HAN Yunjiao, ZHANG Yuanyuan, XIA Xuefen, et al. Screening of Protective Agent and Bioactivity Analysis of Bread Yeast Freeze-dried Powder[J]. Science and Technology of Food Industry, 2021, 42(7): 119−128. (in Chinese with English abstract). doi: 10.13386/ j.issn1002-0306.2020060143.
Citation: HAN Yunjiao, ZHANG Yuanyuan, XIA Xuefen, et al. Screening of Protective Agent and Bioactivity Analysis of Bread Yeast Freeze-dried Powder[J]. Science and Technology of Food Industry, 2021, 42(7): 119−128. (in Chinese with English abstract). doi: 10.13386/ j.issn1002-0306.2020060143.

Screening of Protective Agent and Bioactivity Analysis of Bread Yeast Freeze-dried Powder

More Information
  • Received Date: June 10, 2020
  • Available Online: January 27, 2021
  • Objective:The formulation of protective agent added in vacuum freeze-drying process was optimized to obtain bread yeast 3G-28 freeze-drying powder with good fermentation performance.Methods:On the basis of single factor experiments of skim milk powder, sucrose, Tween-80, Arabic gum, cyclodextrin and glycerin, the formula of compound freeze-drying protectant was optimized by response surface experiment, and the ferment power, trehalose content, sucrase activity and flavor in fermentation liquid of yeast freeze-drying powder were studied.Results:The order of influence of each factor on the number of viable bacteria in bread yeast freeze-dried powder was as follows: The concentration of glycerol > the concentration of sucrose > the concentration of skim milk powder > the concentration of β-cyclodextrin. The formula of the best compound freeze-drying protective agent was as follows: Glycerin 4.7%, skimmed milk powder 20%, β-cyclodextrin 15%, sucrose 5%. The viable quantity of bread yeast freeze-dried powder was 36.89×109 PCS / mL. The fermentation capacity of baker's yeast 3G-28 freeze-dried powder was 214 mg/h/g, the content of trehalose was 44.22 mg/g, and the activity of sucrase was 20.27 U/g. Compared with the freeze-dried powder of commercially available yeast and the freeze-dried powder of the initial strain of yeast, the yeast showed higher biological activity. In terms of flavor, the content of alcohol in bread yeast 3G-28 freeze-dried powder was the highest compared with the other two, showing good practicability.ConclusionThe optimum formulation of the baker's yeast 3G-28 freeze-drying powder was studied, and the baker's yeast freeze-drying powder with better biological activity was obtained, which had a good prospect in improving the quality of bread products and in the application of microbial industrialization.
  • [1]
    孙溪, 张翠英, 董建, 等. mal62基因高表达对工业面包酵母发酵力的影响[J]. 微生物学报,2012,52(9):1094−1102.
    [2]
    窦冰然, 郭会明, 骆海燕, 等. 耐高糖面包酵母发酵工艺优化[J]. 食品工业科技,2016,37(18):208−212.
    [3]
    苏从毅, 王辛, 王四维, 等. 提高面包酵母耐冷冻性的研究进展[J]. 粮食与食品工业,2012,19(6):77−79. doi: 10.3969/j.issn.1672-5026.2012.06.030
    [4]
    张守文, 张智武. 不同酵母、不同发酵工艺对面包质量影响的比较研究[J]. 食品与发酵工业,1997,23(6):24−30, 35. doi: 10.3321/j.issn:0253-990X.1997.06.006
    [5]
    Berny J F, Hennebert G L. Viability and stability of yeast cells and filamentous fungus spores during freeze-drying: Effects of protectants and cooling rates[J]. Mycologia,1991,83(6):805−815. doi: 10.1080/00275514.1991.12026086
    [6]
    Morgan C A, Herman N, White P A, et al. Preservation of microorganisms by drying: A review[J]. Journal of Microbiological Methods,2006,66(2):183−193. doi: 10.1016/j.mimet.2006.02.017
    [7]
    Fonseca F, Passot S, Cunin O, et al. Collapse temperature of freeze-dried Lactobacillus bulgaricus suspensions and protective media[J]. Biotechnology Progress,2004,20(1):229−238.
    [8]
    Miyamoto Shinohara Y, Imaizumi T, Nakahara T, et al. Survival curves for microbial species stored by freeze-drying[J]. Cryobiology,2006,52(1):27−32. doi: 10.1016/j.cryobiol.2005.09.002
    [9]
    Huang L J, Lu Z X, Yuan Y J, et al. Optimization of a protective medium for enhancing the viability of freeze-dried Lactobacillus delbrueckii subsp. bulgaricus based on response surface methodology[J]. Journal of Industrial Microbiology & Biotechnology,2006,33(1):55−61.
    [10]
