    国家中医药管理局《中华本草》编委会. 中华本草 [M]. 第2册. 上海: 上海科学技术出版社, 1999: 895.

    Chinese Herbal Medicine Editorial Boards of National Administration of Traditional Chinese Medicine. Chinese herbal medicine [M]. Volume 2. Shanghai: Shanghai Science and Technology Press: 1999: 895.
    [2]
    舒永志, 成亮, 杨培明. 黑老虎的化学成分及药理作用研究进展[J]. 中草药,2011,42(4):805−813. [[SHU Y Z, CHEN L, YANG P M. Advances in studies on chemical constituents in Kadsura coccinea and their pharmacological activities[J]. Chinese Traditional and Herbal Drugs,2011,42(4):805−813.

    [SHU Y Z, CHEN L, YANG P M. Advances in studies on chemical constituents in Kadsura coccinea and their pharmacological activities [J]. Chinese Traditional and Herbal Drugs, 2011, 42(4): 805–813.
    [3]
    BAN N K, THANH B V, KIEM P V, et al. Dibenzocyclooctadiene lignans and lanostane derivatives from the roots of Kadsura coccinea and their protective effects on primary rat hepatocyte injury induced by t-butyl hydroperoxide[J]. Planta Medica,2009,5(11):1253−1257.
    [4]
    SUN J, YAO J Y, HUANG S X. Antioxidant activity of polyphenol and anthocyanin extracts from fruits of Kadsura coccinea[J]. Food Chemistry,2009,117(2):276−281. doi: 10.1016/j.foodchem.2009.04.001
    [5]
    延在昊, 成亮, 孔令义, 等. 黑老虎化学成分及其抗氧化活性研究[J]. 中草药,2013,44(21):2969−2973. [YAN Z H, CHENG L, KONG L Y, et al. Chemical constituents and their anti-oxidative activiities of Kɑdsurɑ coccineɑ[J]. Chinese Traditional and Herbal Drugs,2013,44(21):2969−2973.

    YAN Z H, CHENG L, KONG L Y, et al. Chemical constituents and their anti-oxidative activiities of Kɑdsurɑ coccineɑ[J]. Chinese Traditional and Herbal Drugs, 2013, 44(21): 2969–2973.
    [6]
    杨艳, 高渐飞. 冷饭团不同部位挥发性成分及抗氧化活性分析[J]. 广西植物,2018,38(7):943−952. [YANG Y, GAO J F. Volatile components and their antioxidant activities in different parts of Kadsura coccinea[J]. Guihaia,2018,38(7):943−952. doi: 10.11931/guihaia.gxzw201708005

    YANG Y, GAO J F. Volatile components and their antioxidant activities in different parts of Kadsura coccinea [J]. Guihaia, 2018, 38(7): 943–952. doi: 10.11931/guihaia.gxzw201708005
    [7]
    YANG Y P, NUSTAT H, ZHANG L, et al. Kadsura coccinea: A rich source of structurally diverse and biologically important compounds[J]. Chinese Herbal Medicines,2020,12(3):15−24.
    [8]
    高渐飞, 李苇洁, 龙世林. 冷饭团营养成分与利用价值研究[J]. 中国南方果树,2016,45(5):84−87. [GAO J F, YANG Y, LONG S L. Analysis and evaluation on the nutritional components of of Kadsura coccinea fruit[J]. South China Fruits,2016,45(5):84−87.

    GAO J F, YANG Y, LONG S L. Analysis and Evaluation on the Nutritional Components of of Kadsura coccinea fruit [J]. South China Fruits, 2016, 45(5): 84–87.
    [9]
    邹建文, 饶红欣, 何润华, 等. 粉碎粒度对黑老虎果浆理化性质和内含物含量的影响[J]. 南方农业学报,2019,50(11):2532−2538. [ZOU J W, RAO H X, HE R H, et al. Effects of crushing mesh number on physicochemical properties and contents of embedded components for Kadsura coccinea fruit pulps[J]. Journal of Southern Agriculture,2019,50(11):2532−2538. doi: 10.3969/j.issn.2095-1191.2019.11.21

    ZOU J W, RAO H X, HE R H, et al. Effects of crushing mesh number on physicochemical properties and contents of embedded components for Kadsura coccinea fruit pulps [J]. Journal of Southern Agriculture, 2019, 50(11): 2532–2538. doi: 10.3969/j.issn.2095-1191.2019.11.21
    [10]
    洪荣艳, 王森, 邵凤侠, 等. 黑老虎表型性状相关性及主成分分析[J]. 森林与环境学报,2020,40(5):542−547. [HONG R Y, WANG S, SHAO F X, et al. Correlation and principal component analysis of phenotypic traits of channel Kadsura coccinea[J]. Journal of Forest and Environment,2020,40(5):542−547.

