XIANG Qisen, ZHANG Rong, DU Guihong, et al. Inactivation Effects and Mechanisms of Plasma-Activated Water against S. typhimurium [J]. Science and Technology of Food Industry, 2021, 42(8): 138−143. (in Chinese with English abstract). doi: 10.13386/ j.issn1002-0306.2020080241.
Citation: XIANG Qisen, ZHANG Rong, DU Guihong, et al. Inactivation Effects and Mechanisms of Plasma-Activated Water against S. typhimurium [J]. Science and Technology of Food Industry, 2021, 42(8): 138−143. (in Chinese with English abstract). doi: 10.13386/ j.issn1002-0306.2020080241.

Inactivation Effects and Mechanisms of Plasma-Activated Water against S. typhimurium

More Information
  • Received Date: August 25, 2020
  • Available Online: January 27, 2021
  • Plasma-activated water (PAW) is an emerging non-thermal sterilization technology, which shows potential applications in food preservation. The present study aimed to elucidate the antibacterial effect and underlying mechanisms of PAW against S. typhimurium cells. PAW obtained by plasma discharge for 30, 60, and 90 s were recorded as PAW30, PAW60, and PAW90, respectively. The results showed that the bactericidal effect of PAW against S. typhimurium cells was gradually enhanced with the increasing plasma discharge time. The population of S. typhimurium was decreased by 4.22 lg CFU/mL after PAW60 treatment for 10 min, which was significantly (P<0.05) lower than that of the control group (7.91 lg CFU/mL). The results of scanning electron microscope (SEM) indicated that the PAW60 treatment resulted in obvious changes in the morphology of S. typhimurium cells. The PAW60 treatment also caused severe disruption of the membrane integrity and permeability of S. typhimurium cells, leading to the significant leakages of cytoplasmic nucleic acids and proteins. After the PAW60 treatment, the extracellular membrane integrity of S. typhimurium cells was destroyed and the intracellular reactive oxygen species levels were also significantly increased. In summary, PAW could effectively inactivate S. typhimurium cells, which might be related to the changes in the structure and membrane permeability of S. typhimurium cells. The results of this study provide theoretical basis for the application of PAW in food sterilization and preservation.
  • [1]
    褚召娟, 李磊, 闵世豪, 等. 蓝光对阪崎肠杆菌的杀菌及机制研究[J]. 现代食品科技,2019,35(7):13−17, 210.
    [2]
    史展, 王周利, 岳田利, 等. 低温等离子体杀灭食源性致病菌的研究进展[J/OL]. 食品工业科技: 1−13[2020-08-13].http://kns.cnki.net/kcms/detail/11.1759.TS.20200811.0904.002.html.
    [3]
    Kim S S, Park S H, Kim S H, et al. Synergistic effect of ohmic heating and UV-C irradiation for inactivation of Escherichia coli O157: H7, Salmonella typhimurium and Listeria monocytogenes in buffered peptone water and tomato juice[J]. Food Control,2019,102:69−75. doi: 10.1016/j.foodcont.2019.03.011
    [4]
    Sauceda-Galvez J N, Tió-Coma M, Martinez-Garcia M, et al. Effect of single and combined UV-C and ultra-high pressure homogenisation treatments on inactivation of Alicyclobacillus acidoterrestris spores in apple juice[J]. Innovative Food Science & Emerging Technologies,2020,60:102299.
    [5]
    Mendes-Oliveira G, Jin TZ, Campanella, O H. Modeling the inactivation of Escherichia coli O157: H7 and Salmonella Typhimurium in juices by pulsed electric fields: The role of the energy density[J]. Journal of Food Engineering,2020,282:110001. doi: 10.1016/j.jfoodeng.2020.110001
    [6]
    Xiang Q S, Fan L M, Zhang R, et al. Effect of UVC light-emitting diodes on apple juice: Inactivation of Zygosaccharomyces rouxii and determination of quality[J]. Food Control,2020,111:107082. doi: 10.1016/j.foodcont.2019.107082
    [7]
    Li Y Y, Wu C Q. Enhanced inactivation of Salmonella typhimurium from blueberries by combinations of sodium dodecyl sulfate with organic acids or hydrogen peroxide[J]. Food Research International,2013,54(2):1553−1559. doi: 10.1016/j.foodres.2013.09.012
    [8]
    童钰, 陆海霞, 励建荣. 超高压处理对副溶血性弧菌细胞膜组成成分的影响[J]. 微生物学报,2012,52(10):1244−1250.
    [9]
    濮晨熹, 郭大滨, 胡沔, 等. 颗粒物的庇护作用对紫外线消毒效果的影响[J]. 中国给水排水,2017,33(13):73−76.
    [10]
    熊中奎, 郎娟, 夏国园. 化学消毒剂二氧化氯抗微生物作用及应用[J]. 现代预防医学,2011,38(6):1114−1116, 1122.
