Citation: | ZHU Jinyan, ZHAO Xuemei, WANG Dianfu, et al. Storage Quality Changes and Shelf Life Predictive Modeling of Blueberry Juice Treated by Ultra-high Pressure and Thermal Sterilization[J]. Science and Technology of Food Industry, 2021, 42(20): 320−327. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021020161. |
[1] |
Rokaayya S, Jia F G, Li Y, et al. Application of nano-titanum dioxide coating on fresh Highbush blueberries shelf life stored under ambient temperature[J]. LWT-Food Science and Technology,2020,137:110422.
|
[2] |
Hou Y N, Wang R X, Gan Z L, et al. Effect of cold plasma on blueberry juice quality[J]. Food Chemistry,2019,290:79−86. doi: 10.1016/j.foodchem.2019.03.123
|
[3] |
Zhang W J, Shen Y X, Li Z D, et al. Effects of high hydrostatic pressure and thermal processing on anthocyanin content, polyphenol oxidase and β-glucosidase activities, color, and antioxidant activities of blueberry (Vaccinium spp.) puree[J]. Food Chemistry,2021,342:128564. doi: 10.1016/j.foodchem.2020.128564
|
[4] |
Jia X Y, Wang Y H, Lin Y, et al. Blueberry polyphenols extract as a potential prebiotic with anti-obesity effects on C57BL/6 J mice by modulating the gut microbiota[J]. Journal of Nutritional Biochemistry,2019,64:88−100. doi: 10.1016/j.jnutbio.2018.07.008
|
[5] |
Zhang H C, Tsai S, Tikekar R. Inactivation of Listeria innocua on blueberries by novel ultrasound washing processes and their impact on quality during storage[J]. Food Control,2021,121:107580. doi: 10.1016/j.foodcont.2020.107580
|
[6] |
Orellana P, Petzold G, Pierre L, et al. Protection of polyphenols in blueberry juice by vacuum-assisted block freeze concentration[J]. Food & Chemical Toxicology,2017,109:1093−1102.
|
[7] |
刘刚, 马岩, 孟宪军, 等. 响应面法优化酶法提取蓝莓果汁工艺条件[J]. 食品科学,2013,34(14):76−80. [Liu G, Ma Y, Meng X J, et al. Optimization of enzymatic hydrolysis conditions for enhanced juice yield from blueberry fruits using response surface methodology[J]. Food Science,2013,34(14):76−80.
|
[8] |
Zhu N, Zhu Y, Yu N, et al. Evaluation of microbial, physicochemical parameters and flavor of blueberry juice after microchip-pulsed electric field[J]. Food Chemistry,2019,274:146−155. doi: 10.1016/j.foodchem.2018.08.092
|
[9] |
Porretta S, Birzi A, Ghizzoni C, et al. Effects of ultra-high hydrostatic pressure treatments on the quality of tomato juice[J]. Food Chemistry,1995,52(1):35−41. doi: 10.1016/0308-8146(94)P4178-I
|
[10] |
朱香澔, 段振华, 刘艳, 等. 西番莲果汁饮料超高压灭菌工艺优化[J]. 食品工业,2018,39(11):18−24. [Zhu X H, Duan Z H, Liu Y, et al. Optimization of ultra-high pressure sterilization process of passion fruit juice beverage[J]. Food Industry,2018,39(11):18−24.
|
[11] |
吕长鑫, 刘苏苏, 李萌萌, 等. 超高压处理对南果梨汁杀菌效果及品质的影响[J]. 食品与发酵工业,2016(6):117−122. [Lv C X, Liu S S, Li M M, et al. Effect of ultra-high pressure treatment on germicidal efficacy and quality of nanguo pear juice[J]. Food and Fermentation Industries,2016(6):117−122.
|
[12] |
史波林, 赵镭, 支瑞聪. 基于品质衰变理论的食品货架期预测模型及其应用研究进展[J]. 食品科学,2012(21):345−350. [Shi B L, Zhao L, Zhi R C. Advances in predictive shelf life models based on food quality deterioration theory and their applications[J]. Food Science,2012(21):345−350.
|
[13] |
谢旭. 高静水压及热处理对蓝莓汁抗氧化性和营养品质影响的研究[D]. 沈阳: 沈阳农业大学, 2020.