    HONG R Y, WANG S, SHAO F X, et al. Correlation and principal component analysis of phenotypic traits of channel Kadsura coccinea [J]. Journal of Forest and Environment, 2020, 40(5): 542–547.
    [11]
    刘笑宏, 宋一超, 刘兆宇, 等. 直立/水平两种叶幕对'摩尔多瓦'葡萄次生代谢产物含量的影响[J]. 果树学报, 2019, 36(3): 308–317

    LIU X H, SONG Y C, LIU Z Y, et al. Effect of vertical and horizontal canopy on the secondary metabolites in ‘Moldova’ grape [J]. Journal of Fruit Science, 36(3): 308–317.
    [12]
    谢玮. 黔东黑老虎果营养品质评价[J]. 食品工业科技,2019,40(11):249−253. [XIE W. Nutritional quality evaluation of Kadsura coccinea fruit in East Guizhou[J]. Science and Technology of Food Industry,2019,40(11):249−253.

    XIE W. Nutritional quality evaluation of Kadsura coccinea fruit in East Guizhou [J]. Science and Technology of Food Industry, 2019, 40(11): 249–253.
    [13]
    毛云玲, 付玉嫔, 祁荣频, 等. 云南黑老虎不同种源氨基酸和其他指标的分析与评价[J]. 氨基酸和生物资源,2015,37(2):14−19. [MAO Y L, FU Y P, QI R P, et al. Analysis and evaluation of amino acids and other indicators of Kadsura coccinea from different areas of Yunnan[J]. Amino Acids & Biotic Resources,2015,37(2):14−19.

    MAO Y L, FU Y P, QI R P, et al. Analysis and evaluation of amino acids and other indicators of Kadsura coccinea from different areas of Yunnan [J]. Amino Acids & Biotic Resources, 2015, 37(2): 14–19.
    [14]
    WARREN, LAU, ELIZABETH, et al. Six enzymes from mayapple that complete the biosynthetic pathway to the etoposide aglycone[J]. Science,2015,349(6253):1224−1228. doi: 10.1126/science.aac7202
    [15]
    XU L, XU Z Z, WANG X, et al. The application of pseudotargeted metabolomics method for fruit juices discrimination[J]. Food Chem,2020,316:126278. doi: 10.1016/j.foodchem.2020.126278
    [16]
    方贤胜, 吴涛, 肖良俊. 基于广泛靶向代谢组学的浅黄色和紫色核桃内种皮成分差异分析[J]. 食品科学,2020,40(9):769−774. [FANG X S, WU T, XIAO L J. Differential analysis of the metabolites on kernel pellicles between light yellow and purple walnuts by widely targeted metabolomics[J]. Food Science,2020,40(9):769−774.

    FANG X S, WU T, XIAO L J. Differential analysis of the metabolites on kernel pellicles between light yellow and purple walnuts by widely targeted metabolomics [J]. Food Science, 2020, 40(9): 769–774.
    [17]
    FRAGA C G, CLOWERS B H, MOORE R J, et al. Signature-discovery approach for sample matching of a nerve-agent precursor using liquid chromatography-mass spectrometry, XCMS, and chemometrics[J]. Analytical Chemistry,2010,82(10):4165−4173. doi: 10.1021/ac1003568
    [18]
    THÉVENOT E A, ROUX A, XU Y, et al. Analysis of the human adult urinary metabolome variations with age, body mass index, and gender by implementing a comprehensive workflow for univariate and OPLS statistical analyses[J]. Journal of Proteome Research,2015,14(8):3322−35. doi: 10.1021/acs.jproteome.5b00354
    [19]
    李里, 王静, 宋亚倩, 等. 黑老虎果皮和种子的抗氧化、抑菌和抑酶活性[J]. 经济林研究,2020,38(3):237−244. [LI Li, WANG J, SONG Y Q, et al. The antioxidant, antibacterial and enzyme inhibitory activities of the peel and seed of Kadsura coccinea[J]. Non-wood Forest Research,2020,38(3):237−244.

