ZHANG Hongtu, DONG Weijin, CHEN Nan, et al. Inhibition Effect and Molecular Mechanism of Tea Polyphenols on the α-Amylase[J]. Science and Technology of Food Industry, 2022, 43(4): 90−96. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060152.
Citation: ZHANG Hongtu, DONG Weijin, CHEN Nan, et al. Inhibition Effect and Molecular Mechanism of Tea Polyphenols on the α-Amylase[J]. Science and Technology of Food Industry, 2022, 43(4): 90−96. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060152.

Inhibition Effect and Molecular Mechanism of Tea Polyphenols on the α-Amylase

More Information
  • Received Date: June 17, 2021
  • Available Online: December 16, 2021
  • In present study, the inhibitory effect and molecular mechanism of tea polyphenols on α-amylase were investigated. With the determination of inhibition kinetics, the inhibition of tea polyphenols on α-amylase was estimated. Then, by using the fluorescence chromatography and circular dichroism, the changes of spatial structure and stability of α-amylase were observed. Furthermore, the molecular docking was used to explore the molecular interactions between tea polyphenols and α-amylase. The results showed that tea polyphenols exhibited the inhibitory effect on α-amylase with a half maximal inhibitory concentration of 1.35 mg/mL in a non-competitive manner. There was a fluorescence quenching effect of tea polyphenols on α-amylase with the red-shift of maximum emission wavelength (λmax) in the fluorescence chromatography. Moreover, the secondary structure of α-amylase was found to change from the stratified structure to helical structure, which indicated the decreasing stability of α-amylase. By forming the hydrogen bond and hydrophobic interaction, tea polyphenols could bind to α-amylase as the stable complex which contributed to the decrease of enzyme activity. The results suggested that tea polyphenols had the potential value as α-amylase inhibitors.
  • [1]
    World Health Organization. World health statistics 2021: Monitoring health for the SDGs, sustainable development goals[EB/OL]. Geneva: WHO, 2021. https://www.who.int/publications/i/item/9789240027053
    [2]
    International Diabetes Federation. IDF DIABETES ATLAS Ninth edition 2019[EB/OL]. IDF, 2019. https://diabetesatlas.org/en/
    [3]
    KAWAMURA-KONISHI Y, WATANABE N, SAITO M, et al. Isolation of a new phlorotannin, a potent inhibitor of carbohydrate-hydrolyzing enzymes, from the brown alga sargassum patens[J]. Journal of Agricultural and Food Chemistry,2012,60(22):5565−5570. doi: 10.1021/jf300165j
    [4]
    GONG T, YANG X, BAI F T, et al. Young apple polyphenols as natural α-glucosidase inhibitors: In vitro and in silico studies[J]. Bioorganic Chemistry,2020,96:103625. doi: 10.1016/j.bioorg.2020.103625
    [5]
    ETXEBERRIA U, DE LA GARZA A L, CAMPIN J, et al. Antidiabetic effects of natural plant extracts via inhibition of carbohydrate hydrolysis enzymes with emphasis on pancreatic alpha amylase[J]. Expert Opinion on Therapeutic Targets,2012,16(3):269−297. doi: 10.1517/14728222.2012.664134
    [6]
    霍梦恩, 李冬利, 罗小燕, 等. 陈年乌龙茶的生化成分及其降脂降糖活性研究[J]. 茶叶通讯, 2019, 46(4): 472−478.