    Sinha R N, Shukla A K. Rehydration of freeze-dried cultures of lactic streptococci[J]. Journal of Food Science,1982,47(2):668−669. doi: 10.1111/j.1365-2621.1982.tb10148.x
    [11]
    Graciela Font de Valdez, Graciela Savoy de Glori, Aida Pesce de Ruiz Holgado, et al. Comparative study of the efficiency of some additives in protecting lactic acid bacteria against freeze-drying[J]. Cryobiology,1983,20(5):560−566. doi: 10.1016/0011-2240(83)90044-5
    [12]
    叶鹏, 王学东, 陈聪莉, 等. 抗冻剂对冷冻面团中酵母冷冻保护机理研究[J]. 中国粮油学报,2017,32(7):7−13. doi: 10.3969/j.issn.1003-0174.2017.07.002
    [13]
    Merico A, Ragni E, Galafassi S, et al. Generation of an evolved Saccharomyces cerevisiae strain with a high freeze tolerance and an improved ability to grow on glycerol[J]. Journal of Industrial Microbiology & Biotechnology,2011,38(8):1037−1344.
    [14]
    叶鹏, 王学东, 宋劲松, 等. 冷冻面团中酵母抗冻保护剂的优选[J]. 中国酿造,2015,34(8):72−76. doi: 10.11882/j.issn.0254-5071.2015.08.015
    [15]
    Siaterlis A, Deepika G, Charalampopoulos D. Effect of culture medium and cryoprotectants on the growth and survival of probiotic lactobacilli during freeze drying[J]. Letters in Applied Microbiology,2010,48(3):295−301.
    [16]
    龙艳珍, 吴菲菲, 李化强, 等. 真空冷冻干燥棘孢木霉菌株工艺优化研究[J]. 食品研究与开发,2019,40(2):144−148. doi: 10.3969/j.issn.1005-6521.2019.02.027
    [17]
    陈胜杰, 高翔, 袁戎宇. 真空冷冻干燥法制备益生菌粉的冻干保护剂配方优化[J/OL]. 食品工业科技: 1-15[2020-10-13]. http://kns.cnki.net/kcms/detail/11.1759.TS.20200615.1458.032.html.
    [18]
    张雅硕, 侯一超, 张紫薇, 等. 高活性副干酪乳杆菌冻干菌粉的制备及工艺优化[J]. 食品工业科技,2019,40(16):90−96.
    [19]
    于红, 彭珍, 黄涛, 等. 高活性益生菌发酵枸杞粉的真空冷冻干燥工艺优化[J]. 食品科学,2019,40(20):255−260. doi: 10.7506/spkx1002-6630-20181022-243
    [20]
    时桂芹, 任菲, 谢冰宗, 等. 高糖胁迫对酿酒酵母抗氧化活性及代谢的影响[J]. 食品工业科技,2019,40(20):94−100.
    [21]
    韩芸娇, 张媛媛, 张彬, 等. 空气等离子体技术对面包酵母的诱变选育研究[J]. 食品工业科技,2019,40(24):94−98.
    [22]
    张媛媛, 张彬. 苯酚-硫酸法与蒽酮-硫酸法测定绿茶茶多糖的比较研究[J]. 食品科学,2016,37(4):158−163. doi: 10.7506/spkx1002-6630-201604028
    [23]
    张惟杰. 糖复合物生化研究技术[M]. 杭州: 浙江大学出版社 1999.
    [24]
    崔震昆, 毕继才, 朱琳, 等. 不同酵母对无糖面包品质及风味成分的影响[J]. 食品工业科技,2017,38(21):90−99.
    [25]
    王旭增. 鲜食葡萄酿酒酵母的筛选及其活性干酵母制备工艺的研究[D]. 上海: 上海应用技术大学, 2018.
    [26]
    陈伟康, 罗雪梅, 王进, 等. 利用酿酒酵母ZM1-5制备活性干酵母的工艺条件优化试验[J]. 广西农学报,2017,32(5):4−10, 25. doi: 10.3969/j.issn.1003-4374.2017.05.002
    [27]
    高恩燕. 乳源马克思克鲁维酵母菌的筛选、增殖培养及其冻干菌粉制备的优化研究[D]. 镇江: 江苏大学, 2019.
    [28]
    徐丽萍. 嗜酸乳杆菌冻干菌粉保护剂选择的研究[J]. 食品工业科技,2007(5):119−122. doi: 10.3969/j.issn.1002-0306.2007.05.031
    [29]
    Saez A, Guzmán M, Molpeceres J, et al. Freeze-drying of polycaprolactone and poly (D, L-lactic-glycolic) nanoparticles induce minor particle size changes affecting the oral pharmacokinetics of loaded drugs[J]. European Journal of Pharmaceutics and Biopharmaceutics,2000,50(3):379−387. doi: 10.1016/S0939-6411(00)00125-9
    [30]
    Li H P, Lu M J, Guo H, et al. Protective effect of sucrose on the membrane properties of Lactobacillus casei Zhang subjected to freeze-drying[J]. Journal of Food Protection,2010,73(4):715−719. doi: 10.4315/0362-028X-73.4.715
    [31]
    Arakawa T, Prestrelski S J, Kenney W C, et al. Factors affecting short-term and long-term stabilities of proteins[J]. Advanced Drug Delivery Reviews,1993,10(1):1−28. doi: 10.1016/0169-409X(93)90003-M
    [32]
    牛春华, 苗欣宇, 牛红红, 等. 复合真空冷冻干燥益生菌发酵保护剂的研制[J]. 轻工科技,2019,35(12):20−23, 63.
    [33]
    邹小波, 杨志坤, 石吉勇, 等. 阿拉伯胶/白色玫瑰茄提取物复合涂膜对低温贮藏蓝莓保鲜效果的影响[J]. 食品科学,2019,40(7):204−211. doi: 10.7506/spkx1002-6630-20180305-032
    [34]
    张涛, 闫有利. 草鱼肠道拮抗性芽孢杆菌的冻干保护剂优化研究[J]. 水产科学,2018,37(2):244−248.
    [35]
    邓霞, 喻随, 陈思颖, 等. 响应面法优化超声波辅助提取英山云雾茶多糖的研究[J]. 中国食品添加剂,2020,31(8):102−107.
    [36]
    曹颖堃, 刘祖望, 仇凤梅, 等. 野木瓜总皂苷提取工艺优化及其美白活性组分筛选[J/OL]. 食品工业科技: 1-18[2020-10-13]. http://kns.cnki.net/kcms/detail/11.1759.ts.20200825.1356.016.html.
    [37]
    张爱爱, 黄文, 王益, 等. 超声辅助酶法提取香菇柄滋味物质工艺优化[J]. 食品工业科技,2020,41(12):133−138, 149.
    [38]
    谭海刚, 梅英杰, 关凤梅. 蒽酮-硫酸法测定酵母中海藻糖的含量[J]. 现代食品科技,2006,22(1):125−128.
    [39]
    Jagdale G B, Grewal P S, Salminen S O. Both heat-shock and cold-shock influence trehalose metabolism in an entomopathogenic nematode[J]. Journal of Parasitology,2005,91(5):988−994. doi: 10.1645/GE-504R.1
    [40]
    刘湄, 肖冬光, 代丽昕. 耐高糖面包酵母的研究[J]. 食品与发酵工业,2001(5):12−16. doi: 10.3321/j.issn:0253-990X.2001.05.004
  • Related Articles

