ZHANG Hongtu, DONG Weijin, CHEN Nan, et al. Inhibition Effect and Molecular Mechanism of Tea Polyphenols on the α-Amylase[J]. Science and Technology of Food Industry, 2022, 43(4): 90−96. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060152.
Citation: ZHANG Hongtu, DONG Weijin, CHEN Nan, et al. Inhibition Effect and Molecular Mechanism of Tea Polyphenols on the α-Amylase[J]. Science and Technology of Food Industry, 2022, 43(4): 90−96. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060152.

Inhibition Effect and Molecular Mechanism of Tea Polyphenols on the α-Amylase

More Information
  • Received Date: June 17, 2021
  • Available Online: December 16, 2021
  • In present study, the inhibitory effect and molecular mechanism of tea polyphenols on α-amylase were investigated. With the determination of inhibition kinetics, the inhibition of tea polyphenols on α-amylase was estimated. Then, by using the fluorescence chromatography and circular dichroism, the changes of spatial structure and stability of α-amylase were observed. Furthermore, the molecular docking was used to explore the molecular interactions between tea polyphenols and α-amylase. The results showed that tea polyphenols exhibited the inhibitory effect on α-amylase with a half maximal inhibitory concentration of 1.35 mg/mL in a non-competitive manner. There was a fluorescence quenching effect of tea polyphenols on α-amylase with the red-shift of maximum emission wavelength (λmax) in the fluorescence chromatography. Moreover, the secondary structure of α-amylase was found to change from the stratified structure to helical structure, which indicated the decreasing stability of α-amylase. By forming the hydrogen bond and hydrophobic interaction, tea polyphenols could bind to α-amylase as the stable complex which contributed to the decrease of enzyme activity. The results suggested that tea polyphenols had the potential value as α-amylase inhibitors.
  • [1]
    World Health Organization. World health statistics 2021: Monitoring health for the SDGs, sustainable development goals[EB/OL]. Geneva: WHO, 2021. https://www.who.int/publications/i/item/9789240027053
    [2]
    International Diabetes Federation. IDF DIABETES ATLAS Ninth edition 2019[EB/OL]. IDF, 2019. https://diabetesatlas.org/en/
    [3]
    KAWAMURA-KONISHI Y, WATANABE N, SAITO M, et al. Isolation of a new phlorotannin, a potent inhibitor of carbohydrate-hydrolyzing enzymes, from the brown alga sargassum patens[J]. Journal of Agricultural and Food Chemistry,2012,60(22):5565−5570. doi: 10.1021/jf300165j
    [4]
    GONG T, YANG X, BAI F T, et al. Young apple polyphenols as natural α-glucosidase inhibitors: In vitro and in silico studies[J]. Bioorganic Chemistry,2020,96:103625. doi: 10.1016/j.bioorg.2020.103625
    [5]
    ETXEBERRIA U, DE LA GARZA A L, CAMPIN J, et al. Antidiabetic effects of natural plant extracts via inhibition of carbohydrate hydrolysis enzymes with emphasis on pancreatic alpha amylase[J]. Expert Opinion on Therapeutic Targets,2012,16(3):269−297. doi: 10.1517/14728222.2012.664134
    [6]
    霍梦恩, 李冬利, 罗小燕, 等. 陈年乌龙茶的生化成分及其降脂降糖活性研究[J]. 茶叶通讯, 2019, 46(4): 472−478.

