Citation: | ZHANG Hongtu, DONG Weijin, CHEN Nan, et al. Inhibition Effect and Molecular Mechanism of Tea Polyphenols on the α-Amylase[J]. Science and Technology of Food Industry, 2022, 43(4): 90−96. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060152. |
[1] |
World Health Organization. World health statistics 2021: Monitoring health for the SDGs, sustainable development goals[EB/OL]. Geneva: WHO, 2021. https://www.who.int/publications/i/item/9789240027053
|
[2] |
International Diabetes Federation. IDF DIABETES ATLAS Ninth edition 2019[EB/OL]. IDF, 2019. https://diabetesatlas.org/en/
|
[3] |
KAWAMURA-KONISHI Y, WATANABE N, SAITO M, et al. Isolation of a new phlorotannin, a potent inhibitor of carbohydrate-hydrolyzing enzymes, from the brown alga sargassum patens[J]. Journal of Agricultural and Food Chemistry,2012,60(22):5565−5570. doi: 10.1021/jf300165j
|
[4] |
GONG T, YANG X, BAI F T, et al. Young apple polyphenols as natural α-glucosidase inhibitors: In vitro and in silico studies[J]. Bioorganic Chemistry,2020,96:103625. doi: 10.1016/j.bioorg.2020.103625
|
[5] |
ETXEBERRIA U, DE LA GARZA A L, CAMPIN J, et al. Antidiabetic effects of natural plant extracts via inhibition of carbohydrate hydrolysis enzymes with emphasis on pancreatic alpha amylase[J]. Expert Opinion on Therapeutic Targets,2012,16(3):269−297. doi: 10.1517/14728222.2012.664134
|
[6] |
霍梦恩, 李冬利, 罗小燕, 等. 陈年乌龙茶的生化成分及其降脂降糖活性研究[J]. 茶叶通讯, 2019, 46(4): 472−478.
HUO M E, LI D L, LUO X Y, et al. Study on the biochemical composition of aged oolong teas and its hpyerglycemic and hypolipidemic activities in vitro[J]. Journal of Tea Communication, 2019, 46(4): 472−478.
|
[7] |
孙世利, 郭芸彤, 陈海强, 等. 英红九号六大茶类生化成分分析及体外活性评价[J]. 食品研究与开发,2018,39(9):159−165. [SUN S L, GUO Y T, CHEN H Q, et al. Analysis of biochemical components and evaluation of the in vitro activity of six categories of tea made of yinghong NO. 9[J]. Food Research and Development,2018,39(9):159−165. doi: 10.3969/j.issn.1005-6521.2018.09.030
|
[8] |
LI X P, LI S Y, CHEN M, et al. (-)-Epigallocatechin-3-gallate (EGCG) inhibits starch digestion and improves glucose homeostasis through direct or indirect activation of PXR/CAR-mediated phase II metabolism in diabetic mice[J]. Food & Function,2018,9(9):4651−4663.
|
[9] |
HE Q, LV Y P, YAO K. Effects of tea polyphenols on the activities of α-amylase, pepsin, trypsin and lipase[J]. Food Chemistry,2007,101(3):1178−1182. doi: 10.1016/j.foodchem.2006.03.020
|
[10] |
高浩祥, 陈南, 徐乾达, 等. 茶多酚在油炸过程中对马铃薯片品质及其贮藏稳定性的影响[J]. 食品工业科技, 2020, 41(9): 20−25, 33.
GAO H X, CHEN N, XU Q D, et al. Effect of tea polyphenols on the quality and storage stability of potato chips during frying[J]. Science and Technology of Food Industry, 2020, 41(9): 20−25, 33.
|
[11] |
王鑫, 王峙力, 谢静南, 等. 甜玉米芯多糖对 α-淀粉酶抑制作用研究[J]. 食品工业科技,2021,42(10):48−54. [WANG X, WANG Z L, XIE J N, et al. Inhibition of polysaccharide on α-amylase from sweet corncob[J]. Science and Technology of Food Industry,2021,42(10):48−54.
|
[12] |
王俊丽, 聂国兴, 曹香林, 等. 不同 DNS试剂测定木糖含量的研究[J]. 食品研究与开发,2010,31(7):1−4. [WANG J L, NIE G X, CAO X L, et al. Effects of different DNS reagents in determination of xylose content[J]. Food Research and Development,2010,31(7):1−4. doi: 10.3969/j.issn.1005-6521.2010.07.001
|
[13] |
姚林锋, 何强. 单宁酸与胰α-淀粉酶作用特性研究[J]. 食品工业科技, 2014, 35(3): 63−66.
