WANG Yanan, HUANG Kunlun, TONG Tao. Research Progress of Ectopic Olfactory Trace Amine-associated Receptors[J]. Science and Technology of Food Industry, 2021, 42(20): 14−22. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021050158.
Citation: WANG Yanan, HUANG Kunlun, TONG Tao. Research Progress of Ectopic Olfactory Trace Amine-associated Receptors[J]. Science and Technology of Food Industry, 2021, 42(20): 14−22. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021050158.

Research Progress of Ectopic Olfactory Trace Amine-associated Receptors

More Information
  • Received Date: May 19, 2021
  • Available Online: August 17, 2021
  • Trace amine-associated receptors (TAARs) are a class of G-protein-coupled receptors, and with the exception of TAAR1, the remaining TAARs, like the olfactory receptors, are expressed in the olfactory epithelium and function to sense odorants. In recent years, the high expression of TAARs has been found in non-olfactory tissues, suggesting that TAARs may have important ectopic physiological functions. Recent studies have confirmed that endogenous and exogenous specific trace amines regulate a variety of physiological functions in non-olfactory tissues by acting on different TAARs, indicating that TAARs have the potential to become a new diagnostic and therapeutic target. This paper systematically introduces the expression of ectopic olfactory TAARs, endogenous and exogenous ligands, biogenic amines in food, ectopic olfactory TAARs-mediated signal pathways, and physiological and pathological functions. On the one hand, it provides new ideas for the future drug target development, physiological and pathological research, on the other hand, it also provides new research ideas for the biological activity of biogenic amines in food.
  • [1]
    Roth B L, Irwin J J, Shoichet B K. Discovery of new GPCR ligands to illuminate new biology[J]. Nat Chem Biol,2017,13(11):1143−1151. doi: 10.1038/nchembio.2490
    [2]
    Wacker D, Stevens R C, Roth B L. How ligands illuminate GPCR molecular pharmacology[J]. Cell,2017,170(3):414−427. doi: 10.1016/j.cell.2017.07.009
    [3]
    Hutchings C J, Koglin M, Olson W C, et al. Opportunities for therapeutic antibodies directed at G-protein-coupled receptors[J]. Nature Reviews Drug discovery,2017,16(9):787−810.
    [4]
    Ihara S, Yoshikawa K, Touhara K. Chemosensory signals and their receptors in the olfactory neural system[J]. Neuroscience,2013,254:45−60. doi: 10.1016/j.neuroscience.2013.08.063
    [5]
    Feldmesser E, Olender T, Khen M, et al. Widespread ectopic expression of olfactory receptor genes[J]. BMC Genomics,2006,7:121. doi: 10.1186/1471-2164-7-121
    [6]
    Chen Z, Zhao H, Fu N, et al. The diversified function and potential therapy of ectopic olfactory receptors in non-olfactory tissues[J]. J Cell Physiol,2018,233(3):2104−2115. doi: 10.1002/jcp.25929
    [7]
    Tong T, Ryu S E, Min Y, et al. Olfactory receptor 10J5 responding to α-cedrene regulates hepatic steatosis via the cAMP-PKA pathway[J]. Scientific Reports,2017,7(1):9471. doi: 10.1038/s41598-017-10379-x
    [8]
    Tong T, Park J, Moon C, et al. Regulation of adipogenesis and thermogenesis through mouse olfactory receptor 23 stimulated by α-cedrene in 3T3-L1 cells[J]. Nutrients,2018,10(11):1781. doi: 10.3390/nu10111781
    [9]
    Liberles S D, Buck L B. A second class of chemosensory receptors in the olfactory epithelium[J]. Nature,2006,442(7103):645−650. doi: 10.1038/nature05066
    [10]