    HUO M E, LI D L, LUO X Y, et al. Study on the biochemical composition of aged oolong teas and its hpyerglycemic and hypolipidemic activities in vitro[J]. Journal of Tea Communication, 2019, 46(4): 472−478.
    [7]
    孙世利, 郭芸彤, 陈海强, 等. 英红九号六大茶类生化成分分析及体外活性评价[J]. 食品研究与开发,2018,39(9):159−165. [SUN S L, GUO Y T, CHEN H Q, et al. Analysis of biochemical components and evaluation of the in vitro activity of six categories of tea made of yinghong NO. 9[J]. Food Research and Development,2018,39(9):159−165. doi: 10.3969/j.issn.1005-6521.2018.09.030
    [8]
    LI X P, LI S Y, CHEN M, et al. (-)-Epigallocatechin-3-gallate (EGCG) inhibits starch digestion and improves glucose homeostasis through direct or indirect activation of PXR/CAR-mediated phase II metabolism in diabetic mice[J]. Food & Function,2018,9(9):4651−4663.
    [9]
    HE Q, LV Y P, YAO K. Effects of tea polyphenols on the activities of α-amylase, pepsin, trypsin and lipase[J]. Food Chemistry,2007,101(3):1178−1182. doi: 10.1016/j.foodchem.2006.03.020
    [10]
    高浩祥, 陈南, 徐乾达, 等. 茶多酚在油炸过程中对马铃薯片品质及其贮藏稳定性的影响[J]. 食品工业科技, 2020, 41(9): 20−25, 33.

    GAO H X, CHEN N, XU Q D, et al. Effect of tea polyphenols on the quality and storage stability of potato chips during frying[J]. Science and Technology of Food Industry, 2020, 41(9): 20−25, 33.
    [11]
    王鑫, 王峙力, 谢静南, 等. 甜玉米芯多糖对 α-淀粉酶抑制作用研究[J]. 食品工业科技,2021,42(10):48−54. [WANG X, WANG Z L, XIE J N, et al. Inhibition of polysaccharide on α-amylase from sweet corncob[J]. Science and Technology of Food Industry,2021,42(10):48−54.
    [12]
    王俊丽, 聂国兴, 曹香林, 等. 不同 DNS试剂测定木糖含量的研究[J]. 食品研究与开发,2010,31(7):1−4. [WANG J L, NIE G X, CAO X L, et al. Effects of different DNS reagents in determination of xylose content[J]. Food Research and Development,2010,31(7):1−4. doi: 10.3969/j.issn.1005-6521.2010.07.001
    [13]
    姚林锋, 何强. 单宁酸与胰α-淀粉酶作用特性研究[J]. 食品工业科技, 2014, 35(3): 63−66.

    YAO L F, HE Q. Interaction between tannic acid and pancreatic a-amylase[J]. Science and Technology of Food Industry, 2014, 35(3): 63−66.
    [14]
    范志飞, 曾维才, 戴吉领, 等. 表没食子儿茶素没食子酸酯与猪胰脂肪酶的相互作用[J]. 食品科学,2013,34(7):20−23. [FAN Z F, ZENG W C, DAI J L, et al. Interaction of epigallocatechin-3-gallate with porcine pancreas lipase[J]. Food Science,2013,34(7):20−23. doi: 10.7506/spkx1002-6630-201307005
    [15]
    徐冬兰, 王晴川, 曾晓雄, 等. 苦丁冬青苦丁茶咖啡酰奎尼酸类物质与α-淀粉酶的相互作用特性[J]. 食品科学,2016,37(13):6−12. [XU D L, WANG Q C, ZENG X X, et al. Interaction properties of caffeoylquinic acid derivatives from Ilex kudingcha C. J. Tseng with α-amylase[J]. Food Science,2016,37(13):6−12. doi: 10.7506/spkx1002-6630-201613002
    [16]
    CER R Z, MUDUNURI U, STEPHENS R, et al. IC50-to-Ki: A web-based tool for converting IC50 to Ki values for inhibitors of enzyme activity and ligand binding[J]. Nucleic Acids Research,2009,37:441−445. doi: 10.1093/nar/gkn931
    [17]
    EISENTHAL R, CORNISH-BOWDEN A. The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters[J]. The Biochemical Journal,1974,139(3):715−720. doi: 10.1042/bj1390715
    [18]
    SUN L J, WARREN F J, NETZEL G, et al. 3 or 3′-Galloyl substitution plays an important role in association of catechins and theaflavins with porcine pancreatic α-amylase: The kinetics of inhibition of α-amylase by tea polyphenols[J]. Journal of Functional Foods,2016,26:144−156. doi: 10.1016/j.jff.2016.07.012
    [19]
    王守业, 徐小龙, 刘清亮, 等. 荧光光谱在蛋白质分子构象研究中的应用[J]. 化学进展, 2001, 13(4): 257−260.

