YAN Xinyi, LI Jinjing, LI Chiling, et al. Effect and Action Mechanism of Cold Plasma Technology on Food Components[J]. Science and Technology of Food Industry, 2023, 44(12): 445−454. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070119.
Citation: YAN Xinyi, LI Jinjing, LI Chiling, et al. Effect and Action Mechanism of Cold Plasma Technology on Food Components[J]. Science and Technology of Food Industry, 2023, 44(12): 445−454. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022070119.

Effect and Action Mechanism of Cold Plasma Technology on Food Components

More Information
  • Received Date: July 12, 2022
  • Available Online: April 21, 2023
  • Cold plasma (CP) technology, an emerging non-thermal technology, has attracted widespread attentions in food fields for the advantages of safety, no needs for chemical agents and low-energy-consumption. Cold plasma can release ultraviolet rays and active substances (such as reactive oxygen radicals, reactive nitrogen radicals, hydroxyl radicals and ions) in the excitation process. The reactive species can induce etching and cross-linking of biomacromolecules, or modify the structure and functional groups of food components (such as lipids, proteins and starches), consequently affecting the sensory and flavor qualities of food. This paper summarizes the effects and action mechanism of CP on food components (protein, lipids, starch), victim, polyphenols. The present existing problems and future developments of CP technology are discussed and proposed. This paper would provide a theoretical guides for facilitating the application of CP technology in food industry.
  • [1]
    BARBHUIYA R I, SINGHA P, SINGH S K. A comprehensive review on impact of non-thermal processing on the structural changes of food components[J]. Food Research International,2021,149:110647. doi: 10.1016/j.foodres.2021.110647
    [2]
    LEE S H, CHOI W, JUN S. Conventional and emerging combination technologies for food processing[J]. Food Engineering Reviews,2016,8(4):414−434. doi: 10.1007/s12393-016-9145-3
    [3]
    郭俭. 低温等离子体杀菌机理与活性水杀菌作用研究[D]. 杭州: 浙江大学, 2016.

    GUO Jian. The inactivation mechanism of non-thermal plasma agents and bactericidal effect of plasma activated water[D]. Hangzhou: Zhejiang University, 2016.
    [4]
    YILMAZ U, ZAFER C, MUSTAFA D, et al. Application of cold plasma technology in the food industry and its combination with other emerging technologies[J]. Trends in Food Science and Technology, 2021, 114.
    [5]
    李季林, 陈雅淇, 成军虎. 射频等离子体活性水处理对火腿发色的影响[J]. 食品科学, 2021, 42(22): 9−15.

    LI Jilin, CHEN Yaqi, CHENG Junhu, et al. Effect of RF plasma activated water on the color development of ham[J]. Food Science, 2021, 42(22): 9−15.
    [6]
    MISRA N N, PANKAJ S K, SEGAT A, et al. Cold plasma interactions with enzymes in foods and model systems[J]. Trends in Food Science and Technology,2016,55:39−47. doi: 10.1016/j.jpgs.2016.07.001
    [7]
    PANKAJ S K, BUENO-FERRER C, MISRA N N, et al. Applications of cold plasma technology in food packaging[J]. Trends in Food Science and Technology,2014,35(1):5−17. doi: 10.1016/j.jpgs.2013.10.009
    [8]
    相启森, 董闪闪, 郑凯茜, 等. 大气压冷等离子体在食品农药残留和真菌毒素控制领域的应用研究进展[J]. 轻工学报,2022,37(3):1−9. [XIANG Qisen, DONG Shanshan, ZHENG Kaixi, et al. Research progress of atmospheric cold plasma in the control of food pesticide residues and mycotoxins[J]. Journal of Light Industry,2022,37(3):1−9. doi: 10.12187/2022.03.001

