ZHU Wenqing, LI Lingyu, ZHANG Li, et al. Network Pharmacology Study on the Antibacterial Activity of Caffeoylquinic Acids [J]. Science and Technology of Food Industry, 2021, 42(13): 11−20. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021030017.
Citation: ZHU Wenqing, LI Lingyu, ZHANG Li, et al. Network Pharmacology Study on the Antibacterial Activity of Caffeoylquinic Acids [J]. Science and Technology of Food Industry, 2021, 42(13): 11−20. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021030017.

Network Pharmacology Study on the Antibacterial Activity of Caffeoylquinic Acids

More Information
  • Received Date: March 01, 2021
  • Available Online: May 10, 2021
  • Objective:To explore the antibacterial mechanism of caffeoylquinic acids based on network pharmacology. Methods: Through literature mining and database search, the corresponding targets of caffeoylquinic acids, antibacterial related targets, and the common targets of them were obtained. The common targets were used to construct a protein-protein interaction (PPI) network, and perform Gene Ontology (GO) analysis and Kyoto Encyclopedia of Genes and Genome (KEGG) analysis. Results: Caffeoylquinic acids correspond to 483 targets, 805 antibacterial related targets, and 75 antibacterial targets of caffeoylquinic acids, and the key targets were TNFAKT1、ALBMMP9、EGFR and MAPK8. GO analysis and KEGG pathway enrichment analysis results showed that the antibacterial mechanism of caffeoylquinic acids mainly involves biological processes such as response to stimulus, metabolic processes, biological regulation, multicellular biological processes, cell communication, and work together through pathways such as extracellular matrix organization, collagen degradation, activation of matrix metalloproteinases and nerve growth factor signalling. The results of molecular docking verification between compounds and molecular targets were good, which verified the accuracy of the prediction of network construction. Conclusion: This study reveals that the antibacterial activity of caffeoylquinic acids has the characteristics of multiple targets and multiple pathways, which lays the foundation for further research on its molecular mechanism.
  • [1]
    Carvalho I, Henriques M, Carvalho S. New strategies to fight bacterial adhesion[M]. Spain: Formatex Research Center, 2013.
    [2]
    Liu Q, Meng X, Li Y, et al. Antibacterial and antifungal activities of spices[J]. Internatonal Journal of Molecular Sciences,2017,18(6):1283. doi: 10.3390/ijms18061283
    [3]
    Murugavel S, Deepa S, Ravikumar C, et al. Synthesis, structural, spectral and antibacterial activity of 3, 3a, 4, 5-tetrahydro-2H-benzo[g]indazole fused carbothioamide derivatives as antibacterial agents[J]. Journal of Molecular Structure,2020,1222:128961. doi: 10.1016/j.molstruc.2020.128961
    [4]
    朱文卿, 任汉书, 徐美霞, 等. 咖啡酰奎宁酸类化合物的生物学活性及提高生物利用度技术研究进展[J]. 食品科学,2021,42(3):321−329. doi: 10.7506/spkx1002-6630-20200102-021
    [5]
    吴琪珍. 咖啡酰奎宁酸类化合物研究进展[J]. 中国野生植物资源,2020,39(4):48−53, 60. doi: 10.3969/j.issn.1006-9690.2020.04.011
    [6]
    王玲娜, 姚佳欢, 马超美. 绿原酸的研究进展[J]. 食品与生物技术学报,2017,36(11):1121−1130. doi: 10.3969/j.issn.1673-1689.2017.11.001
    [7]
    Chen Y S, Geng S, Liu B G. Three common caffeoylquinic acids as potential hypoglycemic nutraceuticals: Evaluation of α-glucosidase inhibitory activity and glucose consumption in HepG2 cells[J]. Journal of Food Biochemistry,2020,44(9):13361.
    [8]
    Ritu K, Anurag K. In-silico design, synthesis, ADMET studies and biological evaluation of novel derivatives of chlorogenic acid against urease protein and H. Pylori bacterium[J]. BMC Chemistry,2019,13(1):41. doi: 10.1186/s13065-019-0556-0
    [9]
    Karunanidhi A, Thomas R, Belkum A V, et al. In vitro antibacterial and antibiofilm activities of chlorogenic acid against clinical isolates of Stenotrophomonas maltophilia including the trimethoprim/sulfamethoxazole resistant strain[J]. BioMed Research International,2013,2012:392058.
