Citation: | WANG Yanan, HUANG Kunlun, TONG Tao. Research Progress of Ectopic Olfactory Trace Amine-associated Receptors[J]. Science and Technology of Food Industry, 2021, 42(20): 14−22. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021050158. |
[1] |
Roth B L, Irwin J J, Shoichet B K. Discovery of new GPCR ligands to illuminate new biology[J]. Nat Chem Biol,2017,13(11):1143−1151. doi: 10.1038/nchembio.2490
|
[2] |
Wacker D, Stevens R C, Roth B L. How ligands illuminate GPCR molecular pharmacology[J]. Cell,2017,170(3):414−427. doi: 10.1016/j.cell.2017.07.009
|
[3] |
Hutchings C J, Koglin M, Olson W C, et al. Opportunities for therapeutic antibodies directed at G-protein-coupled receptors[J]. Nature Reviews Drug discovery,2017,16(9):787−810.
|
[4] |
Ihara S, Yoshikawa K, Touhara K. Chemosensory signals and their receptors in the olfactory neural system[J]. Neuroscience,2013,254:45−60. doi: 10.1016/j.neuroscience.2013.08.063
|
[5] |
Feldmesser E, Olender T, Khen M, et al. Widespread ectopic expression of olfactory receptor genes[J]. BMC Genomics,2006,7:121. doi: 10.1186/1471-2164-7-121
|
[6] |
Chen Z, Zhao H, Fu N, et al. The diversified function and potential therapy of ectopic olfactory receptors in non-olfactory tissues[J]. J Cell Physiol,2018,233(3):2104−2115. doi: 10.1002/jcp.25929
|
[7] |
Tong T, Ryu S E, Min Y, et al. Olfactory receptor 10J5 responding to α-cedrene regulates hepatic steatosis via the cAMP-PKA pathway[J]. Scientific Reports,2017,7(1):9471. doi: 10.1038/s41598-017-10379-x
|
[8] |
Tong T, Park J, Moon C, et al. Regulation of adipogenesis and thermogenesis through mouse olfactory receptor 23 stimulated by α-cedrene in 3T3-L1 cells[J]. Nutrients,2018,10(11):1781. doi: 10.3390/nu10111781
|
[9] |
Liberles S D, Buck L B. A second class of chemosensory receptors in the olfactory epithelium[J]. Nature,2006,442(7103):645−650. doi: 10.1038/nature05066
|
[10] |
Johnson M A, Tsai L, Roy D S, et al. Neurons expressing trace amine-associated receptors project to discrete glomeruli and constitute an olfactory subsystem[J]. Proc Natl Acad Sci USA,2012,109(33):13410−13415. doi: 10.1073/pnas.1206724109
|
[11] |
Zhang J, Pacifico R, Cawley D, et al. Ultrasensitive detection of amines by a trace amine-associated receptor[J]. J Neurosci,2013,33(7):3228−3239. doi: 10.1523/JNEUROSCI.4299-12.2013
|
[12] |
Borowsky B, Adham N, Jones K A, et al. Trace amines: Identification of a family of mammalian G protein-coupled receptors[J]. Proc Natl Acad Sci USA,2001,98(16):8966−8971. doi: 10.1073/pnas.151105198
|
[13] |
Bunzow J R, Sonders M S, Arttamangkul S, et al. Amphetamine, 3, 4-methylenedioxymethamphetamine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor[J]. Mol Pharmacol,2001,60(6):1181−1188. doi: 10.1124/mol.60.6.1181
|
[14] |
Cripps M J, Bagnati M, Jones T A, et al. Identification of a subset of trace amine-associated receptors and ligands as potential modulators of insulin secretion[J]. Biochem Pharmacol,2020,171:113685. doi: 10.1016/j.bcp.2019.113685
|
[15] |
