Citation: | XU Weijian, WANG Weiqing, YU Xiongwei, et al. Effect of Xanthan Gum on the Emulsifying Properties of Almond Kernel Protein[J]. Science and Technology of Food Industry, 2021, 42(20): 76−85. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021010122. |
[1] |
李芳, 孔令明, 杨清香, 等. 巴旦杏蛋白饮料的工艺优化及其稳定性研究[J]. 现代食品科技,2009,25(7):786−789. [Li F, Yang Q X, Sun L H, et al. Preparation and stability of Amygdalus communis L. protein beverage[J]. Modern Food Science and Technology,2009,25(7):786−789.
|
[2] |
申烨华, 张萍, 王高学, 等. 陕西扁桃仁的氨基酸和元素分析[J]. 西北大学学报(自然科学版),2007(1):59−62. [Shen Y H, Zhang P W, Wang G X, et al. Analysis of amino acids and elements in almond kernel in Shaanxi[J]. Journal of Northwest University (Natural Science Edition),2007(1):59−62.
|
[3] |
李述刚, 陆健康, 王萍, 等. 新疆南疆扁桃仁中蛋白质与脂类营养分析[J]. 中国油脂,2015,40(2):30−32. [Li S G, Lu J K, Wang P, et al. Nutritional analysis of protein and lipid of almond kernel in south Xinjiang[J]. China Oils and FATS,2015,40(2):30−32.
|
[4] |
寇凯. 长柄扁桃提取蛋白粉的制备与表征[D]. 陕西: 西北大学, 2015.
Kou K. The preparation and characterization of extracted protein powder from Amygdalus pedunculatus Pall[D]. Shaanxi: Northwest University, 2015.
|
[5] |
赵翠, 田英姿, 英犁, 等. 新疆几种巴旦杏综合营养成分分析[J]. 现代食品科技,2016,32(2):262−268. [Zhao C, Tian Y Z, Ying L, et al. Comprehensive analysis of nutritional components in several Xinjiang paddan almond samples[J]. Modern Food Science and Technology,2016,32(2):262−268.
|
[6] |
石海娥. 植物蛋白饮品领跑饮料市场[J]. 光彩,2018(12):46−48. [Shi H E. Plant-based protein drinks lead the beverage market[J]. Brilliance,2018(12):46−48. doi: 10.3969/j.issn.1005-4049.2018.12.022
|
[7] |
McClements D J, Jafari S M. Improving emulsion formation, stability and performance using mixed emulsifiers: A review[J]. Advances in Colloid and Interface Science,2018,251:55−79. doi: 10.1016/j.cis.2017.12.001
|
[8] |
王炜清, 李秀婷, 周彬, 等. 贮藏条件对扁桃仁分离蛋白理化特性及消化特性的影响[J]. 食品与机械,2020,36(8):102−108, 146. [Wang W Q, Li X T, Zhou B, et al. Effects of storage conditions on physical and chemical characteristics of almond protein isolates[J]. Food & Machinery,2020,36(8):102−108, 146.
|
[9] |
Kumar A, Rao K M, Han S S. Application of xanthan gum as polysaccharide in tissue engineering: A review[J]. Carbohydrate Polymers,2017,180:128−144.
|
[10] |
GarcíA-Ochoa F, Santos V E, Casaset J A, et al. Xanthan gum: Production, recovery, and properties[J]. Biotechnology Advances,2000,18(7):549−579. doi: 10.1016/S0734-9750(00)00050-1
|
[11] |
Liu Q, Lu Y, Han J C, et al. Structure-modification by moderate oxidation in hydroxyl radical-generating systems promote the emulsifying properties of soy protein isolate[J]. Food Structure,2015,6:21−28. doi: 10.1016/j.foostr.2015.10.001
|
[12] |
Zhang X D, Wang J W, Yu G P, et al. Addition of anionic polysaccharides to improve the stability of rice bran protein hydrolysate-stabilized emulsions[J]. LWT-Food Science and Technology,2019,111:573−581. doi: 10.1016/j.lwt.2019.04.020
|
[13] |
邓欣伦. 核桃蛋白-多糖界面相互作用及其对乳浊液性质影响的研究[D]. 广州: 华南理工大学, 2016.
Deng X L . Walnut protein-polysaccharide interactions at the oil/water interface: Effect on the properties of emulsion[D]. Guangzhou: South China University of Technology, 2016.
|
[14] |
Chen H, Ji A G, Qiu S, et al. Covalent conjugation of bovine serum album and sugar beet pectin through Maillard reaction/laccase catalysis to improve the emulsifying properties[J]. Food Hydrocolloids,2018,76:173−176. doi: 10.1016/j.foodhyd.2016.12.004
|
[15] |
Liu L Y, Zhao Q Z, Liu T X, et al. Dynamic surface pressure and dilatational viscoelasticity of sodium caseinate/xanthan gum mixtures at the oil-water interface[J]. Food Hydrocolloids,2007,25(5):921−927.
|
[16] |
邵云. 大豆蛋白稳定乳液的物化性质及油脂氧化稳定性研究[D]. 广州: 华南理工大学, 2014.