    [10]
    王虹懿, 刘芳, 孙芝兰, 等. Helveticin-M与绿原酸复配对大肠杆菌和肠炎沙门氏菌的抑菌效果及其机制[J]. 食品科学,2020,41(3):68−74. doi: 10.7506/spkx1002-6630-20190228-229
    [11]
    Zhu X F, Zhang H X, Lo R. Phenolic compounds from the leaf extract of artichoke (Cynara scolymus L.) and their antimicrobial activities[J]. Journal of Agricultural and Food Chemistry,2004,52(24):7272−7278. doi: 10.1021/jf0490192
    [12]
    Lou Z X, Wang H X, Zhu S, et al. Antibacterial activity and mechanism of action of chlorogenic acid[J]. Journal of Food Science,2011,76(6):398−403. doi: 10.1111/j.1750-3841.2011.02213.x
    [13]
    潘婉莲, 赵苗, 袁芳, 等. 我国天然产物绿原酸活性及提取工艺研究进展[J]. 食品安全质量检测学报,2017,8(11):4269−4276. doi: 10.3969/j.issn.2095-0381.2017.11.032
    [14]
    Yun J E, Lee D G. Role of potassium channels in chlorogenic acid-induced apoptotic volume decrease and cell cycle arrest in Candida albicans[J]. Biochimica Et Biophysica Acta,2017,1861(3):585−592. doi: 10.1016/j.bbagen.2016.12.026
    [15]
    任艳, 邓燕君, 马焓彬, 等. 网络药理学在中药领域的研究进展及面临的挑战[J]. 中草药,2020,51(18):4789−4797. doi: 10.7501/j.issn.0253-2670.2020.18.024
    [16]
    苏和毅, 郭振辉. 持续炎性反应-免疫抑制-分解代谢综合征治疗策略初探[J]. 中华胃肠外科杂志,2017,20(12):1444−1447. doi: 10.3760/cma.j.issn.1671-0274.2017.12.030
    [17]
    李彪, 林晗, 唐照琦, 等. 基于网络药理学的商陆及其拆分组分的作用机制研究[J/OL]. 中国中药杂志: 1-10[2021-02-26]. . https: //doi. org/10.19540/j. cnki. cjcmm. 20210120.401.
    [18]
    李洋, 夏厚林, 周厚琴, 等. 基于分子对接技术预测人面子叶中黄酮成分抗菌作用靶点[J]. 中国医院用药评价与分析,2016,16(10):1303−1307.
    [19]
    Yang X, Liu H, Liu J, et al. Rational selection of the 3D Structure of biomacromolecules for molecular docking studies on the mechanism of endocrine disruptor action[J]. Chemical Research in Toxicology,2016,29(9):1565−1570. doi: 10.1021/acs.chemrestox.6b00245
    [20]
    齐云云, 温鹏, 于诗怡, 等. 五倍子抗炎、抗菌活性指导下的有效成分分离与抗口腔溃疡网络药理学评价[J]. 石河子大学学报(自然科学版),2020,38(5):620−628.
    [21]
    袁家威, 张海涛, 揭珂, 等. 基于网络药理学研究桃红四物汤治疗假体周围感染的潜在靶点和机制[J]. 中国组织工程研究,2021,25(9):1428−1433. doi: 10.3969/j.issn.2095-4344.4012
    [22]
    包雅婷, 王玥, 任晓东, 等. 基于网络药理学的紫斑牡丹花、叶抗菌活性和作用机制研究[J]. 中国中药杂志,2018,43(4):779−785.
    [23]
    Hillenmeyer S, Davis L K, Gamazon E R, et al. Stams: String-assisted module search for genome wide association studies and application to autism[J]. Bioinformatics,2016,32(24):3815−3822. doi: 10.1093/bioinformatics/btw530
    [24]
    Michael K, Sebastian W, Bettina W. Cytoscape: Software for visualization and analysis of biological networks[J]. Methods in Molecular Biology,2011,696:291−303.
