ZHAO Youwei, LI Dehai. Ultrasonic and Microwave Synergistic Preparation of Polysaccharide from Inonotus hispidus and Its Effect on Lowering Lipid in Vitro [J]. Science and Technology of Food Industry, 2021, 42(20): 191−198. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021030221.
Citation: ZHAO Youwei, LI Dehai. Ultrasonic and Microwave Synergistic Preparation of Polysaccharide from Inonotus hispidus and Its Effect on Lowering Lipid in Vitro [J]. Science and Technology of Food Industry, 2021, 42(20): 191−198. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021030221.

Ultrasonic and Microwave Synergistic Preparation of Polysaccharide from Inonotus hispidus and Its Effect on Lowering Lipid in Vitro

More Information
  • Received Date: March 16, 2021
  • Available Online: August 22, 2021
  • In this study, Inonotus hispidus was used as a raw material, extraction rate of polysaccharide was used as the index, the single factor experiments and Box Behnken experiment design were used to study the preparation process of Inonotus hispidus polysaccharide (IHP) by ultrasound and microwave synergistic extraction, and the effects of several extraction methods on the extraction percentage of IHP and the bile acid binding capacity in vitro were compared and analyzed. The results showed that, the optimal process parameters for the extraction of IHP were: Material-to-water ratio 1:33 g:mL, microwave time 50 s, microwave power 500 W, ultrasonic time 51 min, ultrasonic power 200 W, the extraction percentage of polysaccharide under this condition was 85.61%. Compared with ultrasonic assisted extraction and hot water extraction, the extraction rate increased by 24.87% and 36.38%, respectively. The IHP had significant binding ability to sodium taurocholate and sodium glycocholate, which was positively correlated with the dosage of polysaccharide, and the binding ability of IHP to sodium taurocholate was higher than sodium glycocholate. And under the same mass concentration conditions, the binding ability of polysaccharides prepared by the three extraction methods to bile salts was ultrasonic and microwave synergistic extraction>ultrasonic assisted extraction>hot water extraction, and the binding rates for sodium glycocholate and sodium taurocholate were 30.93% and 32.13%, respectively. This study showed that the ultrasonic and microwave synergistic extraction method could significantly improve the extraction effect of IHP and the ability to bind cholate in vitro, and would provide a theoretical basis for the preparation and development and utilization of highly active IHP.
  • [1]
    冯彦, 高晓霞, 秦雪梅. 柴胡及其类方降脂疗效和作用机制研究进展[J]. 中药材,2019,42(8):1957−1961. [Feng Y, Gao X X, Qin X M. Research progress on lipid-lowering efficacy and mechanism of Chaihu and its derivatives[J]. Chinese Medicinal Materials,2019,42(8):1957−1961.
    [2]
    郭艺芳. 2014年中国胆固醇教育计划血脂异常防治专家建议[J]. 中华心脏与心律电子杂志,2014,2(3):12−16. [Guo Y F. Proposals from experts on the prevention and treatment of dyslipidemia in the 2014 China Cholesterol Education Program[J]. Chinese Journal of Heart and Rhythm Electronics,2014,2(3):12−16. doi: 10.3877/cma.j.issn.2095-6568.2014.3.007
    [3]
    Shirin Hasani-Ranjbar et al. The efficacy and safety of herbal medicines used in the treatment of hyperlipidemia: A systematic review[J]. Current Pharmaceutical Design,2010,16(26):2935−2947. doi: 10.2174/138161210793176464
    [4]
    Markakis Emmanouil A. Characterization of fungi associated with wood decay of tree species and grapevine in Greece[J]. Plant disease,2017,101(11):1929−1940. doi: 10.1094/PDIS-12-16-1761-RE
    [5]
    Yang S D, Bao H Y, Wang H, et al. Anti-tumour effect and pharmacokinetics of an active ingredient isolated from Inonotus hispidus[J]. Biological and Pharmaceutical Bulletin,2019,42(1):10−17. doi: 10.1248/bpb.b18-00343
    [6]
    唐少军, 雷平, 邵晨霞等. 粗毛纤孔菌液体发酵工艺优化及胞外多糖的抗菌和抗肿瘤活性[J]. 食品工业科技,2021,42(5):93−99. [Tang S J, Lei P, Shao C X, et al. Optimization of liquid fermentation process of ciloporus crassicarpa and the antibacterial and antitumor activities of extracellular polysaccharides[J]. Food Industry Science and Technology,2021,42(5):93−99.