    [11]
    相启森, 张嵘, 范刘敏, 等. 大气压冷等离子体在鲜切果蔬保鲜中的应用研究进展[J/OL]. 食品工业科技: 1−11[2020-08-21]. http://kns.cnki.net/kcms/detail/11.1759.TS.20200603.1514.011.html.
    [12]
    Fernández A, Noriega E, Thompson A. Inactivation of Salmonella enterica serovar Typhimurium on fresh produce by cold atmospheric gas plasma technology[J]. Food Microbiology,2013,33(1):24−29. doi: 10.1016/j.fm.2012.08.007
    [13]
    袁园, 黄明明, 魏巧云, 等. 等离子体活化水对鲜切生菜杀菌效能及贮藏品质影响[J/OL]. 食品工业科技: 110[2020-08-21]. http://kns.cnki.net/kcms/detail/11.1759.TS.20200502.1040.018.html.
    [14]
    汪家权, 周小霞, 许子牧, 等. 等离子体活化水灭活金黄色葡萄球菌生物膜[J]. 环境工程学报,2019,13(7):1766−1772. doi: 10.12030/j.cjee.201901156
    [15]
    Xiang Q S, Liu X F, Li J G, et al. Effects of dielectric barrier discharge plasma on the inactivation of Zygosaccharomyces rouxii and quality of apple juice[J]. Food Chemistry,2018,254:201−207. doi: 10.1016/j.foodchem.2018.02.008
    [16]
    Moussa M, Perrier-Cornet J M, Gervais P. Damage in Escherichia coli cells treated with a combination of high hydrostatic pressure and subzero temperature[J]. Applied and Environmental Microbiology,2007,73(20):6508−6518. doi: 10.1128/AEM.01212-07
    [17]
    Helander I M, Mattila-Sandholm T. Fluorometric assessment of gram-negative bacterial permeabilization[J]. Journal of Applied Microbiology,2000,88(2):213−219. doi: 10.1046/j.1365-2672.2000.00971.x
    [18]
    马良军, 王佳媚, 黄明明, 等. 不同处理条件对介质阻挡放电低温等离子体杀菌效果及影响机理研究[J]. 微生物学报,2019,59(8):1512−1521.
    [19]
    朱莉华, 李燕, 仝其根, 等. 大气滑动弧放电对沙门氏菌的灭活机制及在鸡蛋保鲜中的应用[J]. 食品科学,2017,38(9):133−137. doi: 10.7506/spkx1002-6630-201709021
    [20]
    Rosenberg M, Azevedo N F, Ivask A. Propidium iodide staining underestimates viability of adherent bacterial cells[J]. Scientific Reports,2019,9:6483. doi: 10.1038/s41598-019-42906-3
    [21]
    Xiang Q S, Wang W J, Zhao D B, et al. Synergistic inactivation of Escherichia coli O157: H7 by plasma-activated water and mild heat[J]. Food Control,2019,106:106741. doi: 10.1016/j.foodcont.2019.106741
    [22]
    聂新颖, 廖红梅, 刘元法. 过氧化氢处理中鼠伤寒沙门氏菌VBNC态形成及其机制解析[J]. 食品与机械,2019,35(7):67−73.
    [23]
    周云冬. 植物提取物抑菌活性及抑菌机理[D]. 无锡: 江南大学, 2019.
    [24]
    Tommassen J. Assembly of outer-membrane proteins in bacteria and mitochondria[J]. Microbiology,2010,156(9):2587−2596. doi: 10.1099/mic.0.042689-0
    [25]
    Muheim C, Götzke H, Eriksson A U, et al. Increasing the permeability of Escherichia coli using MAC13243[J]. Scientific Reports,2017,7:17629. doi: 10.1038/s41598-017-17772-6
    [26]
    Halder S, Yadav K K, Sarkar R, et al. Alteration of Zeta potential and membrane permeability in bacteria: A study with cationic agents[J]. Springer Plus,2015,4:672. doi: 10.1186/s40064-015-1476-7
    [27]
    Xiang Q S, Kang C D, Niu L Y, et al. Antibacterial activity and a membrane damage mechanism of plasma-activated water against Pseudomonas deceptionensis CM2[J]. LWT-Food Science and Technology,2018,96:395−401. doi: 10.1016/j.lwt.2018.05.059
    [28]
    Iswarya A, Anjugam M, Shanthini S, et al. Protective activity of beta-1, 3-glucan binding protein against AAPH induced oxidative stress in Saccharomyces cerevisiae[J]. International Journal of Biological Macromolecules,2019,138:890−902. doi: 10.1016/j.ijbiomac.2019.07.130
    [29]
    Santos A L, Gomes N C M, Henriques I, et al. Contribution of reactive oxygen species to UV-B-induced damage in bacteria[J]. Journal of Photochemistry and Photobiology B: Biology,2012,117:40−46. doi: 10.1016/j.jphotobiol.2012.08.016
  • Cited by

    Periodical cited type(24)

    1. 张娜,刘丽,李璐,吕京京,董益阳. 青胶蒲公英根多酚超声辅助提取工艺优化及其体外抗氧化、降糖活性. 食品工业科技. 2024(17): 200-208 . 本站查看
    2. 李梅婷,赵泽帆,张晓静,陈宝怡,卢乐怡,张喆,董林欣,王静,肖国丹,张绮玥. 余甘子多酚提取工艺优化研究. 质量安全与检验检测. 2024(04): 85-91 .