    XIANG Qisen, DONG Shanshan, ZHENG Kaixi, et al. Research progress of atmospheric cold plasma in the control of food pesticide residues and mycotoxins[J]. Journal of Light Industry, 2022, 37(3): 1-9. doi: 10.12187/2022.03.001
    [9]
    ZHANG Zhihong, WANG Langhong, ZENG Xin’an, et al. Brennan. Non-thermal technologies and its current and future application in the food industry: A review[J]. International Journal of Food Science & Technology,2019,54(1):1−13.
    [10]
    SARANGAPANI C, PATANGE A, BOURKE P, et al. Recent advances in the application of cold plasma technology in foods[J]. Annual Review of Food Science and Technology,2018,9(1):609−629. doi: 10.1146/annurev-food-030117-012517
    [11]
    PANKAJ S K, WAN Z, KEENER K M, et al. Effects of cold plasma on food quality: A review[J]. Foods,2018,7(1):4. doi: 10.3390/foods7010004
    [12]
    WARNE G R, WILLIAMS P M, QUOC P H, et al. Impact of cold plasma on the biomolecules and organoleptic properties of foods: A review.[J]. Journal of Food Science,2021,86(9):3762−3777. doi: 10.1111/1750-3841.15856
    [13]
    张关涛, 张东杰, 李娟, 等. 低温等离子体技术在食品杀菌中应用的研究进展[J]. 食品工业科技,2022,43(12):417−426. [ZHANG Guantao, ZHANG Dongjie, LI Juan, et al. Advances in the application of cold plasma technology in food sterilization[J]. Science and Technology of Food Industry,2022,43(12):417−426. doi: 10.13386/j.issn1002-0306.2021060170

    ZHANG Guantao, ZHANG Dongjie, LI Juan, et al. Advances in the application of cold plasma technology in food sterilization[J]. Science and Technology of Food Industry, 2022, 43(12): 417-426. doi: 10.13386/j.issn1002-0306.2021060170
    [14]
    LU X P, NAIDIS G V, LAROUSSI M, et al. Reactive species in non-equilibrium atmospheric-pressure plasmas: Generation, transport, and biological effects[J]. Physics Reports,2016,630:1−84. doi: 10.1016/j.physrep.2016.03.003
    [15]
    张红印, 王世珍, 黄星奕, 等. 低温等离子体应用于食品杀菌的研究进展[J]. 食品科技,2007(12):26−29. [ZHANG Hongyin, WANG Shizhen, HUANG Xingyi, et al. Review on progress of low temperature plasma used in food sterilization[J]. Food Science and Technology,2007(12):26−29. doi: 10.3969/j.issn.1005-9989.2007.12.008

    ZHANG Hongyin, WANG Shizhen, HUANG Xingyi, et al. Review on progress of low temperature plasma used in food sterilization[J]. Food Science and Technology, 2007(12): 26-29. doi: 10.3969/j.issn.1005-9989.2007.12.008
    [16]
    陈东. 大气压射流等离子体特性研究及其应用[D]. 广州: 广州大学, 2019.

    CHEN Dong. Study on characteristics of atmospheric jet plasma and its application[D]. Guangzhou: Guangzhou University, 2019.
    [17]
    SOHAN M, RAHMAN S, MAHEDI H, et al. Low-frequency glow discharge (LFGD) plasma treatment enhances maize (Zea mays L.) seed germination, agronomic traits, enzymatic activities, and nutritional properties[J]. Chemical and Biological Technologies in Agriculture,2022,9(1):1−17. doi: 10.1186/s40538-021-00266-z
    [18]
    史莹莹, 杨晴丽, 柳雅丽, 等. 低温等离子体在食品中应用的研究[J]. 农产品加工,2020(14):63−66. [SHI Yingying, YANG Qingli, LIU Yali, et al. Study on the application of low temperature plasma in food[J]. Farm Products Processing,2020(14):63−66. doi: 10.16693/j.cnki.1671-9646(X).2020.07.051

    SHI Yingying, YANG Qingli, LIU Yali, et al. Study on the application of low temperature plasma in food[J]. Farm Products Processing, 2020(14): 63-66. doi: 10.16693/j.cnki.1671-9646(X).2020.07.051
    [19]
    周结倩, 张坤, 徐杰, 等. 低温等离子体在水产品保鲜中的应用研究进展[J]. 食品与发酵工业,2022,48(4):1−14. [ZHOU Jieqian, ZHANG Kun, XU Jie, et al. Research progress on application of low temperature plasma in aquatic products preservation[J]. Food and Fermentation Industries,2022,48(4):1−14. doi: 10.13995/j.cnki.11-1802/ts.030474