    LI Li, WANG J, SONG Y Q, et al. The antioxidant, antibacterial and enzyme inhibitory activities of the peel and seed of Kadsura coccinea [J]. Non-wood Forest Research, 2020, 38(3): 237–244.
    [20]
    任伟光, 张翠英. 五味子的研究进展及质量标志物(Q-marker)的预测分析[J]. 中草药,2020,51(11):259−265. [REN W G, ZHANG C W. Research progress ofSchisandra chinensis and predictive analysis of Q-marker[J]. Chinese Traditional and Herbal Drugs,2020,51(11):259−265.

    REN W G, ZHANG C W. Research progress of Schisandra chinensis and predictive analysis of Q-marker [J]. Chinese Traditional and Herbal Drugs, 2020, 51(11): 259–265.
    [21]
    GAO X M, PU J X, HUANG S X, et al. Lignans from Kadsura angustifolia[J]. Journal of Natural Products,2008,71(4):558−563. doi: 10.1021/np0705108
    [22]
    HU W, LI L, WANG Q, et al. Dibenzocyclooctadiene lignans from Kadsura coccinea[J]. Journal of Asian Natural Products Research,2012,14:364−369. doi: 10.1080/10286020.2011.654334
    [23]
    ZHAO Q J, SONG Y, CHEN H S. Cytotoxic dibenzocyclooctadiene lignans from Kadsura coccinea[J]. Archives of Pharmacal Research,2014,37:1375−1379. doi: 10.1007/s12272-013-0186-3
    [24]
    LIU Y B, YANG Y P, SHUMAILA T, et al. Lignans from tujia ethnomedicine heilaohu: Chemical characterization and evaluation of their cytotoxicity and antioxidant activities[J]. Molecules,2018,23(9):2147. doi: 10.3390/molecules23092147
    [25]
    PU J X, YANG L M, XIAO W L, et al. Compounds from Kadsura heteroclita and related anti-HIV activity[J]. Phytochemistry,2008,69:1266−1272. doi: 10.1016/j.phytochem.2007.11.019
    [26]
    ALEKSANDRA K, DOROTA S W. Flavonoids-food sources and health benefits[J]. Roczniki Państwowego Zakadu Higieny,2014,65(2):79−85.
    [27]
    CHOU C C, YANG J S, LU H F, et al. Quercetin-mediated cell cycle arrest and apoptosis involving activation of a caspase cascade through the mitochondrial pathway in human breast cancer MCF-7 cells[J]. Archives of Pharmacal Research,2010,33:1181−1191. doi: 10.1007/s12272-010-0808-y
    [28]
    NANCE C L, SIWAK E B, SHEARER W T. Preclinical development of the green tea catechin, epigallocatechin gallate, as an HIV-1 therapy[J]. Journal of Allergy & Clinical Immunology,2009,123(2):459−465.
    [29]
    TADASHI, NAKANISHI, KAYO, et al. Anti-inflammatory effect of catechin on cultured human dental pulp cells affected by bacteria-derived factors[J]. European Journal of Oral Sciences,2010,118(2):145−150. doi: 10.1111/j.1600-0722.2010.00714.x
    [30]
    刘珊丽, 刘宗文, 卢沛琦, 等. 儿茶素对大鼠脑缺血/再灌注损伤的保护作用及机制[J]. 中国药理学通报, 2010, 26(2): 255–257

    LIU S L, LIU Z W, LU P Q. Protective effects of catechin on cerebral ischemia-reperfusion injury in rats and its mechanism [J]. Chinese Pharmacological Bulletin, 2010, 26(2): 255-257.
    [31]
    徐先祥. 儿茶素的药理作用研究综述[J]. 郑州轻工业学院学报(自然科学版),2012,27(4):60−64. [XU X X. Review of research on pharmacological effects of catechins[J]. Journal of Zhengzhou University of Light Industry,2012,27(4):60−64.