    Johnson M A, Tsai L, Roy D S, et al. Neurons expressing trace amine-associated receptors project to discrete glomeruli and constitute an olfactory subsystem[J]. Proc Natl Acad Sci USA,2012,109(33):13410−13415. doi: 10.1073/pnas.1206724109
    [11]
    Zhang J, Pacifico R, Cawley D, et al. Ultrasensitive detection of amines by a trace amine-associated receptor[J]. J Neurosci,2013,33(7):3228−3239. doi: 10.1523/JNEUROSCI.4299-12.2013
    [12]
    Borowsky B, Adham N, Jones K A, et al. Trace amines: Identification of a family of mammalian G protein-coupled receptors[J]. Proc Natl Acad Sci USA,2001,98(16):8966−8971. doi: 10.1073/pnas.151105198
    [13]
    Bunzow J R, Sonders M S, Arttamangkul S, et al. Amphetamine, 3, 4-methylenedioxymethamphetamine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor[J]. Mol Pharmacol,2001,60(6):1181−1188. doi: 10.1124/mol.60.6.1181
    [14]
    Cripps M J, Bagnati M, Jones T A, et al. Identification of a subset of trace amine-associated receptors and ligands as potential modulators of insulin secretion[J]. Biochem Pharmacol,2020,171:113685. doi: 10.1016/j.bcp.2019.113685
    [15]
    Panas M W, Xie Z, Panas H N, et al. Trace amine associated receptor 1 signaling in activated lymphocytes[J]. J Neuroimmune Pharmacol,2012,7(4):866−876. doi: 10.1007/s11481-011-9321-4
    [16]
    John J, Kukshal P, Bhatia T, et al. Possible role of rare variants in trace amine associated receptor 1 in schizophrenia[J]. Schizophr Res,2017,189:190−195. doi: 10.1016/j.schres.2017.02.020
    [17]
    Hussain A, Saraiva L R, Korsching S I. Positive darwinian selection and the birth of an olfactory receptor clade in teleosts[J]. Proc Natl Acad Sci USA,2009,106(11):4313−4318. doi: 10.1073/pnas.0803229106
    [18]
    Lindemann L, Ebeling M, Kratochwil N A, et al. Trace amine-associated receptors form structurally and functionally distinct subfamilies of novel G protein-coupled receptors[J]. Genomics,2005,85(3):372−385. doi: 10.1016/j.ygeno.2004.11.010
    [19]
    Berry M D, Gainetdinov R R, Hoener M C, et al. Pharmacology of human trace amine-associated receptors: Therapeutic opportunities and challenges[J]. Pharmacol Ther,2017,180:161−180. doi: 10.1016/j.pharmthera.2017.07.002
    [20]
    Duan J, Martinez M, Sanders A R, et al. Polymorphisms in the trace amine receptor 4 (TRAR4) gene on chromosome 6q23.2 are associated with susceptibility to schizophrenia[J]. Am J Hum Genet,2004,75(4):624−638. doi: 10.1086/424887
    [21]
    Chiellini G, Erba P, Carnicelli V, et al. Distribution of exogenous [125I]-3-iodothyronamine in mouse in vivo: Relationship with trace amine-associated receptors[J]. J Endocrinol,2012,213(3):223−230. doi: 10.1530/JOE-12-0055
    [22]
    Ito J, Ito M, Nambu H, et al. Anatomical and histological profiling of orphan G-protein-coupled receptor expression in gastrointestinal tract of C57BL/6J mice[J]. Cell Tissue Res,2009,338(2):257−269. doi: 10.1007/s00441-009-0859-x
    [23]
    Babusyte A, Kotthoff M, Fiedler J, et al. Biogenic amines activate blood leukocytes via trace amine-associated receptors TAAR1 and TAAR2[J]. J Leukoc Biol,2013,93(3):387−394. doi: 10.1189/jlb.0912433
    [24]
    Dinter J, Mühlhaus J, Wienchol C L, et al. Inverse agonistic action of 3-iodothyronamine at the human trace amine-associated receptor 5[J]. PLoS One,2015,10(2):e0117774. doi: 10.1371/journal.pone.0117774
    [25]
    Gozal E A, O'Neill B E, Sawchuk M A, et al. Anatomical and functional evidence for trace amines as unique modulators of locomotor function in the mammalian spinal cord[J]. Frontiers in Neural Circuits,2014,8:134.