    HUO M E, LI D L, LUO X Y, et al. Study on the biochemical composition of aged oolong teas and its hpyerglycemic and hypolipidemic activities in vitro[J]. Journal of Tea Communication, 2019, 46(4): 472−478.
    [7]
    孙世利, 郭芸彤, 陈海强, 等. 英红九号六大茶类生化成分分析及体外活性评价[J]. 食品研究与开发,2018,39(9):159−165. [SUN S L, GUO Y T, CHEN H Q, et al. Analysis of biochemical components and evaluation of the in vitro activity of six categories of tea made of yinghong NO. 9[J]. Food Research and Development,2018,39(9):159−165. doi: 10.3969/j.issn.1005-6521.2018.09.030
    [8]
    LI X P, LI S Y, CHEN M, et al. (-)-Epigallocatechin-3-gallate (EGCG) inhibits starch digestion and improves glucose homeostasis through direct or indirect activation of PXR/CAR-mediated phase II metabolism in diabetic mice[J]. Food & Function,2018,9(9):4651−4663.
    [9]
    HE Q, LV Y P, YAO K. Effects of tea polyphenols on the activities of α-amylase, pepsin, trypsin and lipase[J]. Food Chemistry,2007,101(3):1178−1182. doi: 10.1016/j.foodchem.2006.03.020
    [10]
    高浩祥, 陈南, 徐乾达, 等. 茶多酚在油炸过程中对马铃薯片品质及其贮藏稳定性的影响[J]. 食品工业科技, 2020, 41(9): 20−25, 33.

    GAO H X, CHEN N, XU Q D, et al. Effect of tea polyphenols on the quality and storage stability of potato chips during frying[J]. Science and Technology of Food Industry, 2020, 41(9): 20−25, 33.
    [11]
    王鑫, 王峙力, 谢静南, 等. 甜玉米芯多糖对 α-淀粉酶抑制作用研究[J]. 食品工业科技,2021,42(10):48−54. [WANG X, WANG Z L, XIE J N, et al. Inhibition of polysaccharide on α-amylase from sweet corncob[J]. Science and Technology of Food Industry,2021,42(10):48−54.
    [12]
    王俊丽, 聂国兴, 曹香林, 等. 不同 DNS试剂测定木糖含量的研究[J]. 食品研究与开发,2010,31(7):1−4. [WANG J L, NIE G X, CAO X L, et al. Effects of different DNS reagents in determination of xylose content[J]. Food Research and Development,2010,31(7):1−4. doi: 10.3969/j.issn.1005-6521.2010.07.001
    [13]
    姚林锋, 何强. 单宁酸与胰α-淀粉酶作用特性研究[J]. 食品工业科技, 2014, 35(3): 63−66.

    YAO L F, HE Q. Interaction between tannic acid and pancreatic a-amylase[J]. Science and Technology of Food Industry, 2014, 35(3): 63−66.
    [14]
    范志飞, 曾维才, 戴吉领, 等. 表没食子儿茶素没食子酸酯与猪胰脂肪酶的相互作用[J]. 食品科学,2013,34(7):20−23. [FAN Z F, ZENG W C, DAI J L, et al. Interaction of epigallocatechin-3-gallate with porcine pancreas lipase[J]. Food Science,2013,34(7):20−23. doi: 10.7506/spkx1002-6630-201307005
    [15]
    徐冬兰, 王晴川, 曾晓雄, 等. 苦丁冬青苦丁茶咖啡酰奎尼酸类物质与α-淀粉酶的相互作用特性[J]. 食品科学,2016,37(13):6−12. [XU D L, WANG Q C, ZENG X X, et al. Interaction properties of caffeoylquinic acid derivatives from Ilex kudingcha C. J. Tseng with α-amylase[J]. Food Science,2016,37(13):6−12. doi: 10.7506/spkx1002-6630-201613002
    [16]
    CER R Z, MUDUNURI U, STEPHENS R, et al. IC50-to-Ki: A web-based tool for converting IC50 to Ki values for inhibitors of enzyme activity and ligand binding[J]. Nucleic Acids Research,2009,37:441−445. doi: 10.1093/nar/gkn931
    [17]
    EISENTHAL R, CORNISH-BOWDEN A. The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters[J]. The Biochemical Journal,1974,139(3):715−720. doi: 10.1042/bj1390715
    [18]
    SUN L J, WARREN F J, NETZEL G, et al. 3 or 3′-Galloyl substitution plays an important role in association of catechins and theaflavins with porcine pancreatic α-amylase: The kinetics of inhibition of α-amylase by tea polyphenols[J]. Journal of Functional Foods,2016,26:144−156. doi: 10.1016/j.jff.2016.07.012
    [19]
    王守业, 徐小龙, 刘清亮, 等. 荧光光谱在蛋白质分子构象研究中的应用[J]. 化学进展, 2001, 13(4): 257−260.

