Citation: | ZHAO Youwei, LI Dehai. Ultrasonic and Microwave Synergistic Preparation of Polysaccharide from Inonotus hispidus and Its Effect on Lowering Lipid in Vitro [J]. Science and Technology of Food Industry, 2021, 42(20): 191−198. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021030221. |
[1] |
冯彦, 高晓霞, 秦雪梅. 柴胡及其类方降脂疗效和作用机制研究进展[J]. 中药材,2019,42(8):1957−1961. [Feng Y, Gao X X, Qin X M. Research progress on lipid-lowering efficacy and mechanism of Chaihu and its derivatives[J]. Chinese Medicinal Materials,2019,42(8):1957−1961.
|
[2] |
郭艺芳. 2014年中国胆固醇教育计划血脂异常防治专家建议[J]. 中华心脏与心律电子杂志,2014,2(3):12−16. [Guo Y F. Proposals from experts on the prevention and treatment of dyslipidemia in the 2014 China Cholesterol Education Program[J]. Chinese Journal of Heart and Rhythm Electronics,2014,2(3):12−16. doi: 10.3877/cma.j.issn.2095-6568.2014.3.007
|
[3] |
Shirin Hasani-Ranjbar et al. The efficacy and safety of herbal medicines used in the treatment of hyperlipidemia: A systematic review[J]. Current Pharmaceutical Design,2010,16(26):2935−2947. doi: 10.2174/138161210793176464
|
[4] |
Markakis Emmanouil A. Characterization of fungi associated with wood decay of tree species and grapevine in Greece[J]. Plant disease,2017,101(11):1929−1940. doi: 10.1094/PDIS-12-16-1761-RE
|
[5] |
Yang S D, Bao H Y, Wang H, et al. Anti-tumour effect and pharmacokinetics of an active ingredient isolated from Inonotus hispidus[J]. Biological and Pharmaceutical Bulletin,2019,42(1):10−17. doi: 10.1248/bpb.b18-00343
|
[6] |
唐少军, 雷平, 邵晨霞等. 粗毛纤孔菌液体发酵工艺优化及胞外多糖的抗菌和抗肿瘤活性[J]. 食品工业科技,2021,42(5):93−99. [Tang S J, Lei P, Shao C X, et al. Optimization of liquid fermentation process of ciloporus crassicarpa and the antibacterial and antitumor activities of extracellular polysaccharides[J]. Food Industry Science and Technology,2021,42(5):93−99.
|
[7] |
Liu X, Hpu R L, Xu K Q, et al. Extraction, characterization and antioxidant activity analysis of the polysaccharide from the solid-state fermentation substrate of Inonotus hispidus[J]. International Journal of Biological Macromolecules,2019,123:468−476. doi: 10.1016/j.ijbiomac.2018.11.069
|
[8] |
李德海, 杜令娟, 康宁, 等. 提取技术对粗毛纤孔菌三萜类化合物制备及体外降血脂作用的影响[J]. 食品科学,2018,39(10):291−297. [Li D H, Du L J, Kang N, et al. The effect of extraction technology on the preparation of triterpenoids from Ciliomyces crassipes and its in vitro hypolipidemic effect[J]. Food Science,2018,39(10):291−297. doi: 10.7506/spkx1002-6630-201810044
|
[9] |
Carsten Gründemann et al. Effects ofInonotus hispidus extracts and compounds on human immunocompetent cells[J]. Planta Med,2016,82(15):1359−1367. doi: 10.1055/s-0042-111693
|
[10] |
Angelini et al. A comparative study of the antimicrobial and antioxidant activities ofInonotus hispidus fruit and their mycelia extracts[J]. International Journal of Food Properties,2019,22(1):768−783. doi: 10.1080/10942912.2019.1609497
|
[11] |
刘爽爽, 王昀睿, 李德海. 粗毛纤孔菌三萜的提取及胆酸盐结合研究[J]. 中南林业科技大学学报,2019,39(10):132−138. [Liu S S, Wang Y R, Li D H. Study on the extraction of triterpenes and bile salt binding ofCiliomyces lasicum[J]. Journal of Central South University of Forestry and Technology,2019,39(10):132−138.