    ZHOU Jieqian, ZHANG Kun, XU Jie, et al. Research progress on application of low temperature plasma in aquatic products preservation[J]. Food and Fermentation Industries, 2022, 48(4): 1-14. doi: 10.13995/j.cnki.11-1802/ts.030474
    [20]
    孟月东, 钟少锋, 熊新阳. 低温等离子体技术应用研究进展[J]. 物理,2006,35(2):140−146. [MENG Yuedong, ZHONG Shaofeng, XIONG Xinyang. Advances in applied low-temperature plasma technology[J]. Physics,2006,35(2):140−146. doi: 10.3321/j.issn:0379-4148.2006.02.009

    MENG Yuedong, ZHONG Shaofeng, XIONG Xinyang. Advances in applied low-temperature plasma technology[J]. Physics, 2006, 35(2): 140-146. doi: 10.3321/j.issn:0379-4148.2006.02.009
    [21]
    许童桐, 党庆秋. 低温等离子体杀菌技术研究现状[J]. 现代食品,2021(4):51−53. [XU Tongtong, DANG Qingqiu. Research status of low-temperature plasma sterilization technology[J]. Modern Food,2021(4):51−53.

    XU Tongtong, DANG Qingqiu. Research status of low-temperature plasma sterilization technology[J]. Modern Food, 2021(4): 51-53.
    [22]
    TINELLO F, LANTE A. Recent advances in controlling polyphenol oxidase activity of fruit and vegetable products[J]. Innovative Food Science and Emerging Technologies,2018,50:73−83. doi: 10.1016/j.ifset.2018.10.008
    [23]
    TAKAI E, KITANO K, KUWABARA J, et al. Protein inactivation by low‐temperature atmospheric pressure plasma in aqueous solution[J]. Plasma Processes and Polymers,2012,9(1):77−82. doi: 10.1002/ppap.201100063
    [24]
    KE Zhigang, BAI Yan, BAI Yiwen, et al. Cold plasma treated air improves the characteristic flavor of dry-cured black carp through facilitating lipid oxidation[J]. Food Chemistry,2022,377:131932. doi: 10.1016/j.foodchem.2021.131932
    [25]
    王向阳, 李淼, 王若兰, 等. 冷等离子体处理对花生中脂质及蛋白理化特性的影响[J]. 食品研究与开发,2022,43(7):89−95,125. [WANG Xiangyang, LI Miao, WANG Ruolan, et al. Effect of cold plasma treatment on physicochemical characteristics of lipid and protein in peanuts[J]. Food Research and Development,2022,43(7):89−95,125. doi: 10.12161/j.issn.1005-6521.2022.07.013