    [26]
    Vanti W B, Muglia P, Nguyen T, et al. Discovery of a null mutation in a human trace amine receptor gene[J]. Genomics,2003,82(5):531−536. doi: 10.1016/S0888-7543(03)00173-3
    [27]
    Regard J B, Sato I T, Coughlin S R. Anatomical profiling of G protein-coupled receptor expression[J]. Cell,2008,135(3):561−571. doi: 10.1016/j.cell.2008.08.040
    [28]
    Erspamer V. Active substances of the posterior salivary glands of octopus and the hypobranchial glands of the purpur snail[J]. Arzneimittelforschung,1952,2(6):253−258.
    [29]
    Ghiretti F. Enteramine, octopamine, and tyramine in external and internal secretion of the posterior salivary gland in octopus[J]. Arch Sci Biol (Bologna),1953,37(5):435−441.
    [30]
    Philips S R. Amphetamine, p-hydroxyamphetamine and beta-phenethylamine in mouse brain and urine after (-)- and (+)-deprenyl administration[J]. J Pharm Pharmacol,1981,33(11):739−741.
    [31]
    Durden D A, Philips S R, Boulton A A. Identification and distribution of beta-phenylethylamine in the rat[J]. Can J Biochem,1973,51(7):995−1002. doi: 10.1139/o73-129
    [32]
    Paterson I A, Juorio A V, Boulton A A. 2-Phenylethylamine: A modulator of catecholamine transmission in the mammalian central nervous system?[J]. J Neurochem,1990,55(6):1827−1837. doi: 10.1111/j.1471-4159.1990.tb05764.x
    [33]
    Jones R S. Tryptamine: A neuromodulator or neurotransmitter in mammalian brain?[J]. Prog Neurobiol,1982,19(1-2):117−139. doi: 10.1016/0301-0082(82)90023-5
    [34]
    Ibrahim K E, Couch M W, Williams C M, et al. Quantitative measurement of octopamines and synephrines in urine using capillary column gas chromatography negative ion chemical ionization mass spectrometry[J]. Anal Chem,1984,56(9):1695−1699. doi: 10.1021/ac00273a037
    [35]
    Wang R, Wan L, Li Q, et al. Chemiluminescence of synephrine based on the cerium(IV)-rhodamine B system[J]. Luminescence,2007,22(2):140−146. doi: 10.1002/bio.937
    [36]
    Scanlan T S, Suchland K L, Hart M E, et al. 3-Iodothyronamine is an endogenous and rapid-acting derivative of thyroid hormone[J]. Nat Med,2004,10(6):638−642. doi: 10.1038/nm1051
    [37]
    Chiellini G, Frascarelli S, Ghelardoni S, et al. Cardiac effects of 3-iodothyronamine: A new aminergic system modulating cardiac function[J]. FASEB J,2007,21(7):1597−1608. doi: 10.1096/fj.06-7474com
    [38]
    Khan M Z, Nawaz W. The emerging roles of human trace amines and human trace amine-associated receptors (hTAARs) in central nervous system[J]. Biomed Pharmacother,2016,83:439−449. doi: 10.1016/j.biopha.2016.07.002
    [39]
    Broadley K J. The vascular effects of trace amines and amphetamines[J]. Pharmacol Ther,2010,125(3):363−375. doi: 10.1016/j.pharmthera.2009.11.005
    [40]
    Da Silveira Agostini-Costa T. Bioactive compounds and health benefits of pereskioideae and cactoideae: A review[J]. Food Chem,2020,327:126961. doi: 10.1016/j.foodchem.2020.126961
    [41]
    Reynolds G P, Gray D O. Gas chromatographic detection of N-methyl-2-phenylethylamine: A new component of human urine[J]. J Chromatogr,1978,145(1):137−140. doi: 10.1016/S0378-4347(00)81676-X
    [42]
    Ohta H, Takebe Y, Murakami Y, et al. Tyramine and β-phenylethylamine, from fermented food products, as agonists for the human trace amine-associated receptor 1 (hTAAR1) in the stomach[J]. Biosci Biotechnol Biochem,2017,81(5):1002−1006. doi: 10.1080/09168451.2016.1274640
    [43]
    Wolinsky T D, Swanson C J, Smith K E, et al. The trace amine 1 receptor knockout mouse: an animal model with relevance to schizophrenia[J]. Genes, Brain, and Behavior,2007,6(7):628−639. doi: 10.1111/j.1601-183X.2006.00292.x
    [44]
    Moore C F, Valentina S, Pietro C. Trace amine-associated receptor 1 (TAAR1): A new drug target for psychiatry?[J]. Neurosci Biobehav Rev,2020,120(1):537−541.