    [1]GAO Xinyuan, LI Xiaolan, LI Siqing, LI Yue, QIN Nan, GUO Lili. Investigation of Active Fractions with Immune-enhancing Effects from the Stems and Leaves of Astragalus membranaceus and Its Chemical Components Identification[J]. Science and Technology of Food Industry. DOI: 10.13386/j.issn1002-0306.2024050117
    [2]YANG Zhao, YAO Yu-jing, HUANG Jia-jia, LIANG Zhi-li, CHEN Li-shan, CHEN Xiao-xian. Effects of Degree of Hydrolysis on the Properties of Oyster Hydrolysates[J]. Science and Technology of Food Industry, 2020, 41(18): 64-69. DOI: 10.13386/j.issn1002-0306.2020.18.010
    [3]XU Rong, YANG Pu-li, XU Tong, LI Hai-quan, YANG Yan. Effect of Morinda citrigolia fruit powder on strengthening immune function in mice[J]. Science and Technology of Food Industry, 2017, (24): 297-302. DOI: 10.13386/j.issn1002-0306.2017.24.058
    [4]ZHOU Feng-fang, CAI Bin-xin, WU Xin-rui, LUO Fen. Study on hydrolysis condition and molecular weight distribution of ACE inhibitory peptide derived from sea cucumber protein[J]. Science and Technology of Food Industry, 2017, (17): 163-167. DOI: 10.13386/j.issn1002-0306.2017.17.031
    [5]DANG Ya-li, YAO Chun-yan, ZHOU Ting-yi, YU Ying, LI Qing-qing, WU Qing-qi. Immunomodulatory effects of the enzymatic extract polypeptide from broccoli stems and leaves[J]. Science and Technology of Food Industry, 2017, (11): 352-355. DOI: 10.13386/j.issn1002-0306.2017.11.060
    [6]HU Li-li, WANG Bing-zhi, ZHONG Xi-yang, LUO Shui-zhong, JIANG Shao-tong, ZHENG Zhi. Effect of degree of hydrolysis on functional characteristics and antioxidant properties of wheat germ albumin hydrolysates[J]. Science and Technology of Food Industry, 2017, (08): 72-76. DOI: 10.13386/j.issn1002-0306.2017.08.006
    [7]MA Yan-fang, LI Yu-yang, LIU Jin-long, ZHENG Ming-gang, SUN Zhong-tao. Effect of degree of hydrolysis on emulsification,foaming capacity and antioxidant activity of Spirulina peptides[J]. Science and Technology of Food Industry, 2016, (04): 196-199. DOI: 10.13386/j.issn1002-0306.2016.04.031
    [8]YE Ting, KONG Xiang-zhen, SUN Ling-xiang, DING Xiu-zhen, HUA Yu-fei. Effects of protease and hydrolysis conditions on the properties of casein hydrolysates[J]. Science and Technology of Food Industry, 2015, (19): 181-185. DOI: 10.13386/j.issn1002-0306.2015.19.030
    [9]YANG Xiu-shi, ZHOU Xian-rong, WANG Li-jun, YU Xiao-na, SHI Zhen-xing, REN Gui-xing, DONG Chuan. Ultrafiltration separation and immune enhancing activity of American ginseng polysaccharide[J]. Science and Technology of Food Industry, 2014, (05): 49-52. DOI: 10.13386/j.issn1002-0306.2014.05.017
    [10]全溶活性营养W粉的水解研究[J]. Science and Technology of Food Industry, 1999, (05): 24-25. DOI: 10.13386/j.issn1002-0306.1999.05.007
  • Cited by