Panas M W, Xie Z, Panas H N, et al. Trace amine associated receptor 1 signaling in activated lymphocytes[J]. J Neuroimmune Pharmacol,2012,7(4):866−876. doi: 10.1007/s11481-011-9321-4
|
[16] |
John J, Kukshal P, Bhatia T, et al. Possible role of rare variants in trace amine associated receptor 1 in schizophrenia[J]. Schizophr Res,2017,189:190−195. doi: 10.1016/j.schres.2017.02.020
|
[17] |
Hussain A, Saraiva L R, Korsching S I. Positive darwinian selection and the birth of an olfactory receptor clade in teleosts[J]. Proc Natl Acad Sci USA,2009,106(11):4313−4318. doi: 10.1073/pnas.0803229106
|
[18] |
Lindemann L, Ebeling M, Kratochwil N A, et al. Trace amine-associated receptors form structurally and functionally distinct subfamilies of novel G protein-coupled receptors[J]. Genomics,2005,85(3):372−385. doi: 10.1016/j.ygeno.2004.11.010
|
[19] |
Berry M D, Gainetdinov R R, Hoener M C, et al. Pharmacology of human trace amine-associated receptors: Therapeutic opportunities and challenges[J]. Pharmacol Ther,2017,180:161−180. doi: 10.1016/j.pharmthera.2017.07.002
|
[20] |
Duan J, Martinez M, Sanders A R, et al. Polymorphisms in the trace amine receptor 4 (TRAR4) gene on chromosome 6q23.2 are associated with susceptibility to schizophrenia[J]. Am J Hum Genet,2004,75(4):624−638. doi: 10.1086/424887
|
[21] |
Chiellini G, Erba P, Carnicelli V, et al. Distribution of exogenous [125I]-3-iodothyronamine in mouse in vivo: Relationship with trace amine-associated receptors[J]. J Endocrinol,2012,213(3):223−230. doi: 10.1530/JOE-12-0055
|
[22] |
Ito J, Ito M, Nambu H, et al. Anatomical and histological profiling of orphan G-protein-coupled receptor expression in gastrointestinal tract of C57BL/6J mice[J]. Cell Tissue Res,2009,338(2):257−269. doi: 10.1007/s00441-009-0859-x
|
[23] |
Babusyte A, Kotthoff M, Fiedler J, et al. Biogenic amines activate blood leukocytes via trace amine-associated receptors TAAR1 and TAAR2[J]. J Leukoc Biol,2013,93(3):387−394. doi: 10.1189/jlb.0912433
|
[24] |
Dinter J, Mühlhaus J, Wienchol C L, et al. Inverse agonistic action of 3-iodothyronamine at the human trace amine-associated receptor 5[J]. PLoS One,2015,10(2):e0117774. doi: 10.1371/journal.pone.0117774
|
[25] |
Gozal E A, O'Neill B E, Sawchuk M A, et al. Anatomical and functional evidence for trace amines as unique modulators of locomotor function in the mammalian spinal cord[J]. Frontiers in Neural Circuits,2014,8:134.
|
[26] |
Vanti W B, Muglia P, Nguyen T, et al. Discovery of a null mutation in a human trace amine receptor gene[J]. Genomics,2003,82(5):531−536. doi: 10.1016/S0888-7543(03)00173-3
|
[27] |
Regard J B, Sato I T, Coughlin S R. Anatomical profiling of G protein-coupled receptor expression[J]. Cell,2008,135(3):561−571. doi: 10.1016/j.cell.2008.08.040
|
[28] |
Erspamer V. Active substances of the posterior salivary glands of octopus and the hypobranchial glands of the purpur snail[J]. Arzneimittelforschung,1952,2(6):253−258.
|
[29] |
Ghiretti F. Enteramine, octopamine, and tyramine in external and internal secretion of the posterior salivary gland in octopus[J]. Arch Sci Biol (Bologna),1953,37(5):435−441.