|
[12] |
Ren Q , Lu X Y , Han J X, et al. Triterpenoids and phenolics from the fruiting bodies of Inonotus hispidus and their activations of melanogenesis and tyrosinase[J]. Chinese Chemical Letters,2017,28(5):1052−1056. doi: 10.1016/j.cclet.2016.12.010
|
[13] |
Liu Xin, Hou Ruolin, Yan Junjie, et al. Purification and characterization of Inonotus hispidus exopolysaccharide and its protective effect on acute alcoholic liver injury in mice[J]. International Journal of Biological Macromolecules,2019,129:41−49. doi: 10.1016/j.ijbiomac.2019.02.011
|
[14] |
张媛, 包海鹰. 四种多孔菌子实体粗多糖抗肿瘤活性的比较研究[J]. 菌物学报,2014,33(1):114−120. [Zhang Y, Bao H Y. Comparative study on the anti-tumor activity of crude polysaccharides from the fruiting bodies of four polypores[J]. Acta Mycologica Sinica,2014,33(1):114−120.
|
[15] |
Tan Mei Chin Beverly, Ali Asgar, Kamal Hina, et al. Optimizing parameters on the antioxidant capacity of watermelon pulp using conventional orbital shaker and ultrasound-assisted extraction methods[J]. Journal of Food Processing and Preservation,2020,45(2):e15123.
|
[16] |
张倩, 李书启. 不同提取方法对枸杞多糖提取率及抗氧化活性的影响[J]. 江苏农业科学,2019,47(3):169−173. [Zhang Q, Li S Q. Effects of different extraction methods on extraction rate and antioxidant activity of Lycium barbarum polysaccharides[J]. Jiangsu Agricultural Sciences,2019,47(3):169−173.
|
[17] |
苏平, 孙昕, 宋思圆, 等. 提取方法对黄秋葵花多糖的结构组成及抗氧化活性的影响[J]. 食品科学,2018,39(15):93−100. [Su P, Sun X, Song S Y, et al. Effects of extraction methods on the structure and antioxidant activity of polysaccharides from Abelmoschus manihot[J]. Food Science,2018,39(15):93−100. doi: 10.7506/spkx1002-6630-201815014
|
[18] |
马舒伟, 刘兴艳, 贾占东, 等. 不同提取方法对玄参多糖单糖组分和抗氧化活性的影响[J]. 中华中医药学刊,2020,38(1):220−224, 285. [Ma S W, Liu X Y, Jia Z D, et al. Effects of different extraction methods on monosaccharide components and antioxidant activity of Radix Scrophulariae polysaccharide[J]. Chinese Journal of Traditional Chinese Medicine,2020,38(1):220−224, 285.
|
[19] |
Lou Z X, Wang H X, Zhu S, et al. Ionic liquids based simultaneous ultrasonic and microwave assisted extraction of phenolic compounds from burdock leaves[J]. Analytica Chimica Acta, 2012, 716: 28−33.
|
[20] |
和法涛, 刘光鹏, 等. 微波超声波组合提取猴头菇多糖工艺优化及其抗氧化活性[J]. 食品与生物技术学报,2019,38(1):74−82. [He F T, Liu G P, et al. Optimization of microwave ultrasonic extraction of Hericium erinaceus polysaccharide and its antioxidant activity[J]. Journal of Food and Biotechnology,2019,38(1):74−82. doi: 10.3969/j.issn.1673-1689.2019.01.012
|
[21] |
张媛媛, 张彬. 苯酚-硫酸法与蒽酮-硫酸法测定绿茶茶多糖的比较研究[J]. 食品科学,2016,37(4):158−163. [Zhang Y Y, Zhang B. A comparative study on the determination of green tea polysaccharides by phenol-sulfuric acid method and anthrone-sulfuric acid method[J]. Food Science,2016,37(4):158−163.