    [7]
    Liu X, Hpu R L, Xu K Q, et al. Extraction, characterization and antioxidant activity analysis of the polysaccharide from the solid-state fermentation substrate of Inonotus hispidus[J]. International Journal of Biological Macromolecules,2019,123:468−476. doi: 10.1016/j.ijbiomac.2018.11.069
    [8]
    李德海, 杜令娟, 康宁, 等. 提取技术对粗毛纤孔菌三萜类化合物制备及体外降血脂作用的影响[J]. 食品科学,2018,39(10):291−297. [Li D H, Du L J, Kang N, et al. The effect of extraction technology on the preparation of triterpenoids from Ciliomyces crassipes and its in vitro hypolipidemic effect[J]. Food Science,2018,39(10):291−297. doi: 10.7506/spkx1002-6630-201810044
    [9]
    Carsten Gründemann et al. Effects ofInonotus hispidus extracts and compounds on human immunocompetent cells[J]. Planta Med,2016,82(15):1359−1367. doi: 10.1055/s-0042-111693
    [10]
    Angelini et al. A comparative study of the antimicrobial and antioxidant activities ofInonotus hispidus fruit and their mycelia extracts[J]. International Journal of Food Properties,2019,22(1):768−783. doi: 10.1080/10942912.2019.1609497
    [11]
    刘爽爽, 王昀睿, 李德海. 粗毛纤孔菌三萜的提取及胆酸盐结合研究[J]. 中南林业科技大学学报,2019,39(10):132−138. [Liu S S, Wang Y R, Li D H. Study on the extraction of triterpenes and bile salt binding ofCiliomyces lasicum[J]. Journal of Central South University of Forestry and Technology,2019,39(10):132−138.
    [12]
    Ren Q , Lu X Y , Han J X, et al. Triterpenoids and phenolics from the fruiting bodies of Inonotus hispidus and their activations of melanogenesis and tyrosinase[J]. Chinese Chemical Letters,2017,28(5):1052−1056. doi: 10.1016/j.cclet.2016.12.010
    [13]
    Liu Xin, Hou Ruolin, Yan Junjie, et al. Purification and characterization of Inonotus hispidus exopolysaccharide and its protective effect on acute alcoholic liver injury in mice[J]. International Journal of Biological Macromolecules,2019,129:41−49. doi: 10.1016/j.ijbiomac.2019.02.011
    [14]
    张媛, 包海鹰. 四种多孔菌子实体粗多糖抗肿瘤活性的比较研究[J]. 菌物学报,2014,33(1):114−120. [Zhang Y, Bao H Y. Comparative study on the anti-tumor activity of crude polysaccharides from the fruiting bodies of four polypores[J]. Acta Mycologica Sinica,2014,33(1):114−120.
    [15]
    Tan Mei Chin Beverly, Ali Asgar, Kamal Hina, et al. Optimizing parameters on the antioxidant capacity of watermelon pulp using conventional orbital shaker and ultrasound-assisted extraction methods[J]. Journal of Food Processing and Preservation,2020,45(2):e15123.
    [16]
    张倩, 李书启. 不同提取方法对枸杞多糖提取率及抗氧化活性的影响[J]. 江苏农业科学,2019,47(3):169−173. [Zhang Q, Li S Q. Effects of different extraction methods on extraction rate and antioxidant activity of Lycium barbarum polysaccharides[J]. Jiangsu Agricultural Sciences,2019,47(3):169−173.
    [17]
    苏平, 孙昕, 宋思圆, 等. 提取方法对黄秋葵花多糖的结构组成及抗氧化活性的影响[J]. 食品科学,2018,39(15):93−100. [Su P, Sun X, Song S Y, et al. Effects of extraction methods on the structure and antioxidant activity of polysaccharides from Abelmoschus manihot[J]. Food Science,2018,39(15):93−100. doi: 10.7506/spkx1002-6630-201815014
    [18]
    马舒伟, 刘兴艳, 贾占东, 等. 不同提取方法对玄参多糖单糖组分和抗氧化活性的影响[J]. 中华中医药学刊,2020,38(1):220−224, 285. [Ma S W, Liu X Y, Jia Z D, et al. Effects of different extraction methods on monosaccharide components and antioxidant activity of Radix Scrophulariae polysaccharide[J]. Chinese Journal of Traditional Chinese Medicine,2020,38(1):220−224, 285.
    [19]
    Lou Z X, Wang H X, Zhu S, et al. Ionic liquids based simultaneous ultrasonic and microwave assisted extraction of phenolic compounds from burdock leaves[J]. Analytica Chimica Acta, 2012, 716: 28−33.