|
[30] |
Philips S R. Amphetamine, p-hydroxyamphetamine and beta-phenethylamine in mouse brain and urine after (-)- and (+)-deprenyl administration[J]. J Pharm Pharmacol,1981,33(11):739−741.
|
[31] |
Durden D A, Philips S R, Boulton A A. Identification and distribution of beta-phenylethylamine in the rat[J]. Can J Biochem,1973,51(7):995−1002. doi: 10.1139/o73-129
|
[32] |
Paterson I A, Juorio A V, Boulton A A. 2-Phenylethylamine: A modulator of catecholamine transmission in the mammalian central nervous system?[J]. J Neurochem,1990,55(6):1827−1837. doi: 10.1111/j.1471-4159.1990.tb05764.x
|
[33] |
Jones R S. Tryptamine: A neuromodulator or neurotransmitter in mammalian brain?[J]. Prog Neurobiol,1982,19(1-2):117−139. doi: 10.1016/0301-0082(82)90023-5
|
[34] |
Ibrahim K E, Couch M W, Williams C M, et al. Quantitative measurement of octopamines and synephrines in urine using capillary column gas chromatography negative ion chemical ionization mass spectrometry[J]. Anal Chem,1984,56(9):1695−1699. doi: 10.1021/ac00273a037
|
[35] |
Wang R, Wan L, Li Q, et al. Chemiluminescence of synephrine based on the cerium(IV)-rhodamine B system[J]. Luminescence,2007,22(2):140−146. doi: 10.1002/bio.937
|
[36] |
Scanlan T S, Suchland K L, Hart M E, et al. 3-Iodothyronamine is an endogenous and rapid-acting derivative of thyroid hormone[J]. Nat Med,2004,10(6):638−642. doi: 10.1038/nm1051
|
[37] |
Chiellini G, Frascarelli S, Ghelardoni S, et al. Cardiac effects of 3-iodothyronamine: A new aminergic system modulating cardiac function[J]. FASEB J,2007,21(7):1597−1608. doi: 10.1096/fj.06-7474com
|
[38] |
Khan M Z, Nawaz W. The emerging roles of human trace amines and human trace amine-associated receptors (hTAARs) in central nervous system[J]. Biomed Pharmacother,2016,83:439−449. doi: 10.1016/j.biopha.2016.07.002
|
[39] |
Broadley K J. The vascular effects of trace amines and amphetamines[J]. Pharmacol Ther,2010,125(3):363−375. doi: 10.1016/j.pharmthera.2009.11.005
|
[40] |
Da Silveira Agostini-Costa T. Bioactive compounds and health benefits of pereskioideae and cactoideae: A review[J]. Food Chem,2020,327:126961. doi: 10.1016/j.foodchem.2020.126961
|
[41] |
Reynolds G P, Gray D O. Gas chromatographic detection of N-methyl-2-phenylethylamine: A new component of human urine[J]. J Chromatogr,1978,145(1):137−140. doi: 10.1016/S0378-4347(00)81676-X
|
[42] |
Ohta H, Takebe Y, Murakami Y, et al. Tyramine and β-phenylethylamine, from fermented food products, as agonists for the human trace amine-associated receptor 1 (hTAAR1) in the stomach[J]. Biosci Biotechnol Biochem,2017,81(5):1002−1006. doi: 10.1080/09168451.2016.1274640
|
[43] |
Wolinsky T D, Swanson C J, Smith K E, et al. The trace amine 1 receptor knockout mouse: an animal model with relevance to schizophrenia[J]. Genes, Brain, and Behavior,2007,6(7):628−639. doi: 10.1111/j.1601-183X.2006.00292.x
|
[44] |
Moore C F, Valentina S, Pietro C. Trace amine-associated receptor 1 (TAAR1): A new drug target for psychiatry?[J]. Neurosci Biobehav Rev,2020,120(1):537−541.
