Citation: | MA Jingyu, SUN Tao, WANG Yanrong, et al. A Fast Identification Method for Fritillaria Varieties Based on the Fusion of Electronic Tongue and Electronic Eye Information[J]. Science and Technology of Food Industry, 2024, 45(18): 9−18. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2024020161. |
[1] |
BORJIGIN G, WEI F S, JIANG S, et al. Extraction, purification, structural characterization and biological activity of polysaccharides from Fritillaria:A review[J]. International Journal of Biological Macromolecules,2023,242:124817. doi: 10.1016/j.ijbiomac.2023.124817
|
[2] |
张富丽, 刘炜, 毛建霏, 等. 基于核苷类物质建立川贝母药材真伪鉴别模型研究[J]. 中国中药杂志,2021,46(13):3337−3348. [ZHANG F L, LIU WEI, MAO J F, et al. Analysis of flavor components of 6 kinds of Yanshan chestnut by GC-MS combined with electronic nose/electronic tongue[J]. China Journal of Chinese Materia Medica,2021,46(13):3337−3348.]
ZHANG F L, LIU WEI, MAO J F, et al. Analysis of flavor components of 6 kinds of Yanshan chestnut by GC-MS combined with electronic nose/electronic tongue[J]. China Journal of Chinese Materia Medica, 2021, 46(13): 3337−3348.
|
[3] |
AN Y L, LI Y, WEI W L, et al. Species discrimination of multiple botanical origins of Fritillaria species based on infrared spectroscopy, thin layer chromatography-image analysis and untargeted metabolomics[J]. Phytomedicine,2023,123:155228.
|
[4] |
刘燕德, 徐振, 胡军, 等. 基于太赫兹光谱技术的贝母品种鉴别方法研究[J]. 光谱学与光谱分析,2021,41(11):3357−3362. [LIU Y D, XU Zhen, HU Jun, et al. Research on variety identification of fritillaria based on terahertz spectroscopy[J]. Spectroscopy and Spectral Analysis,2021,41(11):3357−3362.]
LIU Y D, XU Zhen, HU Jun, et al. Research on variety identification of fritillaria based on terahertz spectroscopy[J]. Spectroscopy and Spectral Analysis, 2021, 41(11): 3357−3362.
|
[5] |
翟映红, 于国强, 杨永茂, 等. 从川贝母中检出平贝母的理化鉴别方法[J]. 华西药学杂志,2017,32(6):633−635. [ZHAI Yinghong, YU Guoqiang, YANG Yongmao, et al. Physical and chemical identification on distinguishing Fritillariae ussuriensis Bulbus from Fritillariae cirrhosa Bulbus[J]. West China JOurnal of Pharmaceutical Sciences,2017,32(6):633−635.]
ZHAI Yinghong, YU Guoqiang, YANG Yongmao, et al. Physical and chemical identification on distinguishing Fritillariae ussuriensis Bulbus from Fritillariae cirrhosa Bulbus[J]. West China JOurnal of Pharmaceutical Sciences, 2017, 32(6): 633−635.
|
[6] |
王恬, 谈娜娜, 陆佳, 等. 川贝母生物碱的化学组成分析与IL-6结合活性成分的虚拟筛选[J]. 宝鸡文理学院学报(自然科学版),2023,43(4):30−34. [WANG Tian, TAN Nana, LU Jia, et al. Chemical composition analysis of alkaloids form Fritillaria cirrhosa D. Don and virtual screening of IL-6 binding active ingredients[J]. Journal of Baoji University of Arts and Sciences (Natural Science),2023,43(4):30−34.]
