ZHANG Xin, ZHANG Ji, PENG Guilan, et al. Study on Vacuum Drying Characteristics and Model of Yam Slices[J]. Science and Technology of Food Industry, 2022, 43(4): 82−89. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060119.
Citation: ZHANG Xin, ZHANG Ji, PENG Guilan, et al. Study on Vacuum Drying Characteristics and Model of Yam Slices[J]. Science and Technology of Food Industry, 2022, 43(4): 82−89. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060119.

Study on Vacuum Drying Characteristics and Model of Yam Slices

More Information
  • Received Date: June 16, 2021
  • Available Online: December 16, 2021
  • In order to explore the vacuum drying characteristics of yam slices, a drying model was established. Vacuum drying tests were carried out under different drying temperature (40, 50, 60, 70, 80 ℃), vacuum degree (0.03, 0.04, 0.05, 0.06, 0.07 MPa) and slice thickness (2, 4, 6, 8, 10 mm). BP neural network model and Weibull distribution function were used to fit the experimental data, and the effective moisture diffusivity coefficient, drying activation energy were calculated. The results showed that the temperature (P=7.56×10−11) and slice thickness (P=1.82×10−6) had significant effect on the drying time, but the vacuum degree (P=0.32) had no significant effect on it. The average relative error of BP neural network model was 3.08%, which was lower than that of Weibull distribution function by 10.7%. BP neural network was more suitable to describe the vacuum drying process of yam slices. The effective moisture diffusivity coefficients ranged from 4.0042×10−9 to 3.4652×10−8 m2/s, which was greatly affected by temperature and slice thickness. The drying activation energy was 33.802 kJ/mol. This study would provide theoretical basis for vacuum drying of yam slices.
  • [1]
    赵冰. 山药栽培新技术[M]. 第2版. 北京: 金盾出版社, 2012.

    ZHAO B. New cultivation techniques of Chinese yam[M]. 2nd Ed. Beijing: Jindun Press, 2012.
    [2]
    ORIKASA T, KOIDE S, OKAMOTO S, et al. Impacts of hot air and vacuum drying on the quality attributes of kiwifruit slices[J]. Journal of Food Engineering,2014,125:51−58. doi: 10.1016/j.jfoodeng.2013.10.027
    [3]
    孟国栋, 彭桂兰, 罗传伟, 等. 花椒真空干燥特性分析及动力学模型研究[J]. 食品与发酵工业,2018,44(4):89−96. [MENG G D, PENG G L, LUO C W, et al. Vacuum drying characteristics and kinetics modeling study of Zanthoxylum bungeanum[J]. Food and Fermentation Industries,2018,44(4):89−96.
    [4]
    张付杰, 辛立东, 代建武, 等. 猕猴桃片旋转托盘式微波真空干燥特性分析[J]. 农业机械学报,2020,51(S1):501−508. [ZHANG F J, XIN L D, DAI J W, et al. Rotating tray microwave vacuum drying characteristics of kiwifruit slices[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(S1):501−508. doi: 10.6041/j.issn.1000-1298.2020.S1.059
    [5]
    潘小莉, 张帆, 刘永富, 等. 基于Weibull分布函数的龙眼果肉微波真空干燥模拟研究[J]. 农机化研究,2021,43(4):179−184. [PAN X L, ZHANG F, LIU Y F, et al. Simulation of microwave vacuum drying of Longan pulp based on Weibull distribution function[J]. Journal of Agricultural Mechanization Research,2021,43(4):179−184. doi: 10.3969/j.issn.1003-188X.2021.04.033
    [6]
    国家卫生和计划生育委员会. 食品安全国家标准 食品中水分的测定 GB5009.3-2016[S]. 北京: 中国标准出版社, 2016.