    WANG Xiangyang, LI Miao, WANG Ruolan, et al. Effect of cold plasma treatment on physicochemical characteristics of lipid and protein in peanuts[J]. Food Research and Development, 2022, 43(7): 89-95, 125. doi: 10.12161/j.issn.1005-6521.2022.07.013
    [26]
    CVJETKOVI V G, MARJANOVI-BALABAN E, VUJADINOVI D, et al. Investigation of the effect of cold atmospheric plasma on gliadins and glutenins extracted from wheat flour samples[J]. Journal of Food Processing and Preservation, 2021: e15789.
    [27]
    KOPUK B, GUNES R, PALABIYIK I. Cold plasma modification of food macromolecules and effects on related products[J]. Food Chemistry,2022,382:132356. doi: 10.1016/j.foodchem.2022.132356
    [28]
    ZHANG SITIAN, HUANG WEIJUAN, ROOPESH M S, et al. Pre-treatment by combining atmospheric cold plasma and pH-shifting to prepare pea protein concentrate powders with improved gelling properties[J]. Food Research International,2022,154:111028. doi: 10.1016/j.foodres.2022.111028
    [29]
    MISRA N N, KAUR S, TIWARI B K, et al. Atmospheric pressure cold plasma (ACP) treatment of wheat flour[J]. Food Hydrocolloids,2015,44:115−121. doi: 10.1016/j.foodhyd.2014.08.019
    [30]
    DONG S, WANG J M, CHENG L M, et al. Behavior of zein in aqueous ethanol under atmospheric pressure cold plasma treatment[J]. Journal of Agricultural and Food Chemistry,2017,65(34):7352−7360. doi: 10.1021/acs.jafc.7b02205
    [31]
    JI Hui, DONG Shuang, HAN Fei, et al. Effects of Dielectric Barrier Discharge (DBD) cold plasma treatment on physicochemical and functional properties of peanut protein[J]. Food and Bioprocess Technology,2018,11(2):344−354. doi: 10.1007/s11947-017-2015-z
    [32]
    EKEZIE F C, CHENG J H, SUN D W. Effects of atmospheric pressure plasma jet on the conformation and physicochemical properties of myofibrillar proteins from king prawn (Litopenaeus vannamei)[J]. Food Chemistry,2019,276:147−156. doi: 10.1016/j.foodchem.2018.09.113
    [33]
    季慧, 于娇娇, 张金, 等. 介质阻挡低温等离子处理对花生蛋白持水性及溶解性的影响[J]. 农业工程学报,2019,35(4):299−304. [JI Hui, YU Jiaojiao, ZHANG Jin, et al. Effects of dielectric barrier discharge cold plasma treatment on solubility and water holding capacity of peanut protein[J]. Transactions of the Chinese Society of Agricultural Engineering,2019,35(4):299−304. doi: 10.11975/j.issn.1002-6819.2019.04.037

    JI Hui, YU Jiaojiao, ZHANG Jin, et al. Effects of dielectric barrier discharge cold plasma treatment on solubility and water holding capacity of peanut protein[J]. Transactions of the Chinese Society of Agricultural Engineering, 2019, 35(4): 299-304. doi: 10.11975/j.issn.1002-6819.2019.04.037
    [34]
    VENKATARATNAM H, SARANGAPANI C, CAHILL O, et al. Effect of cold plasma treatment on the antigenicity of peanut allergen ara h1[J]. Innovative Food Science and Emerging Technologies,2019,52:368−375. doi: 10.1016/j.ifset.2019.02.001
    [35]
    MIAO W, NYAISABA B M, KODDY J K, et al. Effect of cold atmospheric plasma on the physicochemical and functional properties of myofibrillar protein from alaska pollock (Theragra chalcogramma)[J]. International Journal of Food Science and Technology,2019,55(2):517−525.
    [36]
    陈家盛, 宫玉婷, 董依雪, 等. 低温等离子体处理对冰鲜鱿鱼品质特性的影响[J]. 食品工业,2021,42(5):231−235. [CHEN Jiasheng, GONG Yuting, DONG Yixue, et al. Effect of plasma treatment on quality characteristics of chilled squid[J]. The Food Industry,2021,42(5):231−235.

    CHEN Jiasheng, GONG Yuting, DONG Yixue, et al. Effect of plasma treatment on quality characteristics of chilled squid[J]. The Food Industry, 2021, 42(5): 231-235.
    [37]
    李可, 李燕, 康超娣, 等. 常压等离子体射流对鸡肉肌原纤维蛋白结构和流变特性的影响[J]. 食品科学,2020,41(19):124−131. [LI Ke, LI Yan, KANG Chaodi, et al. Effect of atmospheric pressure plasma jet on structural and rheological properties of chicken myofibrillar protein[J]. Food Science,2020,41(19):124−131. doi: 10.7506/spkx1002-6630-20190916-202