|
[45] |
Bly M. Examination of the trace amine-associated receptor 2 (TAAR2)[J]. Schizophr Res,2005,80(2−3):367−368. doi: 10.1016/j.schres.2005.06.003
|
[46] |
Dewan A. Olfactory signaling via trace amine-associated receptors[J]. Cell Tissue Res,2020,383(1):395−407.
|
[47] |
Rutigliano G, Zucchi R. Molecular variants in human trace amine-associated receptors and their implications in mental and metabolic disorders[J]. Cell Mol Neurobiol,2020,40(2):239−255. doi: 10.1007/s10571-019-00743-y
|
[48] |
Li Q, Liberles S D. Odor sensing by trace amine-associated receptors[J]. Chemosensory Transduction,2016:67−80.
|
[49] |
Espinoza S, Sukhanov I, Efimova E V, et al. Trace amine-associated receptor 5 provides olfactory input into limbic brain areas and modulates emotional behaviors and serotonin transmission[J]. Front Mol Neurosci,2020,13:18. doi: 10.3389/fnmol.2020.00018
|
[50] |
Belov D R, Efimova E V, Fesenko Z S, et al. Putative trace-amine associated receptor 5 (TAAR5) agonist α-NETA increases electrocorticogram gamma-rhythm in freely moving rats[J]. Cell Mol Neurobiol,2020,40(2):203−213. doi: 10.1007/s10571-019-00716-1
|
[51] |
Pae C U, Yu H S, Amann D, et al. Association of the trace amine associated receptor 6 (TAAR6) gene with schizophrenia and bipolar disorder in a Korean case control sample[J]. J Psychiatr Res,2008,42(1):35−40. doi: 10.1016/j.jpsychires.2006.09.011
|
[52] |
Huang J Y, Tian Y, Wang H J, et al. Functional genomic analyses identify pathways dysregulated in animal model of autism[J]. CNS Neurosci Ther,2016,22(10):845−853. doi: 10.1111/cns.12582
|
[53] |
Mühlhaus J, Dinter J, Nürnberg D, et al. Analysis of human TAAR8 and murine Taar8b mediated signaling pathways and expression profile[J]. Int J Mol Sci,2014,15(11):20638−20655. doi: 10.3390/ijms151120638
|
[54] |
Tarján V, Jánossy G. The role of biogenic amines in foods[J]. Nahrung,1978,22(3):285−289. doi: 10.1002/food.19780220304
|
[55] |
Andersen G, Marcinek P, Sulzinger N, et al. Food sources and biomolecular targets of tyramine[J]. Nutr Rev,2019,77(2):107−115. doi: 10.1093/nutrit/nuy036
|
[56] |
Kaufmann A, Maden K. Easy and fast method for the determination of biogenic amines in fish and fish products with liquid chromatography coupled to orbitrap tandem mass spectrometry[J]. J AOAC Int,2018,101(2):336−341. doi: 10.5740/jaoacint.17-0407
|
[57] |
Ernest Frederick Gale. The production of amines by bacteria: The production of tyramine by Streptococcus faecalis[J]. Biochem J,1940,34(6):846. doi: 10.1042/bj0340846
|
[58] |
Bover-Cid S, Holzapfel W H. Improved screening procedure for biogenic amine production by lactic acid bacteria[J]. Int J Food Microbiol,1999,53(1):33−41. doi: 10.1016/S0168-1605(99)00152-X
|
[59] |
Moreno-Arribas V, Torlois S, Joyeux A, et al. Isolation, properties and behaviour of tyramine-producing lactic acid bacteria from wine[J]. J Appl Microbiol,2000,88(4):584−593. doi: 10.1046/j.1365-2672.2000.00997.x
|