    National Health and Family Planning Commission. Determination of moisture in food GB5009.3-2016[S]. Beijing: Standards Press of China, 2016.
    [7]
    骆航, 孙兴力, 刘金凤. 热风干燥对山药片品质特性的影响[J]. 北方农业学报,2019,47(5):100−104. [LUO H, SUN X L, LIU J F. Effect of hot air drying on quality characteristics of Chinese yam slices[J]. Journal of Northern Agriculture,2019,47(5):100−104. doi: 10.3969/j.issn.2096-1197.2019.05.19
    [8]
    张记, 孟国栋, 彭桂兰, 等. 稻谷热风-真空联合干燥工艺参数优化[J]. 食品与发酵工业,2019,45(18):155−161. [ZHANG J, MENG G D, PENG G L, et al. Optimization of process parameters for hot air and vacuum combined drying for rice[J]. Food and Fermentation Industries,2019,45(18):155−161.
    [9]
    DOYMAZ İ. Drying kinetics, rehydration and colour characteristics of convective hot-air drying of carrot slices[J]. Heat and Mass Transfer,2017,53(1):25−35. doi: 10.1007/s00231-016-1791-8
    [10]
    张记, 彭桂兰, 张雪峰, 等. 黄芪切片热风干燥特性及动力学模型研究[J]. 食品与机械,2020,36(8):22−28,56. [ZHANG J, PENG G L, ZHANG X F, et al. Study on hot-air drying characteristics and kinetics model of Astragalus slice[J]. Food & Machinery,2020,36(8):22−28,56.
    [11]
    DOYMAZ İ. Evaluation of some thin-layer drying models of persimmon slices (Diospyros kaki L.)[J]. Energy Conversion and Management,2012,56:199−205. doi: 10.1016/j.enconman.2011.11.027
    [12]
    DOYMAZ İ. Drying of eggplant slices in thin layers at different air temperatures[J]. Journal of Food Processing and Preservation,2011,35(2):280−289. doi: 10.1111/j.1745-4549.2009.00454.x
    [13]
    DAI J W, XIAO H W, ZHANG L H, et al. Drying characteristics and modeling of apple slices during microwave intermittent drying[J]. Journal of Food Process Engineering,2019,42(6):e13212.
    [14]
    ARAL S, BEŞE A V. Convective drying of hawthorn fruit(Crataegus spp. ): Effect of experimental parameters on drying kinetics, color, shrinkage, and rehydration capacity[J]. Food Chemistry,2016,210:577−584. doi: 10.1016/j.foodchem.2016.04.128
    [15]
    陈明. MATLAB神经网络原理与实例精解[M]. 北京: 清华大学出版社, 2013.

    CHEN M. Matlab neural network principle and example precision solution[M]. Beijing: Tsinghua University Press, 2013.
    [16]
    OLURIN T O, ADELEKAN A O, OLOSUNDE W A. Mathematical modelling of drying characteristics of blanched field pumpkin(Cucurbita pepo L.) slices[J]. Agricultural Engineering International:CIGR Journal,2012,14(4):246−254.
    [17]
    李晖, 任广跃, 时秋月, 等. 怀山药片热泵-热风联合干燥研究[J]. 食品科技,2014,39(6):101−105. [LI H, REN G Y, SHI Q Y, et al. Combined heat-pump and hot-air drying on Dioscorea opposite slices[J]. Food Science and Technology,2014,39(6):101−105.
    [18]
    樊迎. 山药切片热风干燥动力学试验[J]. 山西农业科学,2016,44(4):528−531. [FAN Y. Study on the dynamics test of sirocco drying of sliced yam[J]. Journal of Shanxi Agricultural Sciences,2016,44(4):528−531. doi: 10.3969/j.issn.1002-2481.2016.04.27
    [19]
    陈健凯, 王绍青, 林河通, 等. 番木瓜片的微波真空干燥特性与动力学模型[J]. 热带作物学报,2017,38(8):1534−1542. [CHEN J K, WANG S Q, LIN H T, et al. Microwave-vacuum drying characteristics and kinetics model of papaya slices[J]. Chinese Journal of Tropical Crops,2017,38(8):1534−1542. doi: 10.3969/j.issn.1000-2561.2017.08.025
    [20]
    张乐, 赵守涣, 王赵改, 等. 板栗微波真空干燥特性及干燥工艺研究[J]. 食品与机械,2018,34(4):206−210. [ZHANG L, ZHAO S H, WANG Z G, et al. Microwave-vacuum drying characteristics and drying process of Chinese chestnut[J]. Food & Machinery,2018,34(4):206−210.
    [21]
    冼燕萍, 董浩, 罗东辉, 等. 基于主成份分析法的鱼翅干制品品质评价模型的构建[J]. 现代食品科技,2016,32(1):210−217. [XIAN Y P, DONG H, LUO D H, et al. Quality evaluation modeling of dried shark fin products based on principal component analysis[J]. Modern Food Science and Technology,2016,32(1):210−217.
    [22]
    张明玉, 任亚敏, 张彩芳. 玛咖切片的微波真空干燥特性及品质特征[J]. 现代食品科技,2019,35(6):230−236. [ZHANG M Y, REN Y M, ZHANG C F. Microwave vacuum drying characteristics and quality of maca slices[J]. Modern Food Science and Technology,2019,35(6):230−236.
    [23]
    白冰玉, 傅鑫程, 丁胜华, 等. 切片厚度对苦瓜片热风干燥特性及相关品质的影响研究[J]. 农产品加工,2019(17):1−5. [BAI B Y, FU X C, DING S H, et al. Effect of slice thickness on drying characteristics and related quality of balsam pear slices[J]. Farm Products Processing,2019(17):1−5.
    [24]
    DOYMAZ I. Drying kinetics and rehydration characteristics of convective hot-air dried white button mushroom slices[J]. Journal of Chemistry,2014:1−8.
    [25]
    汤尚文, 孙永林, 王同齐, 等. 山药红外干燥特性与数学模型[J]. 食品科技,2016,41(6):93−99. [TANG S W, SUN Y L, WANG T Q, et al. Infrared radiation drying characteristics and mathematical model of yam[J]. Food Science and Technology,2016,41(6):93−99.
  • Related Articles