    WANG S Y, XU X L, LIU Q L, et al. The application of fluorescence spectroscopy in the study on protein conformation[J]. Progress in Chemistry, 2001, 13(4): 257−260.
    [20]
    BUISSON G, DUÉE E, HASER R, et al. Three dimensional structure of porcine pancreatic alpha-amylase at 2.9 A resolution. Role of calcium in structure and activity[J]. EMBO Journal,1987,6(13):3909−3916. doi: 10.1002/j.1460-2075.1987.tb02731.x
    [21]
    SUN L J, WARREN F J, GIDLEY M J, et al. Mechanism of binding interactions between young apple polyphenols and porcine pancreatic α-amylase[J]. Food Chemistry,2019,283:468−474. doi: 10.1016/j.foodchem.2019.01.087
    [22]
    王公轲, 席辉, 田芳, 等. 光谱和分子模拟法研究乙硫异烟胺与木瓜蛋白酶的分子作用机制[J]. 化学学报,2011,69(1):95−100. [WANG G K, XI H, TIAN F, et al. Mechanism of molecular interaction between ethionamide and papain: Spectroscopic and molecular simulation investigations[J]. Acta Chimica Sinica,2011,69(1):95−100.
    [23]
    LAKOWIZ J R. Principles of fluorescence spectroscopy[M]. 3th ed. Boston: Springer, 2006: 284.
    [24]
    张莉, 刘倩倩, 吴长玲, 等. 多酚与蛋白质相互作用研究方法进展[J]. 食品工业科技,2018,39(24):340−345. [ZHANG L, LIU Q Q, WU C L, et al. Progress research methods for the interaction between polyphenols and proteins[J]. Science and Technology of Food Industry,2018,39(24):340−345.
    [25]
    GAO M R, XU Q D, ZENG W C. Effect of tea polyphenols on the tenderness of yak meat[J]. Journal of Food Processing and Preservation,2020,44(5):14433.
    [26]
    CAI X, YU J N, XU L M, et al. The mechanism study in the interactions of sorghum procyanidins trimer with porcine pancreatic α-amylase[J]. Food Chemistry,2015,174:291−298. doi: 10.1016/j.foodchem.2014.10.131
    [27]
    MACGREGOR E A, JANECEK S, SVENSSON B. Relationship of sequence and structure to specificity in the α-amylase family of enzymes[J]. Biochim Biophys Acta,2001,1546(1):1−20. doi: 10.1016/S0167-4838(00)00302-2
    [28]
    PIPARO E L, SCHEIB H, FREI N, et al. Flavonoids for controlling starch digestion: Structural requirements for inhibiting human α-amylase[J]. Journal of Medicinal Chemistry,2008,51(12):3555−3561. doi: 10.1021/jm800115x
    [29]
    CAO J W, ZHANG Y, HAN L, et al. Number of galloyl moieties and molecular flexibility are both important in alpha-amylase inhibition by galloyl-based polyphenols[J]. Food & Function,2020,11(5):3838−3850.
    [30]
    王静, 刁翠茹, 王华丽, 等. 鼠尾草酸对α-淀粉酶的抑制作用[J]. 食品科学,2020,41(3):12−17. [WANG J, DIAO C R, WANG H L, et al. Inhibitory mechanism of carnosic acid on alpha-amylase[J]. Food Science,2020,41(3):12−17. doi: 10.7506/spkx1002-6630-20181211-137
  • Cited by

    Periodical cited type(3)

    1. 张洪礼,龚飘飘,杨芬,刘敏,郑继伟,毛建兰. 响应面法优化方竹笋超微粉制作曲奇饼干的关键配方及品质评价. 贵州农业科学. 2024(06): 103-115 .
    2. 张翠静,张爽,刘涛,赵丹,晏磊. 固氮氧化亚铁钩端螺旋菌产次生矿物的条件优化及矿物鉴定. 微生物学通报. 2024(10): 3954-3969 .
    3. 常茹菲,葛运兵,杨晓丽,张红星,谢远红. 酶解法制备澳洲坚果蛋白肽工艺优化研究. 中国粮油学报. 2024(10): 102-108 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return