[60] |
Ziegleder G, Stojacic E, Stumpf B. Occurrence of beta-phenylethylamine and its derivatives in cocoa and cocoa products[J]. Z Lebensm Unters Forsch,1992,195(3):235−238. doi: 10.1007/BF01202801
|
[61] |
Pastore P, Favaro G, Badocco D, et al. Determination of biogenic amines in chocolate by ion chromatographic separation and pulsed integrated amperometric detection with implemented wave-form at Au disposable electrode[J]. J Chromatogr A,2005,1098(1-2):111−115. doi: 10.1016/j.chroma.2005.08.065
|
[62] |
Hurst W J, Toomey P B. High-performance liquid chromatographic determination of four biogenic amines in chocolate[J]. Analyst,1981,106(1261):394−402. doi: 10.1039/an9810600394
|
[63] |
Bonetta S, Bonetta S, Carraro E, et al. Detection of biogenic amine producer bacteria in a typical Italian goat cheese[J]. J Food Prot,2008,71(1):205−209. doi: 10.4315/0362-028X-71.1.205
|
[64] |
Landete J M, Ferrer S, Polo L, et al. Biogenic amines in wines from three Spanish regions[J]. J Agric Food Chem,2005,53(4):1119−1124. doi: 10.1021/jf049340k
|
[65] |
García-Villar N, Saurina J, Hernández-Cassou S. High-performance liquid chromatographic determination of biogenic amines in wines with an experimental design optimization procedure[J]. Anal Chim Acta,2006,575(1):97−105. doi: 10.1016/j.aca.2006.05.074
|
[66] |
戴莹, 宋海勇, 吴曦, 等. 肉制品中生物胺的形成、检测和控制研究进展[J]. 肉类研究,2020,34(11):89−97. [Dai Y, Song H Y, Wu X, et al. Recent progress in the formation, detection and control of biogenic amines in meat[J]. Meat Research,2020,34(11):89−97.
|
[67] |
Fraqueza M J, Alfaia C M, Barreto A S. Biogenic amine formation in turkey meat under modified atmosphere packaging with extended shelf life: Index of freshness[J]. Poult Sci,2012,91(6):1465−1472. doi: 10.3382/ps.2011-01577
|
[68] |
杨姗姗, 王晓雯, 林翠苹. 水产品中生物胺的研究进展[J]. 青岛农业大学学报(自然科学版),2021,38(1):65−73. [Yang S S, Wang X W, Lin C P. Research progress of biogenic aminie in aquatic produts[J]. Journal of Qingdao Agricultural University (Natural Science),2021,38(1):65−73.
|
[69] |
郭大钧, 万建荣, 刘俊荣. 用三甲胺特效电极对海产鱼虾作质量评定[J]. 水产学报,1989(3):248−253. [Guo D J, Wan J R, Liu J R. Use of a TMA-specific electrode in determining the quality of marine fish and shrimp[J]. Journal of Fisheries of China,1989(3):248−253.
|
[70] |
胡彩虹, 许梓荣. 气相色谱法测定猪肉、鱼和虾中三甲胺的含量[J]. 食品科学,2001(5):62−64. [Hu C H, Xu Z R. Determi-nation of trimethylamine in pork, fish and shrimp by gas chromatography[J]. Food Science,2001(5):62−64. doi: 10.3321/j.issn:1002-6630.2001.05.020
|
[71] |
周明珠, 熊光权, 乔宇, 等. 鮰鱼冷藏过程中气味和新鲜度的变化及相关性[J]. 肉类研究,2020,34(3):68−74. [Zhou M Z, Xiong G Q, Qiao Y. Changes and correlation of odor and freshness of channel catfish during cold storage[J]. Meat Research,2020,34(3):68−74.
|
[72] |
李梅, 汪冬冬, 唐垚, 等. 中国市售酱腌菜中生物胺含量分析[J]. 食品与发酵工业,2020:1−10. [Li M, Wang D D, Tang Y, et al. Analysis of the biogenic amines content in differently processed pickles from the Chinese market[J]. Food and Fermentation Industries,2020:1−10.
