ZHANG Xin, ZHANG Ji, PENG Guilan, et al. Study on Vacuum Drying Characteristics and Model of Yam Slices[J]. Science and Technology of Food Industry, 2022, 43(4): 82−89. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060119.
Citation: ZHANG Xin, ZHANG Ji, PENG Guilan, et al. Study on Vacuum Drying Characteristics and Model of Yam Slices[J]. Science and Technology of Food Industry, 2022, 43(4): 82−89. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060119.

Study on Vacuum Drying Characteristics and Model of Yam Slices

More Information
  • Received Date: June 16, 2021
  • Available Online: December 16, 2021
  • In order to explore the vacuum drying characteristics of yam slices, a drying model was established. Vacuum drying tests were carried out under different drying temperature (40, 50, 60, 70, 80 ℃), vacuum degree (0.03, 0.04, 0.05, 0.06, 0.07 MPa) and slice thickness (2, 4, 6, 8, 10 mm). BP neural network model and Weibull distribution function were used to fit the experimental data, and the effective moisture diffusivity coefficient, drying activation energy were calculated. The results showed that the temperature (P=7.56×10−11) and slice thickness (P=1.82×10−6) had significant effect on the drying time, but the vacuum degree (P=0.32) had no significant effect on it. The average relative error of BP neural network model was 3.08%, which was lower than that of Weibull distribution function by 10.7%. BP neural network was more suitable to describe the vacuum drying process of yam slices. The effective moisture diffusivity coefficients ranged from 4.0042×10−9 to 3.4652×10−8 m2/s, which was greatly affected by temperature and slice thickness. The drying activation energy was 33.802 kJ/mol. This study would provide theoretical basis for vacuum drying of yam slices.
  • [1]
    赵冰. 山药栽培新技术[M]. 第2版. 北京: 金盾出版社, 2012.

    ZHAO B. New cultivation techniques of Chinese yam[M]. 2nd Ed. Beijing: Jindun Press, 2012.
    [2]
    ORIKASA T, KOIDE S, OKAMOTO S, et al. Impacts of hot air and vacuum drying on the quality attributes of kiwifruit slices[J]. Journal of Food Engineering,2014,125:51−58. doi: 10.1016/j.jfoodeng.2013.10.027
    [3]
    孟国栋, 彭桂兰, 罗传伟, 等. 花椒真空干燥特性分析及动力学模型研究[J]. 食品与发酵工业,2018,44(4):89−96. [MENG G D, PENG G L, LUO C W, et al. Vacuum drying characteristics and kinetics modeling study of Zanthoxylum bungeanum[J]. Food and Fermentation Industries,2018,44(4):89−96.
    [4]
    张付杰, 辛立东, 代建武, 等. 猕猴桃片旋转托盘式微波真空干燥特性分析[J]. 农业机械学报,2020,51(S1):501−508. [ZHANG F J, XIN L D, DAI J W, et al. Rotating tray microwave vacuum drying characteristics of kiwifruit slices[J]. Transactions of the Chinese Society for Agricultural Machinery,2020,51(S1):501−508. doi: 10.6041/j.issn.1000-1298.2020.S1.059
    [5]
    潘小莉, 张帆, 刘永富, 等. 基于Weibull分布函数的龙眼果肉微波真空干燥模拟研究[J]. 农机化研究,2021,43(4):179−184. [PAN X L, ZHANG F, LIU Y F, et al. Simulation of microwave vacuum drying of Longan pulp based on Weibull distribution function[J]. Journal of Agricultural Mechanization Research,2021,43(4):179−184. doi: 10.3969/j.issn.1003-188X.2021.04.033
    [6]
    国家卫生和计划生育委员会. 食品安全国家标准 食品中水分的测定 GB5009.3-2016[S]. 北京: 中国标准出版社, 2016.