    [25]
    郑美思, 许强, 周海, 等. 基于网络药理学的金匮肾气丸治疗2型糖尿病作用机制探讨[J]. 中华中医药学刊,2020,38(11):126−131, 271-273.
    [26]
    Maere S, Heymans K, Kuiper M. Bingo: A cytoscape plugin to assess overrepresentation of Gene Ontology categories in biological networks[J]. Bioinformatics,2005,21(16):2.
    [27]
    Montfort A, Colacios C, Levade T, et al. The TNF paradox in cancer progression and immunotherapy[J]. Frontiers in Immunology,2019,10:2515. doi: 10.3389/fimmu.2019.02515
    [28]
    Varley C D, Deodhar A A, Ehst B D, et al. Persistence of staphylococcus aureus colonization among individuals with immune-mediated inflammatory diseases treated with TNF-α inhibitor therapy[J]. Rheumatology,2014,53(2):332−337. doi: 10.1093/rheumatology/ket351
    [29]
    赵洁, 王欢欢, 欧阳意, 等. 基于网络药理学及质谱分析的葶苈大枣泻肺汤抗心衰的有效成分发现及作用机制[J/OL]. 中国实验方剂学杂志: 1-15[2021-03-23]. https: //doi. org/10.13422/j. cnki. syfjx. 20210414.
    [30]
    罗艺晨, 黄利明, 杨颖, 等. 绿原酸抑制金黄色葡萄球菌机理研究[J]. 西南大学学报(自然科学版),2016,38(3):15−19.
    [31]
    Falanga V. Wound healing and its impairment in the diabetic foot[J]. The Lancet,2005,366(9484):1736−1743.
    [32]
    余婷, 杨柱, 龙奉玺, 等. 基于网络药理学探讨黄精-百合药对抗癌作用的机制[J]. 中国实验方剂学杂志,2020,26(5):168−177.
    [33]
    Lee K S, Kim S R,Lee Y R, et al. A novel thiol compound, N-acetylcysteine amide, attenuates allergic airway disease by regulating activation of NF-κB and hypoxia-inducible factor-1α[J]. Experimental & Molecular Medicine,2007,39(6):756−768.
    [34]
    Tian L, Qu X, Wang M E, et al. Selective inhibition of IL-2 mRNA blocks allograft rejection by limiting T cell clonal expansion[J]. Transplantation Proceedings,2001,33(1):330−330.
    [35]
    万智双, 熊丁, 曹宸. MiR-433-3p靶向MAPK8对肝癌细胞MHCC97H增殖、凋亡和迁移的调控作用[J]. 中国免疫学杂志,2020,36(1):57−62. doi: 10.3969/j.issn.1000-484X.2020.01.011
    [36]
    Launay O, Rosenberg A R, Rey D, et al. Long-term immune response to hepatitis B virus vaccination regimens in adults with human immunodeficiency virus 1: Secondary analysis of a randomized clinical trial[J]. Jama Internal Medicine,2016,176(5):603−610. doi: 10.1001/jamainternmed.2016.0741
    [37]
    Madkour M M, Anbar H S, El-Gamal M I. Current status and future prospects of p38α/MAPK14 kinase and its inhibitors[J]. European Journal of Medicinal Chemistry,2021,213:113216. doi: 10.1016/j.ejmech.2021.113216
    [38]
    Kumamoto T, Togo S, Ishibe A, et al. Role of nitric oxide synthesized by nitric oxide synthase 2 in liver regeneration[J]. Liver International,2008,28(6):865−877. doi: 10.1111/j.1478-3231.2008.01712.x
    [39]
    李功成, 潘铁军, 田雨冬, 等. 曲古抑菌素A膀胱灌注对大鼠膀胱癌生长的抑制作用[J]. 临床泌尿外科杂志,2013,28(2):148−151.
    [40]
    Li S J, Guo W P, Wu H J. The role of post-translational modifications in the regulation of MCL1[J]. Cellular Signalling,2021,81:109933. doi: 10.1016/j.cellsig.2021.109933
    [41]
    Klinger M H F, Jelkmann W. Role of blood platelets in infection and inflammation[J]. Journal of Interferon & Cytokine Research,2002,22(9):913−922.