WANG Tian, TAN Nana, LU Jia, et al. Chemical composition analysis of alkaloids form Fritillaria cirrhosa D. Don and virtual screening of IL-6 binding active ingredients[J]. Journal of Baoji University of Arts and Sciences (Natural Science), 2023, 43(4): 30−34.
|
[7] |
杨银爱, 郜海燕, 牛犇, 等. 基于电子舌对不同品种鲜莲子滋味成分的分析[J]. 食品工业科技, 2023, 44(24):319-326. YANG Yin'ai, GAO Haiyan, NIU Ben, et al. Analysis of taste components in different varieties of fresh lotus seeds based on electronic tongue[J]. Science and Technology of Food Industry, 2023, 44(24):319−326.
|
[8] |
张晓, 吴宏伟, 于现阔, 等. 基于电子眼技术的穿心莲质量评价[J]. 中国实验方剂学杂志,2019,25(1):189−195. [ZHANG Xiao, WU Hongwei, YU Xiankuo, et al. Quality evaluation of andrographis herba based on electronic-eye technique[J]. Chinese Journal of Experimental Traditional Medical Formulae,2019,25(1):189−195.]
ZHANG Xiao, WU Hongwei, YU Xiankuo, et al. Quality evaluation of andrographis herba based on electronic-eye technique[J]. Chinese Journal of Experimental Traditional Medical Formulae, 2019, 25(1): 189−195.
|
[9] |
段金芳, 肖洋, 刘影, 等. 一测多评法与电子眼和电子舌技术相结合优化山茱萸蒸制时间[J]. 中草药,2017,48(6):1108−1116. [DUAN Jinfang, XIAO Yang, LIU Ying, et al. Optimization of steaming time of Cornus officinalis by QAMS combined with electronic-eye and electronic-tongue techniques[J]. Chinese Traditional and Herbal Drugs,2017,48(6):1108−1116.]
DUAN Jinfang, XIAO Yang, LIU Ying, et al. Optimization of steaming time of Cornus officinalis by QAMS combined with electronic-eye and electronic-tongue techniques[J]. Chinese Traditional and Herbal Drugs, 2017, 48(6): 1108−1116.
|
[10] |
陈佳瑜, 袁海波, 沈帅, 等. 基于智能感官多源信息融合技术的滇红工夫茶汤综合感官品质评价[J]. 食品科学,2022,43(16):294−301. [CHEN Jiayu, YUAN Haibo, SHEN Shuai, et al. Comprehensive sensory quality evaluation of dianhong congou tea infusions using intelligent sensory multi-source information fusion technology[J]. Food Science,2022,43(16):294−301.] doi: 10.7506/spkx1002-6630-20211028-321
CHEN Jiayu, YUAN Haibo, SHEN Shuai, et al. Comprehensive sensory quality evaluation of dianhong congou tea infusions using intelligent sensory multi-source information fusion technology[J]. Food Science, 2022, 43(16): 294−301. doi: 10.7506/spkx1002-6630-20211028-321
|
[11] |
WANG S C, ZHANG Q, LIU C Z, et al. Synergetic application of an E-tongue, E-nose and E-eye combined with CNN models and an attention mechanism to detect the origin of black pepper[J]. Sensors and Actuators A:Physical,2023,357:114417. doi: 10.1016/j.sna.2023.114417
|
[12] |
LU L, HU Z Q, HU X Q, et al. Quantitative approach of multidimensional interactive sensing for rice quality using electronic tongue sensor array based on information entropy[J]. Sensors and Actuators B:Chemical,2021,329:129254. doi: 10.1016/j.snb.2020.129254
|
[13] |
王首程, 于雪莹, 高继勇, 等. 基于电子舌和电子鼻结合DenseNet-ELM的陈醋年限检测[J]. 食品与机械,2022,38(4):72−80,133. [WANG Shoucheng, YU Xueying, GAO Jiyong, et al. Age detection of mature vinegar based on electronic tongue and electronic nose combined with DenseNet-ELM[J]. Food & Machinery,2022,38(4):72−80,133.]