|
[73] |
Provensi G, Passani M B, Costa A, et al. Neuronal histamine and the memory of emotionally salient events[J]. Br J Pharmacol,2020,177(3):557−569. doi: 10.1111/bph.14476
|
[74] |
Worm J, Falkenberg K, Olesen J. Histamine and migraine revisited: Mechanisms and possible drug targets[J]. J Headache Pain,2019,20(1):30. doi: 10.1186/s10194-019-0984-1
|
[75] |
Zare D, Muhammad K, Bejo M H, et al. Determination of urocanic acid, a compound implicated in histamine toxicity, and assessment of biogenic amines relative to urocanic acid content in selected fish and fish products[J]. J Food Compost Anal,2015,37:95−103. doi: 10.1016/j.jfca.2014.06.014
|
[76] |
Mah J-H, Han H-K, Oh Y-J, et al. Biogenic amines in Jeotkals, Korean salted and fermented fish products[J]. Food Chem,2002,79(2):239−243. doi: 10.1016/S0308-8146(02)00150-4
|
[77] |
Dieris M, Ahuja G, Krishna V, et al. A single identified glomerulus in the zebrafish olfactory bulb carries the high-affinity response to death-associated odor cadaverine[J]. Scientific Reports,2017,7:40892. doi: 10.1038/srep40892
|
[78] |
Liberles SD. Trace amine-associated receptors: Ligands, neural circuits, and behaviors[J]. Curr Opin Neurobiol,2015,34:1−7.
|
[79] |
Scott A M, Zhang Z, Jia L, et al. Spermine in semen of male sea lamprey acts as a sex pheromone[J]. PLoS Biol,2019,17(7):e3000332. doi: 10.1371/journal.pbio.3000332
|
[80] |
Costa D J, Martínez A M, Ribeiro W F, et al. Determination of tryptamine in foods using square wave adsorptive stripping voltammetry[J]. Talanta,2016,154:134−140. doi: 10.1016/j.talanta.2016.03.063
|
[81] |
Reisert J, Zhao H. Perspectives on: Information and coding in mammalian sensory physiology: Response kinetics of olfactory receptor neurons and the implications in olfactory coding[J]. J Gen Physiol,2011,138(3):303−310. doi: 10.1085/jgp.201110645
|
[82] |
Efimova E V, Kozlova A A, Razenkova V, et al. Increased dopamine transmission and adult neurogenesis in trace amine-associated receptor 5 (TAAR5) knockout mice[J]. Neuropharmacology,2021,182:108373. doi: 10.1016/j.neuropharm.2020.108373
|
[83] |
Wasik A M, Millan M J, Scanlan T, et al. Evidence for functional trace amine associated receptor-1 in normal and malignant B cells[J]. Leuk Res,2012,36(2):245−249. doi: 10.1016/j.leukres.2011.10.002
|
[84] |
Nelson D A, Tolbert M D, Singh S J, et al. Expression of neuronal trace amine-associated receptor (Taar) mRNAs in leukocytes[J]. J Neuroimmunol,2007,192(1−2):21−30. doi: 10.1016/j.jneuroim.2007.08.006
|
[85] |
Mühlhaus J, Dinter J, Jyrch S, et al. Investigation of naturally occurring single-nucleotide variants in human TAAR1[J]. Front Pharmacol,2017,8:807. doi: 10.3389/fphar.2017.00807
|
[86] |
Raab S, Wang H, Uhles S, et al. Incretin-like effects of small molecule trace amine-associated receptor 1 agonists[J]. Molecular Metabolism,2016,5(1):47−56. doi: 10.1016/j.molmet.2015.09.015
|
[87] |
A R-H, Cabrera-Becerra S, Vera-Juárez G, et al. Diabetic nephropathy produces alterations in the tissue expression profile of the orphan receptors GPR149, GPR153, GPR176, TAAR3, TAAR5 and TAAR9 in wistar rats[J]. Nucleosides, Nucleotides & Nucleic Acids,2020,39(8):1150−1161.