    LI Ke, LI Yan, KANG Chaodi, et al. Effect of atmospheric pressure plasma jet on structural and rheological properties of chicken myofibrillar protein[J]. Food Science, 2020, 41(19): 124-131. doi: 10.7506/spkx1002-6630-20190916-202
    [38]
    DENG X T, SHI J J, KONG M G. Protein destruction by a helium atmospheric pressure glow discharge: Capability and mechanisms[J]. Journal of Applied Physics,2007,101(7):074701. doi: 10.1063/1.2717576
    [39]
    HAYASHI N, YAGYU Y. Treatment of protein using oxygen plasma produced by RF discharge[J]. Transactions of the Materials Research Society of Japan,2008,33(3):791−794. doi: 10.14723/tmrsj.33.791
    [40]
    STADTMAN E R, LEVINE R L. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins.[J]. Amino acids,2003,25(3-4):207−218. doi: 10.1007/s00726-003-0011-2
    [41]
    ZHOU R, ZHOU R, ZHUANG J, et al. Interaction of atmospheric-pressure air microplasmas with amino acids as fundamental processes in aqueous solution[J]. PLoS One,2017,11(5):e0155584.
    [42]
    WANG HAITANG, ZHU JIAMIN, ZHANG HONGWEI, et al. Understanding interactions among aldehyde compounds and porcine myofibrillar proteins by spectroscopy and molecular dynamics simulations[J]. Journal of Molecular Liquids,2022,349:118190. doi: 10.1016/j.molliq.2021.118190
    [43]
    成军虎, 汪慧芬, 韩永旭. DBD低温等离子体处理对多酚氧化酶活力及构象的影响[J]. 华南理工大学学报(自然科学版),2021,49(9):29−36. [CHENG Junhu, WANG Huifen, HAN Yongxu, et al. Effect of DBD cold plasma treatment on activity and conformation of polyphenol oxidase[J]. Journal of South China University of Technology (Natural Science Edition),2021,49(9):29−36.

    CHENG Junhu, WANG Huifen, HAN Yongxu, et al. Effect of DBD cold plasma treatment on activity and conformation of polyphenol oxidase[J]. Journal of South China University of Technology (Natural Science Edition) , 2021, 49(09): 29-36.
    [44]
    KHANI M R, SHOKRI B, KHAJEH K. Studying the performance of dielectric barrier discharge and gliding arc plasma reactors in tomato peroxidase inactivation[J]. Journal of Food Engineering,2017,197:107−112. doi: 10.1016/j.jfoodeng.2016.11.012
    [45]
    WANG Y, YE Z, LI J, et al. Effects of dielectric barrier discharge cold plasma on the activity, structure and conformation of horseradish peroxidase (HRP) and on the activity of litchi peroxidase (POD)[J]. LWT- Food Science and Technology,2021,141(9):111078.
    [46]
    袁园, 黄明明, 魏巧云, 等. 等离子体活化水对鲜切生菜杀菌效能及贮藏品质影响[J]. 食品工业科技,2020,41(21):281−285, 292. [YUAN Yuan, HUANG Mingming, WEI Qiaoyun, et al. Effect of plasma activated water on microbial decontamination and storage quality of fresh-cut lettuce[J]. Science and Technology of Food Industry,2020,41(21):281−285, 292.

    YUAN Yuan, HUANG Mingming, WEI Qiaoyun, et al. Effect of plasma activated water on microbial decontamination and storage quality of fresh-cut lettuce[J]. Science and Technology of Food Industry, 2020, 41(21): 281-285, 292.
    [47]
    王若兰, 何鑫, 王向阳, 等. 冷等离子体处理对小麦粉理化性质改善效果研究[J]. 粮食与油脂,2021,34(6):1−5, 17. [WANG Ruolan, HE Xin, WANG Xiangyang, et al. The study of cold plasma treatment on improving physicochemical characteristics of wheat flour[J]. Cereals & Oils,2021,34(6):1−5, 17.

    WANG Ruolan, HE Xin, WANG Xiangyang, et al. The study of cold plasma treatment on improving physicochemical characteristics of wheat flour[J]. Cereals & Oils, 2021, 34(6): 1-5, 17.
    [48]
    MOHAMED E E, YOUNIS E R, MOHAMED E A. Impact of atmospheric cold plasma (ACP) on maintaining bolti fish (Tilapia nilotica) freshness and quality criteria during cold storing[J]. Journal of Food Processing and Preservation,2021,45(5):e15442.
    [49]
    NYAISABA B M, MIAO W, HATAB S, et al. Effects of cold atmospheric plasma on squid proteases and gel properties of protein concentrate from squid (Argentinus ilex) mantle[J]. Food Chemistry,2019,291:68−76. doi: 10.1016/j.foodchem.2019.04.012
    [50]
    TANG Lingling, HATAB Shaimaa, YAN Jinhong, et al. Changes in biochemical properties and activity of trypsin-like protease (Litopenaeus vannamei) treated by atmospheric cold plasma (ACP)[J]. Foods, 2022, 11(9).
    [51]
    秦嘉乐, 李重言, 刘茜, 等. 等离子体处理对小米内源酶活性及其品质的影响[J]. 现代食品科技,2022,38(8):66−72. [QIN Jiale, LI Chongyan, LIU Xi, et al. Effects of plasma treatment on the endogenous enzyme activity and quality of foxtail millet[J]. Modern Food Science and Technology,2022,38(8):66−72.