WANG Shoucheng, YU Xueying, GAO Jiyong, et al. Age detection of mature vinegar based on electronic tongue and electronic nose combined with DenseNet-ELM[J]. Food & Machinery, 2022, 38(4): 72−80,133.
|
[14] |
SUN Y T, MA H Z. Research progress on oil-immersed transformer mechanical condition identification based on vibration signals[J]. Renewable and Sustainable Energy Reviews,2024,196:114327. doi: 10.1016/j.rser.2024.114327
|
[15] |
ZHANG S Y, LIAN C, XU B R, et al. A token selection-based multi-scale dual-branch CNN-transformer network for 12-lead ECG signal classification[J]. Knowledge-Based Systems,2023,280:111006. doi: 10.1016/j.knosys.2023.111006
|
[16] |
GONG A J, GUO L B, YU Y, et al. Spectrum-image dual-modality fusion empowered accurate and efficient classification system for traditional Chinese medicine[J]. Information Fusion,2024,101:101981. doi: 10.1016/j.inffus.2023.101981
|
[17] |
王健庆, 戴恺, 李子柔. 基于深度学习的中药饮片图像识别研究 [J]. 时珍国医国药, 2020, 31(12):2930-2933. WANG Jianqing, DAI Kai, LI Zirong. Research on image recognition of traditional chinese medicine decoction pieces based on deep learning[J]. Lishizhen Medicine and Materia Medica Research, 2020, 31(12):2930−2993.
|
[18] |
周丽媛, 赵启军, 高定国. 基于注意力引导深度纹理特征学习的复杂背景藏药材切片图像识别[J]. 世界科学技术-中医药现代化,2022,24(12):4825−4832. [ZHOU Liyuan, ZHAO Qijun, GAO Dingguo. Recognition of Tibetan medicinal slices in images with complex background via attention-guided deep texture feature learning[J]. World Science and Technology—Modernization of Traditional Chinese Medicine and Materia Medica,2022,24(12):4825−4832.]
ZHOU Liyuan, ZHAO Qijun, GAO Dingguo. Recognition of Tibetan medicinal slices in images with complex background via attention-guided deep texture feature learning[J]. World Science and Technology—Modernization of Traditional Chinese Medicine and Materia Medica, 2022, 24(12): 4825−4832.
|
[19] |
CHEN Y, HUANG Y Q, ZHANG Z Z, et al. Plant image recognition with deep learning:A review[J]. Computers and Electronics in Agriculture,2023,212:108072. doi: 10.1016/j.compag.2023.108072
|
[20] |
SHANG Y Y, XU X S, JIAO Y T, et al. Using lightweight deep learning algorithm for real-time detection of apple flowers in natural environments[J]. Computers and Electronics in Agriculture,2023,207:107765. doi: 10.1016/j.compag.2023.107765
|
[21] |
彭红星, 何慧君, 高宗梅, 等. 基于改进ShuffleNetV2模型的荔枝病虫害识别方法[J]. 农业机械学报,2022,53(12):290−300. [PENG Hongxing, HE Huijun, GAO Zongmei, et al. Litchi diseases and insect pests identification method based on improved ShuffleNetV2[J]. Transactions of the Chinese Society for Agricultural Machinery,2022,53(12):290−300.] doi: 10.6041/j.issn.1000-1298.2022.12.028
PENG Hongxing, HE Huijun, GAO Zongmei, et al. Litchi diseases and insect pests identification method based on improved ShuffleNetV2[J]. Transactions of the Chinese Society for Agricultural Machinery, 2022, 53(12): 290−300. doi: 10.6041/j.issn.1000-1298.2022.12.028
|
[22] |
SUI Y, WANG X, WU J, et al. Causal attention for interpretable and generalizable graph classification[Z]. Proceedings of the 28th ACM SIGKDD Conference on Knowledge Discovery and Data Mining. Washington DC, USA; Association for Computing Machinery. 2022:1696–705.10. 1145/3534678.3539366.
|
[23] |
WEN G, LI S, LIU F, et al. YOLOv5s-CA: A modified YOLOv5s network with coordinate attention for underwater target detection [J]. Sensors, 2023, 23(7): 3367.
|
[24] |
杨正伟, 张鑫, 李庆盛, 等. 基于电子舌及一维深度CNN-ELM模型的普洱茶贮藏年限快速检测[J]. 食品与机械,2020,36(8):45−52. [YANG Zhengwei, ZHANG Xin, LI Qingsheng, et al. A fast detection Pu-erh tea storage based on the voltammetric electronic tongue and one-dimension CNN-ELM[J]. Food & Machinery,2020,36(8):45−52.]