    [20]
    和法涛, 刘光鹏, 等. 微波超声波组合提取猴头菇多糖工艺优化及其抗氧化活性[J]. 食品与生物技术学报,2019,38(1):74−82. [He F T, Liu G P, et al. Optimization of microwave ultrasonic extraction of Hericium erinaceus polysaccharide and its antioxidant activity[J]. Journal of Food and Biotechnology,2019,38(1):74−82. doi: 10.3969/j.issn.1673-1689.2019.01.012
    [21]
    张媛媛, 张彬. 苯酚-硫酸法与蒽酮-硫酸法测定绿茶茶多糖的比较研究[J]. 食品科学,2016,37(4):158−163. [Zhang Y Y, Zhang B. A comparative study on the determination of green tea polysaccharides by phenol-sulfuric acid method and anthrone-sulfuric acid method[J]. Food Science,2016,37(4):158−163.
    [22]
    于美汇, 赵鑫, 尹红力, 等. 碱提醇沉黑木耳多糖体外和体内降血脂功能[J]. 食品科学,2017,38(1):232−237. [Yu M H, Zhao X, Yin H L, et al. Alkaline extraction and alcohol precipitation of black fungus polysaccharides in vitro and in vivo hypolipidemic function[J]. Food Science,2017,38(1):232−237. doi: 10.7506/spkx1002-6630-201701039
    [23]
    应瑞峰, 黄梅桂, 王耀松, 等. 超声波微波协同提取青钱柳超微粉多糖及活性研究[J]. 食品研究与开发,2017,38(23):32−37. [Ying R F, Huang M G, Wang Y S, et al. Study on extraction and activity of polysaccharides from Cyclocarya paliurus ultra-fine powder by ultrasonic and microwave irradiation[J]. Food Research and Development,2017,38(23):32−37. doi: 10.3969/j.issn.1005-6521.2017.23.006
    [24]
    崔守富, 邵家威, 郝征红, 等. 超声波-微波联合提取绿芦笋中水溶性粗多糖的工艺优化[J]. 食品工业,2020,41(5):72−76. [Cui S F, Shao J W, Hao Z H, et al. Optimization of ultrasonic microwave extraction of water soluble crude polysaccharides from green asparagus[J]. Food Industry,2020,41(5):72−76.
    [25]
    白婕, 郭凯, 沈银梅. Box-Behnken响应面法优化富硒平菇柄多糖提取工艺研究[J]. 经济林研究,2017,35(2):121−126. [Bai J, Guo K, Shen Y M. Optimization of extraction technology of polysaccharide from Pleurotus ostreatus stalk by Box Behnken response surface method[J]. Economic Forest Research,2017,35(2):121−126.
    [26]
    曹小燕, 杨海涛. 微波-超声波协同辅助优化阳荷多糖提取工艺及抗氧化性分析[J]. 食品研究与开发,2020,41(18):68−74. [Cao X Y, Yang H T. Optimization of extraction process and antioxidant activity of polysaccharides from Schima superba by microwave-ultrasonic method[J]. Food Research and Development,2020,41(18):68−74.
    [27]
    陈宇航, 岳凤丽, 张洁, 等. 超声微波协同提取豆渣中水溶性多糖的工艺优化[J]. 食品工业,2017,38(6):148−152. [Chen Y H, Yue F L, Zhang J, et al. Technology optimization of ultrasonic and microwave synergistic extraction of water-soluble polysaccharides from bean dregs[J]. Food Industry,2017,38(6):148−152.
    [28]
    Xu N, Sun Y H, Guo X L, et al. Optimization of ultrasonic-microwave synergistic extraction of polysaccharides from Morchella conica[J]. Journal of Food Processing & Preservation,2017,42(2):e13423.1−e13423.7.
    [29]
    景永帅, 孙丽丛, 程文境, 等. 微波辅助法提取多糖的研究进展[J]. 食品与机械,2020,36(10):228−232. [Jing Y S, Sun L C, Cheng W J, et al. Research progress of microwave assisted extraction of polysaccharides[J]. Food and Machinery,2020,36(10):228−232.
    [30]
    Xu S Y, Chen X Q, Liu Y, et al. Ultrasonic/microwave-assisted extraction, simulated digestion, and fermentation in vitro by human intestinal flora of polysaccharides from Porphyra haitanensis[J]. International Journal of Biological Macromolecules, 2020, 152: 748−756.
    [31]
    黄琼, 何燕萍. Box-Behnken响应面法优化超声波-微波协同提取玫瑰茄多糖工艺[J]. 福建农业学报,2018,33(12):1324−1329. [Huang Q, He Y P. Optimization of ultrasonic microwave synergistic extraction of polysaccharides from roselle by Box Behnken response surface method[J]. Fujian Journal of Agriculture,2018,33(12):1324−1329.