    [45]
    Bly M. Examination of the trace amine-associated receptor 2 (TAAR2)[J]. Schizophr Res,2005,80(2−3):367−368. doi: 10.1016/j.schres.2005.06.003
    [46]
    Dewan A. Olfactory signaling via trace amine-associated receptors[J]. Cell Tissue Res,2020,383(1):395−407.
    [47]
    Rutigliano G, Zucchi R. Molecular variants in human trace amine-associated receptors and their implications in mental and metabolic disorders[J]. Cell Mol Neurobiol,2020,40(2):239−255. doi: 10.1007/s10571-019-00743-y
    [48]
    Li Q, Liberles S D. Odor sensing by trace amine-associated receptors[J]. Chemosensory Transduction,2016:67−80.
    [49]
    Espinoza S, Sukhanov I, Efimova E V, et al. Trace amine-associated receptor 5 provides olfactory input into limbic brain areas and modulates emotional behaviors and serotonin transmission[J]. Front Mol Neurosci,2020,13:18. doi: 10.3389/fnmol.2020.00018
    [50]
    Belov D R, Efimova E V, Fesenko Z S, et al. Putative trace-amine associated receptor 5 (TAAR5) agonist α-NETA increases electrocorticogram gamma-rhythm in freely moving rats[J]. Cell Mol Neurobiol,2020,40(2):203−213. doi: 10.1007/s10571-019-00716-1
    [51]
    Pae C U, Yu H S, Amann D, et al. Association of the trace amine associated receptor 6 (TAAR6) gene with schizophrenia and bipolar disorder in a Korean case control sample[J]. J Psychiatr Res,2008,42(1):35−40. doi: 10.1016/j.jpsychires.2006.09.011
    [52]
    Huang J Y, Tian Y, Wang H J, et al. Functional genomic analyses identify pathways dysregulated in animal model of autism[J]. CNS Neurosci Ther,2016,22(10):845−853. doi: 10.1111/cns.12582
    [53]
    Mühlhaus J, Dinter J, Nürnberg D, et al. Analysis of human TAAR8 and murine Taar8b mediated signaling pathways and expression profile[J]. Int J Mol Sci,2014,15(11):20638−20655. doi: 10.3390/ijms151120638
    [54]
    Tarján V, Jánossy G. The role of biogenic amines in foods[J]. Nahrung,1978,22(3):285−289. doi: 10.1002/food.19780220304
    [55]
    Andersen G, Marcinek P, Sulzinger N, et al. Food sources and biomolecular targets of tyramine[J]. Nutr Rev,2019,77(2):107−115. doi: 10.1093/nutrit/nuy036
    [56]
    Kaufmann A, Maden K. Easy and fast method for the determination of biogenic amines in fish and fish products with liquid chromatography coupled to orbitrap tandem mass spectrometry[J]. J AOAC Int,2018,101(2):336−341. doi: 10.5740/jaoacint.17-0407
    [57]
    Ernest Frederick Gale. The production of amines by bacteria: The production of tyramine by Streptococcus faecalis[J]. Biochem J,1940,34(6):846. doi: 10.1042/bj0340846
    [58]
    Bover-Cid S, Holzapfel W H. Improved screening procedure for biogenic amine production by lactic acid bacteria[J]. Int J Food Microbiol,1999,53(1):33−41. doi: 10.1016/S0168-1605(99)00152-X
    [59]
    Moreno-Arribas V, Torlois S, Joyeux A, et al. Isolation, properties and behaviour of tyramine-producing lactic acid bacteria from wine[J]. J Appl Microbiol,2000,88(4):584−593. doi: 10.1046/j.1365-2672.2000.00997.x