    [1]YANG Shuhui, WANG Yansheng, WANG Wenliang, JIA Fengjuan, LI Yongsheng, HOU Furong. Research Progress in Preparation, Influencing Factors of Emulsifying Properties and Application of Polysaccharide Emulsion[J]. Science and Technology of Food Industry, 2024, 45(14): 398-407. DOI: 10.13386/j.issn1002-0306.2023080229
    [2]GAO Mengdi, NING Xibin. Biofilm Forming Ability and Influencing Factors of Vibrio vulnificus[J]. Science and Technology of Food Industry, 2023, 44(10): 138-144. DOI: 10.13386/j.issn1002-0306.2022080256
    [3]MA Rui-juan, XU Ying-rui, XUE Yuan-tai, JIAO Yao-yao, ZHU Yan-li, ZHANG Wei-bing, YANG Min, WEN Peng-cheng. Research Progress on Flavor Substances and Influencing Factors of Yak Milk[J]. Science and Technology of Food Industry, 2020, 41(10): 363-368. DOI: 10.13386/j.issn1002-0306.2020.10.061
    [4]BAI Xue, ZHANG Mei-li. Research Progress of Influencing Factors and Quality Improvement of Frozen Dough[J]. Science and Technology of Food Industry, 2020, 41(5): 348-353. DOI: 10.13386/j.issn1002-0306.2020.05.056
    [5]HAO Wan-ming, ZHU Chao-zhi, ZHAO Gai-ming, NAI Bi-jiang, WANG Fang-quan, WANG Ke. Research Progress on the Influence Factors of the Tenderness of the Muscle and the Technology of Adjusting the Tenderization of the Beef[J]. Science and Technology of Food Industry, 2019, 40(24): 349-354. DOI: 10.13386/j.issn1002-0306.2019.24.058
    [6]ZHAO Wen-hua, WANG Gui-ying, WANG Xue-feng, CHENG Zhi-bin, GU Da-hai, XU Zhi-qiang, FAN Jiang-ping, PU Yue-hong, GE Chang-rong, LIAO Guo-zhou. Research Progress on Volatile Flavor Substances and Their Influencing Factors of Chicken[J]. Science and Technology of Food Industry, 2019, 40(21): 337-343,351. DOI: 10.13386/j.issn1002-0306.2019.21.055
    [7]GUO Jing, JIANG Jian-guo, WEI Lin-hong, XUE Mei, XIA Qin, YAN Xiao-tong, LIU Tian-qing. Study on Phase Behavior and Influence Factors of Olive Oil Microemulsion[J]. Science and Technology of Food Industry, 2019, 40(7): 35-40. DOI: 10.13386/j.issn1002-0306.2019.07.007
    [8]FANG Fang, WANG Yan, WANG Dong-hui, WANG Feng-zhong. Research progress on influence factors of soybean germination[J]. Science and Technology of Food Industry, 2018, 39(4): 306-311.
    [9]Formation pathways and influences of rice aroma[J]. Science and Technology of Food Industry, 2013, (13): 378-382. DOI: 10.13386/j.issn1002-0306.2013.13.082
    [10]Study on deoxynojirimycin and influencing factors in the mulberry leaf and mulberry tea[J]. Science and Technology of Food Industry, 2013, (10): 352-356. DOI: 10.13386/j.issn1002-0306.2013.10.010
  • Cited by