    QIN Jiale, LI Chongyan, LIU Xi, et al. Effects of plasma treatment on the endogenous enzyme activity and quality of foxtail millet[J]. Modern Food Science and Technology, 2022, 38(8): 66-72.
    [52]
    金图南. 低温等离子体对冰鲜鱿鱼保鲜作用的研究[D]. 舟山: 浙江海洋大学, 2017.

    JIN Tunan. Study on the fresh-keeping effect of low temperature plasma on chilled squid[D]. Zhoushan: Zhejiang Ocean University, 2017.
    [53]
    ROBERTA F, CINZIA M, LAMA I, et al. Impact of cold atmospheric plasma (CAP) treatments on the oxidation of pistachio kernel lipids[J]. Foods,2022,11(3):419. doi: 10.3390/foods11030419
    [54]
    SOLMAZ S, MOSTAFA S, ALIREZA F, et al. Chemical changes of food constituents during cold plasma processing: A review[J]. Food Research International,2021,147:110552. doi: 10.1016/j.foodres.2021.110552
    [55]
    翟国臻, 李佳, 郭杉杉, 等. 滑动弧放电等离子体处理对冷鲜猪肉保鲜的影响[J]. 中国食品学报,2022,22(1):189−197. [ZHAI Guozhen, LI Jia, GUO Shanshan, et al. Effect of gliding arc discharge plasma treatment on the preservation effect of cold fresh pork[J]. Journal of Chinese Institute of Food Science and Technology,2022,22(1):189−197.

    ZHAI Guozhen, LI Jia, GUO Shanshan, et al. Effect of gliding arc discharge plasma treatment on the preservation effect of cold fresh pork[J]. Journal of Chinese Institute of Food Science and Technology, 2022, 22(1): 189-197.
    [56]
    YEPEZ X V, KEENER K M. High-voltage Atmospheric Cold Plasma (HVACP) hydrogenation of soybean oil without trans-fatty acids[J]. Innovative Food Science and Emerging Technologies, 2016, 38.
    [57]
    岑南香, 刘宸成, 陈姑, 等. 低温等离子体处理对羊肉脂质与蛋白质氧化性质的影响[J]. 食品工业科技,2022,43(14):85−93. [CEN Nanxiang, LIU Chencheng, CHEN Gu, et al. Effects of cold plasma treatments on lipids and protein oxidation properties of mutton[J]. Science and Technology of Food Industry,2022,43(14):85−93.

    CEN Nanxiang, LIU Chencheng, CHEN Gu, et al. Effects of cold plasma treatments on lipids and protein oxidation properties of mutton[J]. Science and Technology of Food Industry, 2022, 43(14): 85-93.
    [58]
    姜竹茂, 桑晓涵, 潘芸芸, 等. 低温等离子体对鲅鱼脂质与蛋白质氧化的影响[J]. 食品与发酵工业,2022,48(23):217−224. [JIANG Zhumao, SANG Xiaohan, PAN Yunyun, et al. Effects of cold plasma treatment on oxidation of lipids and protein of spanish mackerel[J]. Food and Fermentation Industries,2022,48(23):217−224.