    3. 郝晓华,宋雅林,刘可心. 响应面法优化酸提取荷叶中生物碱的工艺研究. 太原师范学院学报(自然科学版). 2024(03): 56-64 .
    4. 李泽洋,黄华,肖善芳,郭松. 半边风多酚提取工艺优化及其抗氧化和抗菌活性研究. 饲料研究. 2024(19): 102-107 .
    5. 李宏,唐中伟,袁建琴,刘亚令,李友莲. 正交设计与响应面法优化甘草多糖提取工艺的研究. 轻工科技. 2023(01): 4-9 .
    6. 张腊腊,胡浩斌,韩明虎,王玉峰,武芸. 响应面优化黄花菜多酚提取工艺及其抗氧化活性研究. 中国食品添加剂. 2023(02): 102-108 .
    7. 郑佳,王军茹,张根生,马书青. 花楸果多酚物质提取及抗氧化性的研究. 中国林副特产. 2023(01): 9-14 .
    8. 赵敏,战祥,徐茜,李泽璠,周立新. 响应面法优化五倍子多酚的提取工艺. 湖北大学学报(自然科学版). 2023(02): 294-300 .
    9. 陈婷,段宙位. 柠檬皮中多酚的超声辅助提取及其抗氧化性研究. 食品科技. 2023(02): 246-252 .
    10. 张园园,刘畅,邵颖,肖付刚. 信阳茶油提取工艺优化及脂肪酸组成分析. 食品研究与开发. 2023(13): 153-159 .
    11. 林志銮,张传海. 多花黄精多酚工艺条件优化及其抗氧化活性评价. 广州化工. 2023(08): 45-49+73 .
    12. 苏泾涵,王改萍,刘玉华,戚亚,彭大庆,李守科,曹福亮. 叶用文冠果总多酚提取工艺及抗氧化活性分析. 南京林业大学学报(自然科学版). 2023(05): 129-137 .
    13. 李科鹏,冯玉会,普开仙,李锐扬,戴应淑,师伟,李琛. 正红菇多酚的提取及抗氧化性能研究. 广州化工. 2023(19): 11-15 .
    14. 张立攀,王俊朋,钱佳英,赵梦瑶,李冰,王春杰,胡桂芳,王法云,王永. 超声辅助法提取牡丹花中总黄酮和总多酚的工艺优化. 食品安全质量检测学报. 2022(02): 567-575 .
    15. 王燕,刘书伟,张田田,侯亚楠,沈梦霞. 槟榔多酚提取工艺的优化. 海南热带海洋学院学报. 2022(02): 25-31 .
    16. 吴卫成,忻晓庭,张程程,刘大群,卢立志,胡宏海,章检明,张治国,郭阳. 番薯叶多酚提取工艺优化及其生物活性研究. 中国食品学报. 2022(05): 189-199 .
    17. 仵菲,买里得尔·叶拉里,白红进. 响应面法优化库尔勒香梨各部位总多酚提取工艺及抗氧化活性研究. 塔里木大学学报. 2022(02): 16-23 .
    18. 王琳,冉佩灵,熊双丽,李安林. 超高压腌制对烤制猪肉品质的影响. 食品工业科技. 2022(15): 19-26 . 本站查看
    19. 舒玉凤,卢静静,陈旭. 蒲公英多糖提取及其抗氧化活性研究. 现代农业科技. 2022(15): 186-189+193 .
    20. 马妮,刘慧燕,方海田,胡海明,辛世华,杨小萍,刘洪涛. 红枣多酚提取工艺优化、成分及抗氧化活性分析. 食品工业科技. 2022(16): 246-254 . 本站查看
    21. 舒玉凤,卢静静,陈旭. 超声辅助法提取蒲公英多糖及抗氧化活性研究. 农产品加工. 2022(13): 42-46 .
    22. 张星和,侯洪波,邹章玉,冯李院,汪玉洁. 高黎贡山紫果西番莲果皮中原花青素的提取工艺及其稳定性. 食品研究与开发. 2022(20): 147-155 .
    23. 林宝妹,邱珊莲,吴妙鸿,张帅,李海明,洪佳敏. 嘉宝果果皮多酚提取工艺优化及生物活性测定. 江苏农业科学. 2021(21): 191-196 .
    24. 宋姗姗,杨艾华,王微微,徐东林,杨倩军,陈杨,林子涵,王小敏. 火炭母提取物抗氧化性及稳定性研究. 中国食品添加剂. 2021(12): 23-30 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (1632) PDF downloads (61) Cited by(30)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return