    [60]
    Ziegleder G, Stojacic E, Stumpf B. Occurrence of beta-phenylethylamine and its derivatives in cocoa and cocoa products[J]. Z Lebensm Unters Forsch,1992,195(3):235−238. doi: 10.1007/BF01202801
    [61]
    Pastore P, Favaro G, Badocco D, et al. Determination of biogenic amines in chocolate by ion chromatographic separation and pulsed integrated amperometric detection with implemented wave-form at Au disposable electrode[J]. J Chromatogr A,2005,1098(1-2):111−115. doi: 10.1016/j.chroma.2005.08.065
    [62]
    Hurst W J, Toomey P B. High-performance liquid chromatographic determination of four biogenic amines in chocolate[J]. Analyst,1981,106(1261):394−402. doi: 10.1039/an9810600394
    [63]
    Bonetta S, Bonetta S, Carraro E, et al. Detection of biogenic amine producer bacteria in a typical Italian goat cheese[J]. J Food Prot,2008,71(1):205−209. doi: 10.4315/0362-028X-71.1.205
    [64]
    Landete J M, Ferrer S, Polo L, et al. Biogenic amines in wines from three Spanish regions[J]. J Agric Food Chem,2005,53(4):1119−1124. doi: 10.1021/jf049340k
    [65]
    García-Villar N, Saurina J, Hernández-Cassou S. High-performance liquid chromatographic determination of biogenic amines in wines with an experimental design optimization procedure[J]. Anal Chim Acta,2006,575(1):97−105. doi: 10.1016/j.aca.2006.05.074
    [66]
    戴莹, 宋海勇, 吴曦, 等. 肉制品中生物胺的形成、检测和控制研究进展[J]. 肉类研究,2020,34(11):89−97. [Dai Y, Song H Y, Wu X, et al. Recent progress in the formation, detection and control of biogenic amines in meat[J]. Meat Research,2020,34(11):89−97.
    [67]
    Fraqueza M J, Alfaia C M, Barreto A S. Biogenic amine formation in turkey meat under modified atmosphere packaging with extended shelf life: Index of freshness[J]. Poult Sci,2012,91(6):1465−1472. doi: 10.3382/ps.2011-01577
    [68]
    杨姗姗, 王晓雯, 林翠苹. 水产品中生物胺的研究进展[J]. 青岛农业大学学报(自然科学版),2021,38(1):65−73. [Yang S S, Wang X W, Lin C P. Research progress of biogenic aminie in aquatic produts[J]. Journal of Qingdao Agricultural University (Natural Science),2021,38(1):65−73.
    [69]
    郭大钧, 万建荣, 刘俊荣. 用三甲胺特效电极对海产鱼虾作质量评定[J]. 水产学报,1989(3):248−253. [Guo D J, Wan J R, Liu J R. Use of a TMA-specific electrode in determining the quality of marine fish and shrimp[J]. Journal of Fisheries of China,1989(3):248−253.
    [70]
    胡彩虹, 许梓荣. 气相色谱法测定猪肉、鱼和虾中三甲胺的含量[J]. 食品科学,2001(5):62−64. [Hu C H, Xu Z R. Determi-nation of trimethylamine in pork, fish and shrimp by gas chromatography[J]. Food Science,2001(5):62−64. doi: 10.3321/j.issn:1002-6630.2001.05.020
    [71]
    周明珠, 熊光权, 乔宇, 等. 鮰鱼冷藏过程中气味和新鲜度的变化及相关性[J]. 肉类研究,2020,34(3):68−74. [Zhou M Z, Xiong G Q, Qiao Y. Changes and correlation of odor and freshness of channel catfish during cold storage[J]. Meat Research,2020,34(3):68−74.
    [72]
    李梅, 汪冬冬, 唐垚, 等. 中国市售酱腌菜中生物胺含量分析[J]. 食品与发酵工业,2020:1−10. [Li M, Wang D D, Tang Y, et al. Analysis of the biogenic amines content in differently processed pickles from the Chinese market[J]. Food and Fermentation Industries,2020:1−10.