Xie X. Effects of high hydrostatic pressure and thermal processing on the antioxidant and nutritional quality of blueberry juice[D]. Shenyang: Shenyang Agricultural University, 2020.
|
[14] |
迟恩忠, 王丽, 杜传来, 等. 蓝莓原汁贮藏品质的变化及其货架期预测[J]. 食品工业,2018,39(2):187−190. [Chi E Z, Wang L, Du C L, et al. Storage quality changes and the shelf life prediction of blueberry juice[J]. Food Industry,2018,39(2):187−190.
|
[15] |
Tavarini S, Degl'Innocenti E, Remorini D, et al. Antioxidant capacity, ascorbic acid, total phenols and carotenoids changes during harvest and after storage of Hayward kiwifruit[J]. Food Chemistry,2008,107(1):282−288. doi: 10.1016/j.foodchem.2007.08.015
|
[16] |
Barba F J, Ger H J, Meneses N, et al. Evaluation of quality changes of blueberry juice during refrigerated storage after high-pressure and pulsed electric fields processing[J]. Innovative Food Science & Emerging Technologies,2012,14:18−24.
|
[17] |
Ning Z, Yue Z, Ning Y, et al. Evaluation of microbial, physicochemical parameters and flavor of blueberry juice after microchip-pulsed electric field[J]. Food Chemistry,2018,274:146−155.
|
[18] |
刘政权, 张惠, 王会芳, 等. 不同贮藏温度下抹茶品质变化及其货架期预测[J]. 食品科学,2020,40(3):198−204. [Liu Z Q, Zhang H, Wang H F, et al. Quality changes and predictive modeling of shelf life of matcha stored at different temperatures[J]. Food Science,2020,40(3):198−204. doi: 10.7506/spkx1002-6630-20190117-199
|
[19] |
Zhang W, Lv Z Z, Shi B, et al. Evaluation of quality changes and elasticity index of kiwifruit in shelf life by a nondestructive acoustic vibration method[J]. Postharvest Biology and Technology,2021,173:111398. doi: 10.1016/j.postharvbio.2020.111398
|
[20] |
曹勇, 张隋鑫, 许秀颖, 等. 玉米薄饼贮藏品质分析及货架期预测模型建立[J]. 食品科学,2021,42(1):235−242. [Cao Y, Zhang S X, Xu X Y, et al. Quality analysis of stored corn pancake and establishment of shelf-life prediction model[J]. Food Science,2021,42(1):235−242. doi: 10.7506/spkx1002-6630-20191202-026
|
[21] |
吉哲等编译. 感官分析方法[M]. 乌鲁木齐: 新疆科技卫生出版社, 1994: 176−199.
Ji Z. Sensory analysis method[M]. Urum- qi:Xinjiang Science and Technology and Health Press, 1994: 176−199.
|
[22] |
毛明. 基于恒压式超高压技术的黄瓜汁杀菌与保鲜研究[D]. 杭州: 浙江大学, 2012.
Mao M. Inactivation of Escherichia coli in fresh cucumber juice and a shelf life study using high hydrostatic pressure[D]. Hangzhou: Zhejiang University, 2012.
|
[23] |
Zhang W, Luo Z W, Wang A C, et al. Kinetic models applied to quality change and shelf life prediction of kiwifruits[J]. LWT,2021:138.
|
[24] |
李娜. 橙与梨两种果汁产品配方研发及其货架期的预测[D]. 西安: 陕西师范大学, 2015.
Li N. The development of for-mulation and prediction of shelf life for two kinds’ juice product with orange and pear[D]. Xi’an: Shanxi Normal University, 2015.
|
[25] |
王寅. 超高压处理对蓝莓汁的品质影响研究[D]. 北京: 北京林业大学, 2013.
Wang Y. The effect of ultra high pressure on the quality of blueberry juice[D]. Beijing: Beijing Forestry University, 2013.
|
[26] |
Guerrouj K, Rubio M, Taboada A, et al. Sonication at mild temperatures enhances bioactive compounds and microbiological quality of orange juice[J]. Food & Bioproducts Processing,2016,99:20−28.
|
[27] |
夏晓雨, 王凤娟, 符群, 等. 几种单元操作对蓝莓果汁饮料酚类物质含量及抗氧化活性的影响[J]. 中南林业科技大学学报,2019,39(11):125−131. [Xia X Y, Wang F J, Fu Q, et al. Effects of some unit operations on phenolic compounds content and antioxidant activity of blueberry juice beverage[J]. Journal of Central South University of Forestry & Technology,2019,39(11):125−131.
|
[28] |
张微. 超高压和热处理对热带果汁品质影响的比较研究[D]. 广州: 华南理工大学, 2010.