    [42]
    邓莉, 田静. 白藜芦醇抑制大肠埃希菌O104: H4诱导的结肠上皮细胞NLRP3炎症小体活化[J]. 中国临床药理学与治疗学,2021,26(2):167−173.
    [43]
    Gilberto V A, Rosalinda P S, Julian R B. Variability in genes related to SARS-CoV-2 entry into host cells (ACE2, TMPRSS2, TMPRSS11A, ELANE, and CTSL) and its potential use in association studies[J]. Life Sciences,2020,260(1):118313.
    [44]
    杨小英, 陈春玲, 马晓聪, 等. 基于网络药理学探讨温胆汤治疗高血压的作用机制[J]. 中西医结合心脑血管病杂志,2020,18(24):4108−4116. doi: 10.12102/j.issn.1672-1349.2020.24.003
    [45]
    Rudolph J, Roberts G, Luger K. Histone Parylation factor 1 contributes to the inhibition of PARP1 by cancer drugs[J]. Nature Communications,2021,12(1):736. doi: 10.1038/s41467-021-20998-8
    [46]
    尚立芝, 季书, 石龙涛, 等. 基于CXCL8-CXCR1/2轴探讨二陈汤加味对COPD大鼠的抗炎机制[J]. 中国实验方剂学杂志,2020,26(11):40−48.
    [47]
    努尔阿米娜·依明尼亚孜, 帕力旦·艾沙, 阿依姆妮萨·阿卜杜热合曼. 奇果菌素调控miR-646/ADAM17通路对白血病细胞增殖、凋亡的影响及机制[J]. 河北医药,2020,42(24):3702−3707. doi: 10.3969/j.issn.1002-7386.2020.24.004
    [48]
    Antonio T, Daniel R, Silvia V, et al. Prognostic value of Bcl2 and p53 in Hodgkin lymphoma: A systematic review and meta-analysis[J]. Pathology-Research and Practice,2021,219:153370. doi: 10.1016/j.prp.2021.153370
    [49]
    陈观平, 李明乾, 应栩华. 异鼠李素通过mTOR通路抑制肺癌增殖、侵袭及其机制研究[J/OL]. 中药材, 2021(2): 423-428[2021-03-25]. https: //doi. org/10.13863/j. issn1001-4454.2021. 02.032.
    [50]
    郭争荣. 基质金属蛋白酶8基因治疗大鼠肝硬化的实验研究[D]. 石家庄: 河北医科大学, 2007.
    [51]
    Wei W, Ren J, Yin W W, et al. Inhibition of ctsk modulates periodontitis with arthritis via downregulation of TLR9 and autophagy[J]. Cell Proliferation,2020,53(1):e12722.
    [52]
    高俊潇. 细胞粘附分子相关基因SELE, COL1A1, ITGAV和CAECAM1对过敏性鼻炎的影响[D]. 广州: 南方医科大学, 2020.
    [53]
    Gao Y, Wang Y F, Wang X F, et al. MiR-335-5p suppresses gastric cancer progression by targeting MAPK10[J]. Cancer Cell International,2021,21(1):71. doi: 10.1186/s12935-020-01684-z
  • Cited by

    Periodical cited type(4)

    1. 赵小勤,许莉,杨小艳,汪洋,罗霄,李及,张良,康帅,马双成. 智能感官技术在中药领域的应用研究进展. 中国药事. 2025(01): 96-104 .
    2. 刘玉璇,李倩倩,王宇慧,沈力,李泽玉,张璐璐,马超. 黄精“九蒸九制”过程中感官品质变化及其物质基础研究. 食品与发酵科技. 2025(01): 16-24 .
    3. 马景余,孙涛,王彦荣,李鑫,曾婉晴,王志强. 基于电子舌和电子眼信息融合的贝母品种快速辨识方法. 食品工业科技. 2024(18): 9-18 . 本站查看
    4. 王雪芹,程启康. 新鲜莲子营养成分影响因素及保鲜技术研究进展. 现代农业科技. 2024(19): 121-124+131 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (418) PDF downloads (52) Cited by(5)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return