    National Health and Family Planning Commission. Determination of moisture in food GB5009.3-2016[S]. Beijing: Standards Press of China, 2016.
    [7]
    骆航, 孙兴力, 刘金凤. 热风干燥对山药片品质特性的影响[J]. 北方农业学报,2019,47(5):100−104. [LUO H, SUN X L, LIU J F. Effect of hot air drying on quality characteristics of Chinese yam slices[J]. Journal of Northern Agriculture,2019,47(5):100−104. doi: 10.3969/j.issn.2096-1197.2019.05.19
    [8]
    张记, 孟国栋, 彭桂兰, 等. 稻谷热风-真空联合干燥工艺参数优化[J]. 食品与发酵工业,2019,45(18):155−161. [ZHANG J, MENG G D, PENG G L, et al. Optimization of process parameters for hot air and vacuum combined drying for rice[J]. Food and Fermentation Industries,2019,45(18):155−161.
    [9]
    DOYMAZ İ. Drying kinetics, rehydration and colour characteristics of convective hot-air drying of carrot slices[J]. Heat and Mass Transfer,2017,53(1):25−35. doi: 10.1007/s00231-016-1791-8
    [10]
    张记, 彭桂兰, 张雪峰, 等. 黄芪切片热风干燥特性及动力学模型研究[J]. 食品与机械,2020,36(8):22−28,56. [ZHANG J, PENG G L, ZHANG X F, et al. Study on hot-air drying characteristics and kinetics model of Astragalus slice[J]. Food & Machinery,2020,36(8):22−28,56.
    [11]
    DOYMAZ İ. Evaluation of some thin-layer drying models of persimmon slices (Diospyros kaki L.)[J]. Energy Conversion and Management,2012,56:199−205. doi: 10.1016/j.enconman.2011.11.027
    [12]
    DOYMAZ İ. Drying of eggplant slices in thin layers at different air temperatures[J]. Journal of Food Processing and Preservation,2011,35(2):280−289. doi: 10.1111/j.1745-4549.2009.00454.x
    [13]
    DAI J W, XIAO H W, ZHANG L H, et al. Drying characteristics and modeling of apple slices during microwave intermittent drying[J]. Journal of Food Process Engineering,2019,42(6):e13212.
    [14]
    ARAL S, BEŞE A V. Convective drying of hawthorn fruit(Crataegus spp. ): Effect of experimental parameters on drying kinetics, color, shrinkage, and rehydration capacity[J]. Food Chemistry,2016,210:577−584. doi: 10.1016/j.foodchem.2016.04.128
    [15]
    陈明. MATLAB神经网络原理与实例精解[M]. 北京: 清华大学出版社, 2013.

    CHEN M. Matlab neural network principle and example precision solution[M]. Beijing: Tsinghua University Press, 2013.
    [16]
    OLURIN T O, ADELEKAN A O, OLOSUNDE W A. Mathematical modelling of drying characteristics of blanched field pumpkin(Cucurbita pepo L.) slices[J]. Agricultural Engineering International:CIGR Journal,2012,14(4):246−254.
    [17]
    李晖, 任广跃, 时秋月, 等. 怀山药片热泵-热风联合干燥研究[J]. 食品科技,2014,39(6):101−105. [LI H, REN G Y, SHI Q Y, et al. Combined heat-pump and hot-air drying on Dioscorea opposite slices[J]. Food Science and Technology,2014,39(6):101−105.
    [18]
    樊迎. 山药切片热风干燥动力学试验[J]. 山西农业科学,2016,44(4):528−531. [FAN Y. Study on the dynamics test of sirocco drying of sliced yam[J]. Journal of Shanxi Agricultural Sciences,2016,44(4):528−531. doi: 10.3969/j.issn.1002-2481.2016.04.27
    [19]
    陈健凯, 王绍青, 林河通, 等. 番木瓜片的微波真空干燥特性与动力学模型[J]. 热带作物学报,2017,38(8):1534−1542. [CHEN J K, WANG S Q, LIN H T, et al. Microwave-vacuum drying characteristics and kinetics model of papaya slices[J]. Chinese Journal of Tropical Crops,2017,38(8):1534−1542. doi: 10.3969/j.issn.1000-2561.2017.08.025
    [20]
    张乐, 赵守涣, 王赵改, 等. 板栗微波真空干燥特性及干燥工艺研究[J]. 食品与机械,2018,34(4):206−210. [ZHANG L, ZHAO S H, WANG Z G, et al. Microwave-vacuum drying characteristics and drying process of Chinese chestnut[J]. Food & Machinery,2018,34(4):206−210.
    [21]
    冼燕萍, 董浩, 罗东辉, 等. 基于主成份分析法的鱼翅干制品品质评价模型的构建[J]. 现代食品科技,2016,32(1):210−217. [XIAN Y P, DONG H, LUO D H, et al. Quality evaluation modeling of dried shark fin products based on principal component analysis[J]. Modern Food Science and Technology,2016,32(1):210−217.
    [22]
    张明玉, 任亚敏, 张彩芳. 玛咖切片的微波真空干燥特性及品质特征[J]. 现代食品科技,2019,35(6):230−236. [ZHANG M Y, REN Y M, ZHANG C F. Microwave vacuum drying characteristics and quality of maca slices[J]. Modern Food Science and Technology,2019,35(6):230−236.
    [23]
    白冰玉, 傅鑫程, 丁胜华, 等. 切片厚度对苦瓜片热风干燥特性及相关品质的影响研究[J]. 农产品加工,2019(17):1−5. [BAI B Y, FU X C, DING S H, et al. Effect of slice thickness on drying characteristics and related quality of balsam pear slices[J]. Farm Products Processing,2019(17):1−5.
    [24]
    DOYMAZ I. Drying kinetics and rehydration characteristics of convective hot-air dried white button mushroom slices[J]. Journal of Chemistry,2014:1−8.
    [25]
    汤尚文, 孙永林, 王同齐, 等. 山药红外干燥特性与数学模型[J]. 食品科技,2016,41(6):93−99. [TANG S W, SUN Y L, WANG T Q, et al. Infrared radiation drying characteristics and mathematical model of yam[J]. Food Science and Technology,2016,41(6):93−99.
  • Related Articles