    [73]
    Provensi G, Passani M B, Costa A, et al. Neuronal histamine and the memory of emotionally salient events[J]. Br J Pharmacol,2020,177(3):557−569. doi: 10.1111/bph.14476
    [74]
    Worm J, Falkenberg K, Olesen J. Histamine and migraine revisited: Mechanisms and possible drug targets[J]. J Headache Pain,2019,20(1):30. doi: 10.1186/s10194-019-0984-1
    [75]
    Zare D, Muhammad K, Bejo M H, et al. Determination of urocanic acid, a compound implicated in histamine toxicity, and assessment of biogenic amines relative to urocanic acid content in selected fish and fish products[J]. J Food Compost Anal,2015,37:95−103. doi: 10.1016/j.jfca.2014.06.014
    [76]
    Mah J-H, Han H-K, Oh Y-J, et al. Biogenic amines in Jeotkals, Korean salted and fermented fish products[J]. Food Chem,2002,79(2):239−243. doi: 10.1016/S0308-8146(02)00150-4
    [77]
    Dieris M, Ahuja G, Krishna V, et al. A single identified glomerulus in the zebrafish olfactory bulb carries the high-affinity response to death-associated odor cadaverine[J]. Scientific Reports,2017,7:40892. doi: 10.1038/srep40892
    [78]
    Liberles SD. Trace amine-associated receptors: Ligands, neural circuits, and behaviors[J]. Curr Opin Neurobiol,2015,34:1−7.
    [79]
    Scott A M, Zhang Z, Jia L, et al. Spermine in semen of male sea lamprey acts as a sex pheromone[J]. PLoS Biol,2019,17(7):e3000332. doi: 10.1371/journal.pbio.3000332
    [80]
    Costa D J, Martínez A M, Ribeiro W F, et al. Determination of tryptamine in foods using square wave adsorptive stripping voltammetry[J]. Talanta,2016,154:134−140. doi: 10.1016/j.talanta.2016.03.063
    [81]
    Reisert J, Zhao H. Perspectives on: Information and coding in mammalian sensory physiology: Response kinetics of olfactory receptor neurons and the implications in olfactory coding[J]. J Gen Physiol,2011,138(3):303−310. doi: 10.1085/jgp.201110645
    [82]
    Efimova E V, Kozlova A A, Razenkova V, et al. Increased dopamine transmission and adult neurogenesis in trace amine-associated receptor 5 (TAAR5) knockout mice[J]. Neuropharmacology,2021,182:108373. doi: 10.1016/j.neuropharm.2020.108373
    [83]
    Wasik A M, Millan M J, Scanlan T, et al. Evidence for functional trace amine associated receptor-1 in normal and malignant B cells[J]. Leuk Res,2012,36(2):245−249. doi: 10.1016/j.leukres.2011.10.002
    [84]
    Nelson D A, Tolbert M D, Singh S J, et al. Expression of neuronal trace amine-associated receptor (Taar) mRNAs in leukocytes[J]. J Neuroimmunol,2007,192(1−2):21−30. doi: 10.1016/j.jneuroim.2007.08.006
    [85]
    Mühlhaus J, Dinter J, Jyrch S, et al. Investigation of naturally occurring single-nucleotide variants in human TAAR1[J]. Front Pharmacol,2017,8:807. doi: 10.3389/fphar.2017.00807
    [86]
    Raab S, Wang H, Uhles S, et al. Incretin-like effects of small molecule trace amine-associated receptor 1 agonists[J]. Molecular Metabolism,2016,5(1):47−56. doi: 10.1016/j.molmet.2015.09.015
    [87]
    A R-H, Cabrera-Becerra S, Vera-Juárez G, et al. Diabetic nephropathy produces alterations in the tissue expression profile of the orphan receptors GPR149, GPR153, GPR176, TAAR3, TAAR5 and TAAR9 in wistar rats[J]. Nucleosides, Nucleotides & Nucleic Acids,2020,39(8):1150−1161.