|
[22] |
于美汇, 赵鑫, 尹红力, 等. 碱提醇沉黑木耳多糖体外和体内降血脂功能[J]. 食品科学,2017,38(1):232−237. [Yu M H, Zhao X, Yin H L, et al. Alkaline extraction and alcohol precipitation of black fungus polysaccharides in vitro and in vivo hypolipidemic function[J]. Food Science,2017,38(1):232−237. doi: 10.7506/spkx1002-6630-201701039
|
[23] |
应瑞峰, 黄梅桂, 王耀松, 等. 超声波微波协同提取青钱柳超微粉多糖及活性研究[J]. 食品研究与开发,2017,38(23):32−37. [Ying R F, Huang M G, Wang Y S, et al. Study on extraction and activity of polysaccharides from Cyclocarya paliurus ultra-fine powder by ultrasonic and microwave irradiation[J]. Food Research and Development,2017,38(23):32−37. doi: 10.3969/j.issn.1005-6521.2017.23.006
|
[24] |
崔守富, 邵家威, 郝征红, 等. 超声波-微波联合提取绿芦笋中水溶性粗多糖的工艺优化[J]. 食品工业,2020,41(5):72−76. [Cui S F, Shao J W, Hao Z H, et al. Optimization of ultrasonic microwave extraction of water soluble crude polysaccharides from green asparagus[J]. Food Industry,2020,41(5):72−76.
|
[25] |
白婕, 郭凯, 沈银梅. Box-Behnken响应面法优化富硒平菇柄多糖提取工艺研究[J]. 经济林研究,2017,35(2):121−126. [Bai J, Guo K, Shen Y M. Optimization of extraction technology of polysaccharide from Pleurotus ostreatus stalk by Box Behnken response surface method[J]. Economic Forest Research,2017,35(2):121−126.
|
[26] |
曹小燕, 杨海涛. 微波-超声波协同辅助优化阳荷多糖提取工艺及抗氧化性分析[J]. 食品研究与开发,2020,41(18):68−74. [Cao X Y, Yang H T. Optimization of extraction process and antioxidant activity of polysaccharides from Schima superba by microwave-ultrasonic method[J]. Food Research and Development,2020,41(18):68−74.
|
[27] |
陈宇航, 岳凤丽, 张洁, 等. 超声微波协同提取豆渣中水溶性多糖的工艺优化[J]. 食品工业,2017,38(6):148−152. [Chen Y H, Yue F L, Zhang J, et al. Technology optimization of ultrasonic and microwave synergistic extraction of water-soluble polysaccharides from bean dregs[J]. Food Industry,2017,38(6):148−152.
|
[28] |
Xu N, Sun Y H, Guo X L, et al. Optimization of ultrasonic-microwave synergistic extraction of polysaccharides from Morchella conica[J]. Journal of Food Processing & Preservation,2017,42(2):e13423.1−e13423.7.
|
[29] |
景永帅, 孙丽丛, 程文境, 等. 微波辅助法提取多糖的研究进展[J]. 食品与机械,2020,36(10):228−232. [Jing Y S, Sun L C, Cheng W J, et al. Research progress of microwave assisted extraction of polysaccharides[J]. Food and Machinery,2020,36(10):228−232.
|
[30] |
Xu S Y, Chen X Q, Liu Y, et al. Ultrasonic/microwave-assisted extraction, simulated digestion, and fermentation in vitro by human intestinal flora of polysaccharides from Porphyra haitanensis[J]. International Journal of Biological Macromolecules, 2020, 152: 748−756.
|
[31] |
黄琼, 何燕萍. Box-Behnken响应面法优化超声波-微波协同提取玫瑰茄多糖工艺[J]. 福建农业学报,2018,33(12):1324−1329. [Huang Q, He Y P. Optimization of ultrasonic microwave synergistic extraction of polysaccharides from roselle by Box Behnken response surface method[J]. Fujian Journal of Agriculture,2018,33(12):1324−1329.
|
[32] |
胡凯, 黄惠华. 不同茶叶对胆酸盐的结合及其降血脂机理的研究[J]. 食品与发酵工业,2010,36(9):42−45. [Hu K, Huang H H. Study on the combination of different teas to cholate and the mechanism of lowering blood lipid[J]. Food and Fermentation Industries,2010,36(9):42−45.