    WANG S Y, XU X L, LIU Q L, et al. The application of fluorescence spectroscopy in the study on protein conformation[J]. Progress in Chemistry, 2001, 13(4): 257−260.
    [20]
    BUISSON G, DUÉE E, HASER R, et al. Three dimensional structure of porcine pancreatic alpha-amylase at 2.9 A resolution. Role of calcium in structure and activity[J]. EMBO Journal,1987,6(13):3909−3916. doi: 10.1002/j.1460-2075.1987.tb02731.x
    [21]
    SUN L J, WARREN F J, GIDLEY M J, et al. Mechanism of binding interactions between young apple polyphenols and porcine pancreatic α-amylase[J]. Food Chemistry,2019,283:468−474. doi: 10.1016/j.foodchem.2019.01.087
    [22]
    王公轲, 席辉, 田芳, 等. 光谱和分子模拟法研究乙硫异烟胺与木瓜蛋白酶的分子作用机制[J]. 化学学报,2011,69(1):95−100. [WANG G K, XI H, TIAN F, et al. Mechanism of molecular interaction between ethionamide and papain: Spectroscopic and molecular simulation investigations[J]. Acta Chimica Sinica,2011,69(1):95−100.
    [23]
    LAKOWIZ J R. Principles of fluorescence spectroscopy[M]. 3th ed. Boston: Springer, 2006: 284.
    [24]
    张莉, 刘倩倩, 吴长玲, 等. 多酚与蛋白质相互作用研究方法进展[J]. 食品工业科技,2018,39(24):340−345. [ZHANG L, LIU Q Q, WU C L, et al. Progress research methods for the interaction between polyphenols and proteins[J]. Science and Technology of Food Industry,2018,39(24):340−345.
    [25]
    GAO M R, XU Q D, ZENG W C. Effect of tea polyphenols on the tenderness of yak meat[J]. Journal of Food Processing and Preservation,2020,44(5):14433.
    [26]
    CAI X, YU J N, XU L M, et al. The mechanism study in the interactions of sorghum procyanidins trimer with porcine pancreatic α-amylase[J]. Food Chemistry,2015,174:291−298. doi: 10.1016/j.foodchem.2014.10.131
    [27]
    MACGREGOR E A, JANECEK S, SVENSSON B. Relationship of sequence and structure to specificity in the α-amylase family of enzymes[J]. Biochim Biophys Acta,2001,1546(1):1−20. doi: 10.1016/S0167-4838(00)00302-2
    [28]
    PIPARO E L, SCHEIB H, FREI N, et al. Flavonoids for controlling starch digestion: Structural requirements for inhibiting human α-amylase[J]. Journal of Medicinal Chemistry,2008,51(12):3555−3561. doi: 10.1021/jm800115x
    [29]
    CAO J W, ZHANG Y, HAN L, et al. Number of galloyl moieties and molecular flexibility are both important in alpha-amylase inhibition by galloyl-based polyphenols[J]. Food & Function,2020,11(5):3838−3850.
    [30]
    王静, 刁翠茹, 王华丽, 等. 鼠尾草酸对α-淀粉酶的抑制作用[J]. 食品科学,2020,41(3):12−17. [WANG J, DIAO C R, WANG H L, et al. Inhibitory mechanism of carnosic acid on alpha-amylase[J]. Food Science,2020,41(3):12−17. doi: 10.7506/spkx1002-6630-20181211-137
  • Related Articles