    [88]
    Frascarelli S, Ghelardoni S, Chiellini G, et al. Cardiac effects of trace amines: Pharmacological characterization of trace amine-associated receptors[J]. Eur J Pharmacol,2008,587(1−3):231−236. doi: 10.1016/j.ejphar.2008.03.055
  • Related Articles

    [1]WANG Xueli, LEI Chao, SHEN Kaiwei, CHENG Yanwei, LIU Xueting, LI Zhen, YU Lu. Degradation Performance of Biogenic Amines in Fermented Food by Lactobacillus casei FV006[J]. Science and Technology of Food Industry, 2023, 44(14): 137-144. DOI: 10.13386/j.issn1002-0306.2022090136
    [2]WANG Xiaojie, MENG Fanqiang, ZHOU Libang, LU Zhaoxin. Optimization of Brevibacillin Fermentation Medium with Brevibacillus laterosporus by Response Surface Methodology[J]. Science and Technology of Food Industry, 2022, 43(4): 153-160. DOI: 10.13386/j.issn1002-0306.2021070335
    [3]WU Jun-lin, BAI Jian-ling, MO Shu-ping, ZHANG Ju-mei. Optimization of fermentation medium of lactic acid bacteria cultured in high concentration[J]. Science and Technology of Food Industry, 2018, 39(9): 96-101. DOI: 10.13386/j.issn1002-0306.2018.09.017
    [4]ZHU Yun-peng, TIAN You-ming, HONG Qing-lin, NI Hui, XIAO An-feng, YANG Qiu-ming. Optimization of medium composition and culture conditions for Aspergillus tubingensis production[J]. Science and Technology of Food Industry, 2018, 39(3): 82-86,91. DOI: 10.13386/j.issn1002-0306.2018.03.017
    [5]HU Yan-xin, LIU Xiao-li, WANG Ying, DONG Ming-sheng, ZHOU Jian-zhong. Optimization on fermentation conditions and medium for bacteriocin produced by Lactobacillus farcimini[J]. Science and Technology of Food Industry, 2016, (10): 255-259. DOI: 10.13386/j.issn1002-0306.2016.10.043
    [6]WANG Can, ZHANG Wei, ZHANG Ming-liang, HUANG Jian-zhong. Optimization of Schizochytrium sp. FJU-512 fermentation medium producing DHA[J]. Science and Technology of Food Industry, 2015, (04): 171-174. DOI: 10.13386/j.issn1002-0306.2015.04.029
    [7]DONG Ting, ZHOU Zhi-jiang, HAN Ye. Optimization of fermentation medium and fermentation conditions for Pediococcus acidilactici PA003[J]. Science and Technology of Food Industry, 2014, (14): 192-196. DOI: 10.13386/j.issn1002-0306.2014.14.034
    [8]LIU Ying-ying, LIU Ying, ZHANG Guang, SUN Bing-yu, WANG Jin-feng, SHI Yan-guo. Optimum fermentation medium of high-yielding neutral protease of mucor[J]. Science and Technology of Food Industry, 2014, (06): 166-170. DOI: 10.13386/j.issn1002-0306.2014.06.032
    [9]AN Jun-ying, LIU Ying, ZHU Wen-juan, HU Xue-qiong, YE Li-zhen. Optimization of fermentation medium of Bacillus amyloliquefaciens ZJHD-06 by response surface methodology[J]. Science and Technology of Food Industry, 2014, (01): 191-195. DOI: 10.13386/j.issn1002-0306.2014.01.031
    [10]Optimization of solid state fermentation medium to produce β-galactosidase by Aspergillus oryzae[J]. Science and Technology of Food Industry, 2013, (08): 232-235. DOI: 10.13386/j.issn1002-0306.2013.08.033
  • Cited by

    Periodical cited type(1)

    1. 谢雨佳,彭小杰,李明逸,李政,王娟,肖珊珊,张少辉. 乳清蛋白源抗真菌多肽的制备工艺优化. 中国乳品工业. 2024(06): 59-64 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (444) PDF downloads (40) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return