|
[33] |
杨青松, 陈小玲, 高路, 等. 水溶性红雪茶多糖体外结合胆酸盐能力的分析[J]. 中国食品添加剂,2017(9):49−54. [Yang Q S, Chen X L, Gao L, et al. In vitro binding capacity of water soluble polysaccharides from Hongxue tea[J]. China Food Additive,2017(9):49−54. doi: 10.3969/j.issn.1006-2513.2017.09.001
|
[1] | WANG Xueli, LEI Chao, SHEN Kaiwei, CHENG Yanwei, LIU Xueting, LI Zhen, YU Lu. Degradation Performance of Biogenic Amines in Fermented Food by Lactobacillus casei FV006[J]. Science and Technology of Food Industry, 2023, 44(14): 137-144. DOI: 10.13386/j.issn1002-0306.2022090136 |
[2] | WANG Xiaojie, MENG Fanqiang, ZHOU Libang, LU Zhaoxin. Optimization of Brevibacillin Fermentation Medium with Brevibacillus laterosporus by Response Surface Methodology[J]. Science and Technology of Food Industry, 2022, 43(4): 153-160. DOI: 10.13386/j.issn1002-0306.2021070335 |
[3] | WU Jun-lin, BAI Jian-ling, MO Shu-ping, ZHANG Ju-mei. Optimization of fermentation medium of lactic acid bacteria cultured in high concentration[J]. Science and Technology of Food Industry, 2018, 39(9): 96-101. DOI: 10.13386/j.issn1002-0306.2018.09.017 |
[4] | ZHU Yun-peng, TIAN You-ming, HONG Qing-lin, NI Hui, XIAO An-feng, YANG Qiu-ming. Optimization of medium composition and culture conditions for Aspergillus tubingensis production[J]. Science and Technology of Food Industry, 2018, 39(3): 82-86,91. DOI: 10.13386/j.issn1002-0306.2018.03.017 |
[5] | HU Yan-xin, LIU Xiao-li, WANG Ying, DONG Ming-sheng, ZHOU Jian-zhong. Optimization on fermentation conditions and medium for bacteriocin produced by Lactobacillus farcimini[J]. Science and Technology of Food Industry, 2016, (10): 255-259. DOI: 10.13386/j.issn1002-0306.2016.10.043 |
[6] | WANG Can, ZHANG Wei, ZHANG Ming-liang, HUANG Jian-zhong. Optimization of Schizochytrium sp. FJU-512 fermentation medium producing DHA[J]. Science and Technology of Food Industry, 2015, (04): 171-174. DOI: 10.13386/j.issn1002-0306.2015.04.029 |
[7] | DONG Ting, ZHOU Zhi-jiang, HAN Ye. Optimization of fermentation medium and fermentation conditions for Pediococcus acidilactici PA003[J]. Science and Technology of Food Industry, 2014, (14): 192-196. DOI: 10.13386/j.issn1002-0306.2014.14.034 |
[8] | LIU Ying-ying, LIU Ying, ZHANG Guang, SUN Bing-yu, WANG Jin-feng, SHI Yan-guo. Optimum fermentation medium of high-yielding neutral protease of mucor[J]. Science and Technology of Food Industry, 2014, (06): 166-170. DOI: 10.13386/j.issn1002-0306.2014.06.032 |
[9] | AN Jun-ying, LIU Ying, ZHU Wen-juan, HU Xue-qiong, YE Li-zhen. Optimization of fermentation medium of Bacillus amyloliquefaciens ZJHD-06 by response surface methodology[J]. Science and Technology of Food Industry, 2014, (01): 191-195. DOI: 10.13386/j.issn1002-0306.2014.01.031 |
[10] | Optimization of solid state fermentation medium to produce β-galactosidase by Aspergillus oryzae[J]. Science and Technology of Food Industry, 2013, (08): 232-235. DOI: 10.13386/j.issn1002-0306.2013.08.033 |
1. |
谢雨佳,彭小杰,李明逸,李政,王娟,肖珊珊,张少辉. 乳清蛋白源抗真菌多肽的制备工艺优化. 中国乳品工业. 2024(06): 59-64 .
![]() |