    [32]
    胡凯, 黄惠华. 不同茶叶对胆酸盐的结合及其降血脂机理的研究[J]. 食品与发酵工业,2010,36(9):42−45. [Hu K, Huang H H. Study on the combination of different teas to cholate and the mechanism of lowering blood lipid[J]. Food and Fermentation Industries,2010,36(9):42−45.
    [33]
    杨青松, 陈小玲, 高路, 等. 水溶性红雪茶多糖体外结合胆酸盐能力的分析[J]. 中国食品添加剂,2017(9):49−54. [Yang Q S, Chen X L, Gao L, et al. In vitro binding capacity of water soluble polysaccharides from Hongxue tea[J]. China Food Additive,2017(9):49−54. doi: 10.3969/j.issn.1006-2513.2017.09.001
  • Related Articles

    [1]WANG Xueli, LEI Chao, SHEN Kaiwei, CHENG Yanwei, LIU Xueting, LI Zhen, YU Lu. Degradation Performance of Biogenic Amines in Fermented Food by Lactobacillus casei FV006[J]. Science and Technology of Food Industry, 2023, 44(14): 137-144. DOI: 10.13386/j.issn1002-0306.2022090136
    [2]WANG Xiaojie, MENG Fanqiang, ZHOU Libang, LU Zhaoxin. Optimization of Brevibacillin Fermentation Medium with Brevibacillus laterosporus by Response Surface Methodology[J]. Science and Technology of Food Industry, 2022, 43(4): 153-160. DOI: 10.13386/j.issn1002-0306.2021070335
    [3]WU Jun-lin, BAI Jian-ling, MO Shu-ping, ZHANG Ju-mei. Optimization of fermentation medium of lactic acid bacteria cultured in high concentration[J]. Science and Technology of Food Industry, 2018, 39(9): 96-101. DOI: 10.13386/j.issn1002-0306.2018.09.017
    [4]ZHU Yun-peng, TIAN You-ming, HONG Qing-lin, NI Hui, XIAO An-feng, YANG Qiu-ming. Optimization of medium composition and culture conditions for Aspergillus tubingensis production[J]. Science and Technology of Food Industry, 2018, 39(3): 82-86,91. DOI: 10.13386/j.issn1002-0306.2018.03.017
    [5]HU Yan-xin, LIU Xiao-li, WANG Ying, DONG Ming-sheng, ZHOU Jian-zhong. Optimization on fermentation conditions and medium for bacteriocin produced by Lactobacillus farcimini[J]. Science and Technology of Food Industry, 2016, (10): 255-259. DOI: 10.13386/j.issn1002-0306.2016.10.043
    [6]WANG Can, ZHANG Wei, ZHANG Ming-liang, HUANG Jian-zhong. Optimization of Schizochytrium sp. FJU-512 fermentation medium producing DHA[J]. Science and Technology of Food Industry, 2015, (04): 171-174. DOI: 10.13386/j.issn1002-0306.2015.04.029
    [7]DONG Ting, ZHOU Zhi-jiang, HAN Ye. Optimization of fermentation medium and fermentation conditions for Pediococcus acidilactici PA003[J]. Science and Technology of Food Industry, 2014, (14): 192-196. DOI: 10.13386/j.issn1002-0306.2014.14.034
    [8]LIU Ying-ying, LIU Ying, ZHANG Guang, SUN Bing-yu, WANG Jin-feng, SHI Yan-guo. Optimum fermentation medium of high-yielding neutral protease of mucor[J]. Science and Technology of Food Industry, 2014, (06): 166-170. DOI: 10.13386/j.issn1002-0306.2014.06.032
    [9]AN Jun-ying, LIU Ying, ZHU Wen-juan, HU Xue-qiong, YE Li-zhen. Optimization of fermentation medium of Bacillus amyloliquefaciens ZJHD-06 by response surface methodology[J]. Science and Technology of Food Industry, 2014, (01): 191-195. DOI: 10.13386/j.issn1002-0306.2014.01.031
    [10]Optimization of solid state fermentation medium to produce β-galactosidase by Aspergillus oryzae[J]. Science and Technology of Food Industry, 2013, (08): 232-235. DOI: 10.13386/j.issn1002-0306.2013.08.033
  • Cited by

    Periodical cited type(1)

    1. 谢雨佳,彭小杰,李明逸,李政,王娟,肖珊珊,张少辉. 乳清蛋白源抗真菌多肽的制备工艺优化. 中国乳品工业. 2024(06): 59-64 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (244) PDF downloads (16) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return