    JIANG Zhumao, SANG Xiaohan, PAN Yunyun, et al. Effects of cold plasma treatment on oxidation of lipids and protein of spanish mackerel[J]. Food and Fermentation Industries, 2022, 48(23): 217-224.
    [59]
    KULAWIK P, ALVAREZ C, CULLEN P J, et al. The effect of non-thermal plasma on the lipid oxidation and microbiological quality of sushi[J]. Innovative Food Science and Emerging Technologies,2017,45:412−417.
    [60]
    冯琳琳, 闫溢哲, 张明月, 等. 等离子体活化水湿热处理对小麦淀粉结构和性能的影响研究[J]. 河南农业大学学报,2019,53(4):601−607. [FENG Linlin, YAN Yizhe, ZHANG Mingyue, et al. Effects of plasma activated water combined with heat-moisture treatment on the structure and physicochemical properties of wheat starch[J]. Journal of Henan Agricultural University,2019,53(4):601−607.

    FENG Linlin, YAN Yizhe, ZHANG Mingyue, et al. Effects of plasma activated water combined with heat-moisture treatment on the structure and physicochemical properties of wheat starch[J]. Journal of Henan Agricultural University, 2019, 53(4): 601-607.
    [61]
    RANJITHA G T K, MISHRA A, GUNASEELAN E A, et al. Effect of atmospheric pressure non-thermal pin to plate plasma on the functional, rheological, thermal, and morphological properties of mango seed kernel starch[J]. International Journal of Biological Macromolecules,2021,196:63−71.
    [62]
    TASLIKH M, ABBASI H, MORTAZAVIAN A M, et al. Effect of cold plasma treatment, cross-linking, and dual modification on corn starch [J]. Starch-Stärke, 2022, 74(5-6): 2200008.
    [63]
    闫溢哲, 薛欣欢, 彭百祥, 等. 粉和玉米淀粉结构及性能的影响[J/OL]. 食品工业科技: 1−13[2023-04-27]. doi: 10.13386/j.issn1002-0306.2022050109.

    YAN Yizhe, XUE Xinhuan, PENG Baixiang, et al. Effects of plasma-activated water and annealing on structure and properties of waxy maize starch and maize starch[J/OL]. Science and Technology of Food Industry: 1−13[2023-04-08]. doi: 10.13386/j.issn1002-0306.2022050109.
    [64]
    杨新文, 牛文俊, 成军虎, 等. 低温等离子技术及其对食品品质与微生物的影响[J]. 食品与机械,2019,35(9):199−203, 215. [YANG Xinwen, NIU Wenjun, CHENG Junhu, et al. Cold plasma technology and its effect on the food quality and microorganism[J]. Food & Machinery,2019,35(9):199−203, 215.

    YANG Xinwen, NIU Wenjun, CHENG Junhu, et al. Cold plasma technology and its effect on the food quality and microorganism[J]. Food & Machinery, 2019, 35(9): 199-203, 215.
    [65]
    BANURA S, THIRUMDAS R, KAUR A, et al. Modification of starch using low pressure radio frequency air plasma[J]. LWT - Food Science and Technology,2018,89:719−724. doi: 10.1016/j.lwt.2017.11.056
    [66]
    ZHANG Binjia, CHEN Ling, LI Xiaoxi, et al. Understanding the multi-scale structure and functional properties of starch modulated by glow-plasma: A structure-functionality relationship[J]. Food Hydrocolloids,2015,50:228−236. doi: 10.1016/j.foodhyd.2015.05.002
    [67]
    孙颖, 郑丽丽, 郑晓燕, 等. 等离子体协同白藜芦醇改性香蕉淀粉及其性质[J]. 食品科学,2023,44(4):32−41. [SUN Ying, ZHENG Lili, ZHENG Xiaoyan, et al. Effects of plasma and polyphenol modification on properties of banana starch[J]. Food Science,2023,44(4):32−41.

    SUN Ying, ZHENG Lili, ZHENG Xiaoyan, et al. Effects of plasma and polyphenol modification on properties of banana starch[J]. Food Science, 2023, 44(4): 32-41.
    [68]
    闫斯亮. 低温等离子处理对香蕉淀粉理化性质的影响[D]. 天津: 天津科技大学, 2019.

    YAN Siliang. Effects of cold plasma treatment on physicochemical properties of banana starch[D]. Tianjin: Tianjin University of Science and Technology, 2019.
    [69]
    于红, 刘彦民, 韩治德, 等. 介质阻挡放电等离子体与淀粉溶液的反应[J]. 中国石油大学学报(自然科学版),2008(1):108−112. [YU Hong, LIU Yanmin, HAN Zhide, et al. Reaction of dielectric barrier discharge plasma with starch solution[J]. Journal of China University of Petroleum(Edition of Natural Science),2008(1):108−112.