    Periodical cited type(19)

    1. 刘开文,马雯,金刚. 真空冷冻干燥提高乳酸菌存活率及延长贮藏期的研究进展. 食品科学. 2024(02): 325-333 .
    2. 余俊杰,董勇,周志磊,唐俊,毛健. 几种主要原料添加量对雪糕中益生菌活性及品质的影响. 皖西学院学报. 2024(02): 90-97 .
    3. 周雷进雨,马精阳,吴洪博,景婷婷,李天昊,李锦生,姜海龙,周丽娜. 干酪乳杆菌冻干保护剂筛选及贮藏期预测. 饲料工业. 2024(18): 114-118 .
    4. 张馨钰,钟明,崔莲花,于小洋,徐紫嫣,李光春. 植物淀粉对乳酸片球菌微胶囊冻干保护及储存性能的影响. 中国畜牧兽医. 2024(10): 4596-4605 .
    5. 亓秀晔,张修,张冠军,陈静,徐龙飞. 一株丁酸梭菌冻干菌粉的获得及体内安全性评价. 家畜生态学报. 2024(10): 29-35 .
    6. 温明赫,陈玉洁,陈贵林,汪乐凡,党梓菁,李欣怡,孙翔宇,马婷婷. 乳酸菌发酵猕猴桃冻干果粉助干剂组成优化及品质评价. 中国酿造. 2024(11): 173-179 .
    7. 高向新,陈永福,乌斯嘎勒. 益生菌微胶囊的制备及其在食品中应用的研究进展. 食品工业科技. 2023(03): 19-28 . 本站查看
    8. 张明芳,何江波,王磊. 3株瘤胃源乳酸菌冻干保护效果初步研究. 饲料研究. 2023(01): 91-94 .
    9. 亓秀晔,张志焱,谢全喜,刘乃芝,郭杨丽,孟凡进. 丁酸梭菌扩大培养干燥工艺及菌粉贮存稳定性研究. 中国酿造. 2023(04): 151-156 .
    10. 任敏,李志国,闫清泉,边燕飞,司阔林,李彤,宗学醒. 益生菌在货架期内的贮藏稳定性研究进展. 食品科技. 2023(05): 106-112 .
    11. 蒋霞,李春燕,王鑫炜,史学伟,王斌. 产2-苯乙醇星形假丝酵母培养基及冻干保护剂的优化. 中国食品添加剂. 2023(08): 51-60 .
    12. 周雷进雨,马精阳,袁月明,李锦生,冯伟志,周丽娜. 干酪乳杆菌复合冻干保护剂工艺优化. 饲料工业. 2023(22): 86-93 .
    13. 寇佳祥,乔建军,朱宏吉,吴昊,张悦. 提高乳杆菌属冷冻干燥存活率研究进展. 食品与发酵工业. 2022(13): 296-303 .
    14. 齐程田,张亮,刘云国. 质控品在食品微生物检测中的制备及应用. 中国调味品. 2022(09): 194-198 .
    15. 罗立之,崔梓豪,施蒋昊文,聂蓉,朱泽康,刘国荣. 配方固形物对酸乳冰激凌益生菌活性保护的研究进展. 食品安全质量检测学报. 2022(23): 7487-7495 .
    16. 张玲,张楠驰,魏勇,许锋,张林,王利,俄木曲者. 响应面法优化羊源解淀粉芽孢杆菌冻干保护剂配方. 西南民族大学学报(自然科学版). 2022(01): 22-28 .
    17. 韩芸娇,张媛媛,夏雪芬,董施彬,张彬,肖霄. 面包酵母冻干粉保护剂筛选及其生物活性分析. 食品工业科技. 2021(07): 119-128 . 本站查看
    18. 李晶晶,王效禹,李娟,曹艳子,单春乔,江国托. 植物乳杆菌冷冻干燥保护剂筛选及加速储存稳定性研究. 饲料研究. 2021(06): 97-100 .
    19. 孙瑞胤,王瑞雪,鄂晶晶,姚彩青,何宗柏,张巧玲,陈子超,马蓉泽,包秋华,王俊国. 钙离子对植物乳杆菌LIP-1抗冷冻干燥性能的影响. 食品工业科技. 2021(17): 100-106 . 本站查看

    Other cited types(30)

Catalog

    Article Metrics

    Article views (166) PDF downloads (15) Cited by(49)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return