    [1]HUANG Kechang, GUO Gangjun, MA Shangxuan, FU Jiarong, XU Wenting, WEI Yuanmiao, YANG Yuexue, HE Xiyong. Optimization of Vacuum Frying Process and Quality Analysis of Macadamia Kernels by Response Surface Methodology[J]. Science and Technology of Food Industry, 2024, 45(5): 197-204. DOI: 10.13386/j.issn1002-0306.2023050079
    [2]SHENG Jinfeng, LEI Yawen, WANG Xuefeng, LI Li, XIN Ming, YE Dongqing, YAN Cailing, LING Dongning. Processing Optimization of Low-temperature Vacuum Fried Persimmon Chips and Quality Analysis[J]. Science and Technology of Food Industry, 2024, 45(2): 152-160. DOI: 10.13386/j.issn1002-0306.2022120019
    [3]WANG Yuanyuan, HAO Jingrong, YAN Siying, ZHANG Tiantian, DANG Ling, WANG Xiaojing. Optimization of Preparation Process and Quality Analysis of Seabuckthorn Lyophilized Powder Effervescent Tablets[J]. Science and Technology of Food Industry, 2023, 44(10): 235-241. DOI: 10.13386/j.issn1002-0306.2022080179
    [4]GUAN Qinglin, ZHOU Xiaoli, QIN Zhicheng, WANG Yanli, QIN Yumeng, ZHONG Dingjiang. Recip Optimization and Quality Analysis of Lentinus edodes Chutney[J]. Science and Technology of Food Industry, 2023, 44(10): 185-194. DOI: 10.13386/j.issn1002-0306.2022070211
    [5]WANG Dan, JIANG Chunyang, DENG Qiaosheng, YANG Qin, ZHOU Nong. Process Optimization and Quality Analysis of Lycopus lucidus Fermented Wine[J]. Science and Technology of Food Industry, 2023, 44(6): 235-243. DOI: 10.13386/j.issn1002-0306.2022060210
    [6]SHENG Jinfeng, CHEN Kun, LEI Yawen, WANG Xuefeng, TANG Yayuan, YE Dongqing, CHEN Xi, SUN Jian. Drying Characteristics and Quality Analysis of Jasmine with Combined Microwave and Hot Air Drying[J]. Science and Technology of Food Industry, 2022, 43(11): 126-135. DOI: 10.13386/j.issn1002-0306.2021090267
    [7]TANG Xiaoxian, HE Siting, DUAN Zhenhua, LIU Yan, DUAN Weiwen, TANG Meiling, GAO Dan. Response Surface Optimization of Mesona Microwave Intermittent-Hot Air Combined Drying Process and Its Effect on Mesona Gel Quality[J]. Science and Technology of Food Industry, 2022, 43(3): 203-211. DOI: 10.13386/j.issn1002-0306.2021050288
    [8]ZHANG Yu, WANG Ying, LI Zhifang, WANG Di, ZHANG Yanli, ZUO Zhaohang. Compound Fermentation Process Optimization and Quality Analysis of Sugar-free Puinoa Fermented Milk[J]. Science and Technology of Food Industry, 2021, 42(17): 209-216. DOI: 10.13386/j.issn1002-0306.2021020126
    [9]LUO Jing, HE Xin, XIE Chao, BAI Dong, LI Hai-bo, HUANG Ju. Optimization of processing technology and quality analysis of high moisture instant shrimp of Solenocera Melantho[J]. Science and Technology of Food Industry, 2018, 39(11): 194-199,204. DOI: 10.13386/j.issn1002-0306.2018.11.034
    [10]DINGKAO Ren- qing, WANG Lin-lin, HAN Ling, WANG Jun, WEN Peng-cheng, JI Yin-li. Quality analysis of Yak Qula in different areas[J]. Science and Technology of Food Industry, 2015, (01): 105-109. DOI: 10.13386/j.issn1002-0306.2015.01.014
  • Cited by

    Periodical cited type(3)

    1. 张洪礼,龚飘飘,杨芬,刘敏,郑继伟,毛建兰. 响应面法优化方竹笋超微粉制作曲奇饼干的关键配方及品质评价. 贵州农业科学. 2024(06): 103-115 .
    2. 张翠静,张爽,刘涛,赵丹,晏磊. 固氮氧化亚铁钩端螺旋菌产次生矿物的条件优化及矿物鉴定. 微生物学通报. 2024(10): 3954-3969 .
    3. 常茹菲,葛运兵,杨晓丽,张红星,谢远红. 酶解法制备澳洲坚果蛋白肽工艺优化研究. 中国粮油学报. 2024(10): 102-108 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return