Zhang W. Comparison of effects of ultra-high pressure treatment and heat treatment on qualities of tropical fruit juices[D]. Guangzhou: South China University of Technology, 2010.
|
[29] |
邓红, 马婧, 李涵, 等. 超高压杀菌处理冷破碎猕猴桃果浆贮藏期的品质变化[J]. 食品与发酵工业,2019,45(8):127−133, 139. [Deng H, Ma J, Li H, et al. Quality changes of cold broken kiwifruit pulp treated by ultra high pressure sterilization during storage[J]. Food and Fermentation Industries,2019,45(8):127−133, 139.
|
[30] |
Song Y, Hu Q, Wu Y, et al. Storage time assessment and shelf-life prediction models for postharvest Agaricus bisporus[J]. LWT-Food Science and Technology,2018,101:360−365.
|
[1] | WANG Xueli, LEI Chao, SHEN Kaiwei, CHENG Yanwei, LIU Xueting, LI Zhen, YU Lu. Degradation Performance of Biogenic Amines in Fermented Food by Lactobacillus casei FV006[J]. Science and Technology of Food Industry, 2023, 44(14): 137-144. DOI: 10.13386/j.issn1002-0306.2022090136 |
[2] | WANG Xiaojie, MENG Fanqiang, ZHOU Libang, LU Zhaoxin. Optimization of Brevibacillin Fermentation Medium with Brevibacillus laterosporus by Response Surface Methodology[J]. Science and Technology of Food Industry, 2022, 43(4): 153-160. DOI: 10.13386/j.issn1002-0306.2021070335 |
[3] | WU Jun-lin, BAI Jian-ling, MO Shu-ping, ZHANG Ju-mei. Optimization of fermentation medium of lactic acid bacteria cultured in high concentration[J]. Science and Technology of Food Industry, 2018, 39(9): 96-101. DOI: 10.13386/j.issn1002-0306.2018.09.017 |
[4] | ZHU Yun-peng, TIAN You-ming, HONG Qing-lin, NI Hui, XIAO An-feng, YANG Qiu-ming. Optimization of medium composition and culture conditions for Aspergillus tubingensis production[J]. Science and Technology of Food Industry, 2018, 39(3): 82-86,91. DOI: 10.13386/j.issn1002-0306.2018.03.017 |
[5] | HU Yan-xin, LIU Xiao-li, WANG Ying, DONG Ming-sheng, ZHOU Jian-zhong. Optimization on fermentation conditions and medium for bacteriocin produced by Lactobacillus farcimini[J]. Science and Technology of Food Industry, 2016, (10): 255-259. DOI: 10.13386/j.issn1002-0306.2016.10.043 |
[6] | WANG Can, ZHANG Wei, ZHANG Ming-liang, HUANG Jian-zhong. Optimization of Schizochytrium sp. FJU-512 fermentation medium producing DHA[J]. Science and Technology of Food Industry, 2015, (04): 171-174. DOI: 10.13386/j.issn1002-0306.2015.04.029 |
[7] | DONG Ting, ZHOU Zhi-jiang, HAN Ye. Optimization of fermentation medium and fermentation conditions for Pediococcus acidilactici PA003[J]. Science and Technology of Food Industry, 2014, (14): 192-196. DOI: 10.13386/j.issn1002-0306.2014.14.034 |
[8] | LIU Ying-ying, LIU Ying, ZHANG Guang, SUN Bing-yu, WANG Jin-feng, SHI Yan-guo. Optimum fermentation medium of high-yielding neutral protease of mucor[J]. Science and Technology of Food Industry, 2014, (06): 166-170. DOI: 10.13386/j.issn1002-0306.2014.06.032 |
[9] | AN Jun-ying, LIU Ying, ZHU Wen-juan, HU Xue-qiong, YE Li-zhen. Optimization of fermentation medium of Bacillus amyloliquefaciens ZJHD-06 by response surface methodology[J]. Science and Technology of Food Industry, 2014, (01): 191-195. DOI: 10.13386/j.issn1002-0306.2014.01.031 |
[10] | Optimization of solid state fermentation medium to produce β-galactosidase by Aspergillus oryzae[J]. Science and Technology of Food Industry, 2013, (08): 232-235. DOI: 10.13386/j.issn1002-0306.2013.08.033 |
1. |
谢雨佳,彭小杰,李明逸,李政,王娟,肖珊珊,张少辉. 乳清蛋白源抗真菌多肽的制备工艺优化. 中国乳品工业. 2024(06): 59-64 .
![]() |