    Periodical cited type(8)

    1. 杜彦锋,邓晓东,赵志伟,魏玉颖,蒋璐遥,燕文柏,黄德莲,张薇薇. 我国石斛质量标准建立研究进展. 食品与发酵科技. 2025(01): 142-148 .
    2. 高敏,王晴,王欣兰,乔雪婷,赵惠茹. 低共熔溶剂提取黄酮类化合物的研究进展. 化学工程师. 2024(02): 55-58 .
    3. 周美,廖秀,李立郎,王瑜,安巧,罗鸣,王道平. 铁皮石斛酵素制备工艺及其免疫活性研究. 食品科技. 2024(01): 94-102 .
    4. 陈媛,陈苗苗,杨善彬,刘冰,李霄,蒲道俊. 低共熔溶剂优化芹菜中芹菜素提取工艺研究. 广东化工. 2024(05): 36-40 .
    5. 乔雪婷,李敏琦,许鑫玉,赵惠茹. 低共熔溶剂提取植物多糖的研究进展. 化学工程师. 2024(06): 60-63 .
    6. 王清,周舟,刘涛,李晓星,郑雪珂,桑大席. 基于低共熔溶剂的南瓜多糖超声辅助提取工艺及其动力学研究. 粮食与油脂. 2024(07): 70-75+132 .
    7. 禹晓梅,周忠云. 超声辅助低共熔溶剂提取韩信草总黄酮的工艺优化. 天然产物研究与开发. 2024(11): 1910-1919 .
    8. 吴均,杨碧文,赵珮,马婧秋,王晓静,黄越. 桑叶多糖提取工艺优化及体外抗氧化活性研究. 食品与机械. 2024(12): 170-177 .

    Other cited types(3)

Catalog

    Article Metrics

    Article views (495) PDF downloads (37) Cited by(11)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return