    XU X X. Review of research on pharmacological effects of catechins [J]. Journal of Zhengzhou University of Light Industry, 2012, 27(4): 60–64.
    [32]
    GAO X M, PU J X, XIAO W L, et al. Kadcoccilactones K-R, triterpenoids from Kadsura coccinea[J]. Tetrahedron,2008,64:11673−11679. doi: 10.1016/j.tet.2008.10.011
    [33]
    LIANG C Q, SHI Y M, LI X Y, et al. Kadcotriones A-C: tricyclic triterpenoids from Kadsura coccinea[J]. Journal of Natural Products,2013,74:2350−2354.
    [34]
    LIANG C Q, SHI Y M, LUO R H, et al. Kadcoccitones A and B, two new 6/6/5/5-fused tetracyclic triterpenoids from Kadsura coccinea[J]. Organic Letters,2012,14:6362−6365. doi: 10.1021/ol303168y
    [35]
    HU Z X, SHI Y M, WANG W G, et al. Kadcoccinones A–F, new biogenetically related lanostane-type triterpenoids with diverse skeletons from Kadsura coccinea[J]. Organic Letters,2015,17:4616−4619. doi: 10.1021/acs.orglett.5b02360
  • Cited by

    Periodical cited type(14)

    1. 刘非凡,温纪平,展小彬,石松业,李柯新,唐浩洁. 冷等离子体处理在食品中的应用研究进展. 食品研究与开发. 2024(12): 181-188 .
    2. 闵照永. 等离子体活化水及微波协同处理对鲜湿面片特性的影响. 食品科技. 2024(06): 180-186 .
    3. 高婷,尹凯静,邵栋梁,赵丹丹,戴文娜. 低温等离子体技术杀灭食源性致病菌的研究进展. 农产品加工. 2024(14): 100-103 .
    4. 方镇洲,杨体园,赵玲艳,邓洁红. 低温等离子体处理对华容大叶芥菜贮藏品质的影响. 食品安全质量检测学报. 2024(20): 257-262 .
    5. 张腾,江昊. 超声渗透等离子活化水对香蕉切片鲜切品质的影响. 包装工程. 2023(05): 65-74 .
    6. 萧文宇,吴迅,黄显斌,李玲,何志平,郭俭. 低温等离子体活化水对蓝莓表面微生物抑制作用及其贮藏品质的影响. 食品工业科技. 2023(08): 359-365 . 本站查看
    7. 颜心怡,李锦晶,李赤翎,吴金鸿,俞健,王发祥,刘永乐,李向红. 冷等离子体技术对食品组分的影响及其作用机制. 食品工业科技. 2023(12): 445-454 . 本站查看
    8. 李芮,宋雅琪,周丹丹,屠康. 等离子体活化水对鲜切莲藕杀菌及保鲜的影响. 食品与生物技术学报. 2023(10): 30-40 .
    9. 田方,徐咏菁,孙志栋,周琦,王志远,华镇南,蔡路昀. 低温等离子体处理对鲜切猕猴桃片微观结构及理化特性的影响. 食品与发酵工业. 2023(21): 167-174 .
    10. 赵莹,严龙飞,严文静,章建浩. 低温等离子体活化水与介质阻挡放电联合处理对草莓冷杀菌效果及品质的影响. 食品科学. 2022(17): 105-116 .
    11. 韩扬,朱成志,李沁雨,李立,马新新,赵志军,包怡红. ε-聚赖氨酸复合保鲜剂对鸡毛菜品质及微生物的影响. 食品与发酵工业. 2022(18): 205-212 .
    12. 白亚龙,廖小艳,崔妍. 消除鲜食生菜中细菌污染的研究进展. 食品科学. 2022(19): 367-374 .
    13. 相启森,张嵘,杜桂红,王利敏,蒋爱民. 等离子体活化水对沙门氏菌的灭活作用及机制研究. 食品工业科技. 2021(08): 138-143 . 本站查看
    14. 翟娅菲,田佳丽,相启森,禹晓,申瑞玲,王章存. 非热加工技术在果蔬保鲜中的应用. 食品工业. 2021(05): 327-332 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (222) PDF downloads (22) Cited by(23)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return