YANG Zhengwei, ZHANG Xin, LI Qingsheng, et al. A fast detection Pu-erh tea storage based on the voltammetric electronic tongue and one-dimension CNN-ELM[J]. Food & Machinery, 2020, 36(8): 45−52.
|
[25] |
YANG Z W, GAO J Y, WANG S C, et al. Synergetic application of E-tongue and E-eye based on deep learning to discrimination of Pu-erh tea storage time[J]. Computers and Electronics in Agriculture,2021,187:106297. doi: 10.1016/j.compag.2021.106297
|
[26] |
金鑫宁, 刘铭, 桑恒亮, 等. 基于电子舌和电子眼结合改进MobileNetv3的黄芪快速溯源检测[J]. 食品与机械,2023,39(6):37−47. [JIN Xinning, LIU Ming, SANG Hengliang, et al. Fast traceability detection of Astragalus membranaceus based on the combination of electronic tongue and electronic eye to improve MobileNetv3[J]. Food & Machinery,2023,39(6):37−47.]
JIN Xinning, LIU Ming, SANG Hengliang, et al. Fast traceability detection of Astragalus membranaceus based on the combination of electronic tongue and electronic eye to improve MobileNetv3[J]. Food & Machinery, 2023, 39(6): 37−47.
|
[27] |
李练兵, 高国强, 吴伟强, 等. 考虑特征重组与改进Transformer的风电功率短期日前预测方法[J]. 电网技术,2024,48(4):1466−1480. [LI Lianbing, GAO Guoqiang, WU Weiqiang, et al. A short-term day-ahead wind power prediction method considering feature recombination and improved transformer[J]. Power System Technology,2024,48(4):1466−1480.]
LI Lianbing, GAO Guoqiang, WU Weiqiang, et al. A short-term day-ahead wind power prediction method considering feature recombination and improved transformer[J]. Power System Technology, 2024, 48(4): 1466−1480.
|
[28] |
JIN X, JIANG J X, LI Y, et al. Improved ShuffleNetV2 for action recognition in BPPV treatment[J]. Biomedical Signal Processing and Control,2024,88:105601. doi: 10.1016/j.bspc.2023.105601
|
[29] |
游小荣, 李淑芳. 融合迁移学习和集成学习的服装风格图像分类方法[J/OL]. 现代纺织技术:1−8[2024-06-18]. https://doi.org/10.19398/j.att.202401007. [YOU Xiaorong, LI Shufang. Fashion style image classification method integrating transfer learning and ensemble learning: 1−8[2024-06-18]. https://doi.org/10.19398/j.att.202401007.]
YOU Xiaorong, LI Shufang. Fashion style image classification method integrating transfer learning and ensemble learning: 1−8[2024-06-18]. https://doi.org/10.19398/j.att.202401007.
|
[30] |
武晓春, 郜文祥. 基于tSNE多特征融合的JTC轨旁设备故障检测[J]. 铁道科学与工程学报,2024,21(3):1244−1255. [WU Xiaochun, GAO Wenxiang. Fault detection of JTC trackside equipment based on tSNE multi-feature fusion[J]. Journal of Railway Science and Engineering,2024,21(3):1244−1255.]
WU Xiaochun, GAO Wenxiang. Fault detection of JTC trackside equipment based on tSNE multi-feature fusion[J]. Journal of Railway Science and Engineering, 2024, 21(3): 1244−1255.
|
[31] |
崔佳旭, 杨博. 贝叶斯优化方法和应用综述[J]. 软件学报,2018,29(10):3068−3090. [CUI J X, YANG B. Survey on Bayesian optimization methodology and applications[J]. Journal of Software,2018,29(10):3068−3090.]
CUI J X, YANG B. Survey on Bayesian optimization methodology and applications[J]. Journal of Software, 2018, 29(10): 3068−3090.
|