YAO L F, HE Q. Interaction between tannic acid and pancreatic a-amylase[J]. Science and Technology of Food Industry, 2014, 35(3): 63−66.
|
[14] |
范志飞, 曾维才, 戴吉领, 等. 表没食子儿茶素没食子酸酯与猪胰脂肪酶的相互作用[J]. 食品科学,2013,34(7):20−23. [FAN Z F, ZENG W C, DAI J L, et al. Interaction of epigallocatechin-3-gallate with porcine pancreas lipase[J]. Food Science,2013,34(7):20−23. doi: 10.7506/spkx1002-6630-201307005
|
[15] |
徐冬兰, 王晴川, 曾晓雄, 等. 苦丁冬青苦丁茶咖啡酰奎尼酸类物质与α-淀粉酶的相互作用特性[J]. 食品科学,2016,37(13):6−12. [XU D L, WANG Q C, ZENG X X, et al. Interaction properties of caffeoylquinic acid derivatives from Ilex kudingcha C. J. Tseng with α-amylase[J]. Food Science,2016,37(13):6−12. doi: 10.7506/spkx1002-6630-201613002
|
[16] |
CER R Z, MUDUNURI U, STEPHENS R, et al. IC50-to-Ki: A web-based tool for converting IC50 to Ki values for inhibitors of enzyme activity and ligand binding[J]. Nucleic Acids Research,2009,37:441−445. doi: 10.1093/nar/gkn931
|
[17] |
EISENTHAL R, CORNISH-BOWDEN A. The direct linear plot. A new graphical procedure for estimating enzyme kinetic parameters[J]. The Biochemical Journal,1974,139(3):715−720. doi: 10.1042/bj1390715
|
[18] |
SUN L J, WARREN F J, NETZEL G, et al. 3 or 3′-Galloyl substitution plays an important role in association of catechins and theaflavins with porcine pancreatic α-amylase: The kinetics of inhibition of α-amylase by tea polyphenols[J]. Journal of Functional Foods,2016,26:144−156. doi: 10.1016/j.jff.2016.07.012
|
[19] |
王守业, 徐小龙, 刘清亮, 等. 荧光光谱在蛋白质分子构象研究中的应用[J]. 化学进展, 2001, 13(4): 257−260.
WANG S Y, XU X L, LIU Q L, et al. The application of fluorescence spectroscopy in the study on protein conformation[J]. Progress in Chemistry, 2001, 13(4): 257−260.
|
[20] |
BUISSON G, DUÉE E, HASER R, et al. Three dimensional structure of porcine pancreatic alpha-amylase at 2.9 A resolution. Role of calcium in structure and activity[J]. EMBO Journal,1987,6(13):3909−3916. doi: 10.1002/j.1460-2075.1987.tb02731.x
|
[21] |
SUN L J, WARREN F J, GIDLEY M J, et al. Mechanism of binding interactions between young apple polyphenols and porcine pancreatic α-amylase[J]. Food Chemistry,2019,283:468−474. doi: 10.1016/j.foodchem.2019.01.087
|
[22] |
王公轲, 席辉, 田芳, 等. 光谱和分子模拟法研究乙硫异烟胺与木瓜蛋白酶的分子作用机制[J]. 化学学报,2011,69(1):95−100. [WANG G K, XI H, TIAN F, et al. Mechanism of molecular interaction between ethionamide and papain: Spectroscopic and molecular simulation investigations[J]. Acta Chimica Sinica,2011,69(1):95−100.
|
[23] |
LAKOWIZ J R. Principles of fluorescence spectroscopy[M]. 3th ed. Boston: Springer, 2006: 284.
|
[24] |
张莉, 刘倩倩, 吴长玲, 等. 多酚与蛋白质相互作用研究方法进展[J]. 食品工业科技,2018,39(24):340−345. [ZHANG L, LIU Q Q, WU C L, et al. Progress research methods for the interaction between polyphenols and proteins[J]. Science and Technology of Food Industry,2018,39(24):340−345.
|
[25] |
GAO M R, XU Q D, ZENG W C. Effect of tea polyphenols on the tenderness of yak meat[J]. Journal of Food Processing and Preservation,2020,44(5):14433.
|
[26] |
CAI X, YU J N, XU L M, et al. The mechanism study in the interactions of sorghum procyanidins trimer with porcine pancreatic α-amylase[J]. Food Chemistry,2015,174:291−298. doi: 10.1016/j.foodchem.2014.10.131
|
[27] |
MACGREGOR E A, JANECEK S, SVENSSON B. Relationship of sequence and structure to specificity in the α-amylase family of enzymes[J]. Biochim Biophys Acta,2001,1546(1):1−20. doi: 10.1016/S0167-4838(00)00302-2
|
[28] |
PIPARO E L, SCHEIB H, FREI N, et al. Flavonoids for controlling starch digestion: Structural requirements for inhibiting human α-amylase[J]. Journal of Medicinal Chemistry,2008,51(12):3555−3561. doi: 10.1021/jm800115x
|
[29] |
CAO J W, ZHANG Y, HAN L, et al. Number of galloyl moieties and molecular flexibility are both important in alpha-amylase inhibition by galloyl-based polyphenols[J]. Food & Function,2020,11(5):3838−3850.
|
[30] |
王静, 刁翠茹, 王华丽, 等. 鼠尾草酸对α-淀粉酶的抑制作用[J]. 食品科学,2020,41(3):12−17. [WANG J, DIAO C R, WANG H L, et al. Inhibitory mechanism of carnosic acid on alpha-amylase[J]. Food Science,2020,41(3):12−17. doi: 10.7506/spkx1002-6630-20181211-137
|