    YU Hong, LIU Yanmin, HAN Zhide, et al. Reaction of dielectric barrier discharge plasma with starch solution[J]. Journal of China University of Petroleum(Edition of Natural Science), 2008(1): 108-112.
    [70]
    于弘慧, 孔祥拯, 陈壁州, 等. 低温等离子体杀菌后梨汁酚类物质的变化[J]. 北京农学院学报,2018,33(4):104−107. [YU Honghui, KONG Xiangzheng, CHEN Bizhou, et al. Changes on polyphenol composition and contents of pear juice after sterilization by low temperature plasma[J]. Journal of Beijing University of Agriculture,2018,33(4):104−107.

    YU Honghui, KONG Xiangzheng, CHEN Bizhou, et al. Changes on polyphenol composition and contents of pear juice after sterilization by low temperature plasma[J]. Journal of Beijing University of Agriculture, 2018, 33(4): 104-107.
    [71]
    华晓雨, 陶爽, 孙盛楠, 等. 植物次生代谢产物-酚类化合物的研究进展[J]. 生物技术通报,2017,33(12):22−29. [HUA Xiaoyu, TAO Shuang, SUN Shengnan, et al. Research progress on phenolic compounds of plant secondary metabolites[J]. Biotechnology Bulletin,2017,33(12):22−29.

    HUA Xiaoyu, TAO Shuang, SUN Shengnan, et al. Research progress on phenolic compounds of plant secondary metabolites[J]. Biotechnology Bulletin, 2017, 33(12): 22-29.
    [72]
    FABIANO A. N. FERNANDES, VALÉRIA O. Effects of glow plasma technology on some bioactive compounds of acerola juice[J]. Food Research International,2019,115:16−22. doi: 10.1016/j.foodres.2018.07.042
    [73]
    刘振蓉, 赵武奇, 高贵田, 等. 低温等离子体处理对猕猴桃浊汁品质的影响[J]. 中国食品学报,2021,21(6):195−202. [LIU Zhenrong, ZHAO Wuqi, GAO Guitian, et al. Effect of low temperature plasma treatment on the quality of cloudy kiwi juice[J]. Journal of Chinese Institute of Food Science and Technology,2021,21(6):195−202.

    LIU Zhenrong, ZHAO Wuqi, GAO Guitian, et al. Effect of low temperature plasma treatment on the quality of cloudy kiwi juice[J]. Journal of Chinese Institute of Food Science and Technology, 2021, 21(6): 195-202.
    [74]
    DEBORA R G de C, JOSIANA M M, L S da S, et al. Dielectric barrier atmospheric cold plasma applied on camu-camu juice processing: Effect of the excitation frequency[J]. Food Research International,2020,131:109044. doi: 10.1016/j.foodres.2020.109044
    [75]
    MISRA N N, PANKAJS K, FRIAS J M, et al. The effects of nonthermal plasma on chemical quality of strawberries[J]. Postharvest Biology and Technology,2015,110:197−202. doi: 10.1016/j.postharvbio.2015.08.023
    [76]
    PATHAK N, BOVI G G, LIMNAIOS A, et al. Impact of cold atmospheric pressure plasma processing on storage of blueberries[J]. Journal of Food Processing and Preservation,2020,44(8):e14581.
    [77]
    SARANGAPANI C, O'TOOLE G, CULLEN P J, et al. Atmospheric cold plasma dissipation efficiency of agrochemicals on blueberries[J]. Innovative Food Science and Emerging Technologies, 2017: 55-60.
    [78]
    LEITE A K F, FONTELES T V, MIGUEL T B, et al. Atmospheric cold plasma frequency imparts changes on cashew apple juice composition and improves vitamin C bioaccessibility[J]. Food Research International,2021,147:110479. doi: 10.1016/j.foodres.2021.110479

Catalog

    Article Metrics

    Article views (479) PDF downloads (48) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return