    [1]LI Suixin, HUO Yunlei, WU Yunpeng, LI Jiahui, CHEN Bo, WANG Yan. Preparation,Characterization and Adsorption Properties of Hydrophilic Syringostrobin Molecularly Imprinted Microspheres[J]. Science and Technology of Food Industry, 2021, 42(5): 72-77,92. DOI: 10.13386/j.issn1002-0306.2020050050
    [2]YAN Xiang, ZHANG Shao-fei, WANG Du-liu, PEI Ping, WANG Wen-jian, LI Juan, LI Fei, ZHAO Yan-xia. Study on Preparation of Activated Carbon from Soybean Straw and Its Adsorption Performance on Cu2+[J]. Science and Technology of Food Industry, 2021, 42(1): 68-74. DOI: 10.13386/j.issn1002-0306.2019080216
    [3]ZHOU You-quan, TANG Ting-fan, CHENG Hao, HUANG Fang-li, TIAN Yu-hong. Study on Adsorption Properties of Chitosan for Tannic Acid in Sucrose Solution[J]. Science and Technology of Food Industry, 2020, 41(3): 12-15,21. DOI: 10.13386/j.issn1002-0306.2020.03.003
    [4]WU Chun, SUN Tian-yi, MA Lin. Evaluation of Adsorption Property of Modified Magnetic Chitosan to Carmine[J]. Science and Technology of Food Industry, 2020, 41(1): 25-31,37. DOI: 10.13386/j.issn1002-0306.2020.01.005
    [5]CAI Hong-mei, MENG Wen-jing. Preparation of molecularly imprinted polymer foam and selective adsorption and separation of cyhalothrin[J]. Science and Technology of Food Industry, 2017, (22): 46-50. DOI: 10.13386/j.issn1002-0306.2017.22.010
    [6]ZHANG Nai-pian, WANG Cheng-ming, AO Wen-fang, LI Ke-chao, BAI Juan. Preparation and characterization of phytic acid molecularly imprinted polymer and its adsorption performance[J]. Science and Technology of Food Industry, 2017, (17): 75-79. DOI: 10.13386/j.issn1002-0306.2017.17.015
    [7]CHEN Xi, KUANG Ying, XIAO Man, WU Kao, YAN Wen-li, JIANG Fa-tang, HUANG Jing. Study on adsorption of plant polysaccharide aerogels[J]. Science and Technology of Food Industry, 2017, (11): 96-101. DOI: 10.13386/j.issn1002-0306.2017.11.010
    [8]ZHANG Xin-lin, LONG Wei, YU Shu-juan, YANG Yong-jun, ZHU Si-ming. Adsorption performance and kinetics of macroporous resin on sugarcane molasses pigments[J]. Science and Technology of Food Industry, 2015, (22): 111-114. DOI: 10.13386/j.issn1002-0306.2015.22.014
    [9]TANG Yi-wei, GAO Zi-yuan, GAO Jing-wen, WEI Li-qiao, LAN Jian-xing, LI Yi, GAO Xue, ZHANG De-fu, LI Jian-rong. Study on preparation and adsorption properties of pymetrozine molecularly imprinted polymers[J]. Science and Technology of Food Industry, 2015, (05): 91-94. DOI: 10.13386/j.issn1002-0306.2015.05.010
    [10]Study on the adsorption performance of molecular imprinting cross-linked chitosan resin on cadmium[J]. Science and Technology of Food Industry, 2013, (07): 126-129. DOI: 10.13386/j.issn1002-0306.2013.07.088
  • Cited by

    Periodical cited type(3)

    1. 肖曼青,李芳,王展,沈汪洋. 物理改性对荞麦蛋白结构和理化特性的影响. 食品研究与开发. 2025(01): 98-105 .
    2. 甘传发,郭金英,白周亚. 姜黄素与蛋白质相互作用研究进展. 中国调味品. 2023(02): 199-204 .
    3. 张旭,卢娜,李兆杰,薛勇,袁诗涵,薛长湖,唐庆娟. 姜黄素光动力对牡蛎脂质氧化水解酶的影响. 食品工业科技. 2020(24): 1-6+12 . 本站查看

    Other cited types(3)

Catalog

    Article Metrics

    Article views (166) PDF downloads (15) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return