|
[88] |
Frascarelli S, Ghelardoni S, Chiellini G, et al. Cardiac effects of trace amines: Pharmacological characterization of trace amine-associated receptors[J]. Eur J Pharmacol,2008,587(1−3):231−236. doi: 10.1016/j.ejphar.2008.03.055
|
[1] | WANG Xueli, LEI Chao, SHEN Kaiwei, CHENG Yanwei, LIU Xueting, LI Zhen, YU Lu. Degradation Performance of Biogenic Amines in Fermented Food by Lactobacillus casei FV006[J]. Science and Technology of Food Industry, 2023, 44(14): 137-144. DOI: 10.13386/j.issn1002-0306.2022090136 |
[2] | WANG Xiaojie, MENG Fanqiang, ZHOU Libang, LU Zhaoxin. Optimization of Brevibacillin Fermentation Medium with Brevibacillus laterosporus by Response Surface Methodology[J]. Science and Technology of Food Industry, 2022, 43(4): 153-160. DOI: 10.13386/j.issn1002-0306.2021070335 |
[3] | WU Jun-lin, BAI Jian-ling, MO Shu-ping, ZHANG Ju-mei. Optimization of fermentation medium of lactic acid bacteria cultured in high concentration[J]. Science and Technology of Food Industry, 2018, 39(9): 96-101. DOI: 10.13386/j.issn1002-0306.2018.09.017 |
[4] | ZHU Yun-peng, TIAN You-ming, HONG Qing-lin, NI Hui, XIAO An-feng, YANG Qiu-ming. Optimization of medium composition and culture conditions for Aspergillus tubingensis production[J]. Science and Technology of Food Industry, 2018, 39(3): 82-86,91. DOI: 10.13386/j.issn1002-0306.2018.03.017 |
[5] | HU Yan-xin, LIU Xiao-li, WANG Ying, DONG Ming-sheng, ZHOU Jian-zhong. Optimization on fermentation conditions and medium for bacteriocin produced by Lactobacillus farcimini[J]. Science and Technology of Food Industry, 2016, (10): 255-259. DOI: 10.13386/j.issn1002-0306.2016.10.043 |
[6] | WANG Can, ZHANG Wei, ZHANG Ming-liang, HUANG Jian-zhong. Optimization of Schizochytrium sp. FJU-512 fermentation medium producing DHA[J]. Science and Technology of Food Industry, 2015, (04): 171-174. DOI: 10.13386/j.issn1002-0306.2015.04.029 |
[7] | DONG Ting, ZHOU Zhi-jiang, HAN Ye. Optimization of fermentation medium and fermentation conditions for Pediococcus acidilactici PA003[J]. Science and Technology of Food Industry, 2014, (14): 192-196. DOI: 10.13386/j.issn1002-0306.2014.14.034 |
[8] | LIU Ying-ying, LIU Ying, ZHANG Guang, SUN Bing-yu, WANG Jin-feng, SHI Yan-guo. Optimum fermentation medium of high-yielding neutral protease of mucor[J]. Science and Technology of Food Industry, 2014, (06): 166-170. DOI: 10.13386/j.issn1002-0306.2014.06.032 |
[9] | AN Jun-ying, LIU Ying, ZHU Wen-juan, HU Xue-qiong, YE Li-zhen. Optimization of fermentation medium of Bacillus amyloliquefaciens ZJHD-06 by response surface methodology[J]. Science and Technology of Food Industry, 2014, (01): 191-195. DOI: 10.13386/j.issn1002-0306.2014.01.031 |
[10] | Optimization of solid state fermentation medium to produce β-galactosidase by Aspergillus oryzae[J]. Science and Technology of Food Industry, 2013, (08): 232-235. DOI: 10.13386/j.issn1002-0306.2013.08.033 |
1. |
谢雨佳,彭小杰,李明逸,李政,王娟,肖珊珊,张少辉. 乳清蛋白源抗真菌多肽的制备工艺优化. 中国乳品工业. 2024(06): 59-64 .
![]() |