Shao Y. Physicochemical properties and oxidation stability of oil-in-water emulsions stabilized by soy protein[D]. Guangzhou: South China University of Technology, 2014.
|
[17] |
Cai X R, Du X F, Zhu G L, et al. Induction effect of NaCl on the formation and stability of emulsions stabilized by carboxymethyl starch/xanthan gum combinations[J]. Food Hydrocolloids,2020,105:105776. doi: 10.1016/j.foodhyd.2020.105776
|
[18] |
Li X Y, Fang Y P, Al-Assaf S, et al. Complexation of bovine serum albumin and sugar beet pectin: structural transitions and phase diagram[J]. Journal of Colloid and Interface Science,2012,28(27):10164−10176.
|
[19] |
刘瑞丹. 蛋清蛋白-黄原胶结构化油脂的构建与应用研究[D]. 无锡: 江南大学, 2019.
Liu R D. Construction and application of egg white protein-xanthan gum structured oil[D]. Wuxi: Jiangnan University, 2019.
|
[20] |
Thaiphanit S, Schleining G, Anprung P. Effects of coconut (Cocos nucifera L.) protein hydrolysates obtained from enzymatic hydrolysis on the stability and rheological properties of oil-in-water emulsions[J]. Food Hydrocolloids,2016,60:252−264. doi: 10.1016/j.foodhyd.2016.03.035
|
[21] |
Chityala P K, Khouryieh H, Williams K, et al. Effect of xanthan/enzyme-modifified guar gum mixtures on the stability of whey protein isolate stabilized fish oil-in-water emulsions[J]. Food Chemistry,2016,212:332−340. doi: 10.1016/j.foodchem.2016.05.187
|
[22] |
龙肇. 蛋白质—多糖交互作用对高乳脂乳浊液稳定性的影响及作用机理研究[D]. 广州: 华南理工大学, 2014.
Long B. Effect of protein-polysaccharide interactions on the stability of concentrated emulsions and its mechanism[D]. Guangzhou: South China University of Technology, 2014
|
[23] |
Chang C H, Li X, Li J H, et al. Effect of enzymatic hydrolysis on characteristics and synergistic efficiency of pectin on emulsifying properties of egg white protein[J]. Food Hydrocolloids,2017,65:87−95. doi: 10.1016/j.foodhyd.2016.11.004
|
[24] |
Yang X, Gong T, Li D, et al. Preparation of high viscoelastic emulsion gels based on the synergistic gelation mechanism of xanthan and konjac glucomannan[J]. Carbohydrate Polymers,2019,226:115278. doi: 10.1016/j.carbpol.2019.115278
|
[25] |
Yao X, Qlab C, Song M, et al. Effect of ultrasound on physicochemical properties of emulsion stabilized by fish myofibrillar protein and xanthan gum[J]. Innovative Food Science & Emerging Technologies,2019,54:225−234.
|
[26] |
Hu Z Y, Qiu L, Sun Y, et al. Improvement of the solubility and emulsifying properties of rice bran protein by phosphorylation with sodium trimetaphosphate[J]. Food Hydrocolloids,2019,96:288−299. doi: 10.1016/j.foodhyd.2019.05.037
|
[27] |
Lopes I S, Michelon M, Forster T C, et al. Effect of chitosan size on destabilization of oil/water emulsions stabilized by whey protein[J]. Colloids and Surfaces A,2019,574:207−214. doi: 10.1016/j.colsurfa.2019.04.072
|
[28] |
Aoki D, Decker E A, McClements D. Influence of environmental stresses on O/W emulsions stabilized by b-lactoglobulinepectin and β-lactoglobuline-pectine-chitosan membranes produced by the electrostatic layer-by-layer deposition technique[J]. Food Biophysics,2006,1(1):30−40. doi: 10.1007/s11483-005-9002-z
|
[29] |
万芝力. 大豆蛋白-甜菊糖苷相互作用及对界面主导食品体系的调控研究[D]. 广州: 华南理工大学, 2016.
Wan Z L. Tunable soy protein-steviol glycoside interactions and their relationships with interface-dominated food systems[D]. Guangzhou: South China University of Technology, 2016.
|
[1] | WANG Xueli, LEI Chao, SHEN Kaiwei, CHENG Yanwei, LIU Xueting, LI Zhen, YU Lu. Degradation Performance of Biogenic Amines in Fermented Food by Lactobacillus casei FV006[J]. Science and Technology of Food Industry, 2023, 44(14): 137-144. DOI: 10.13386/j.issn1002-0306.2022090136 |
[2] | WANG Xiaojie, MENG Fanqiang, ZHOU Libang, LU Zhaoxin. Optimization of Brevibacillin Fermentation Medium with Brevibacillus laterosporus by Response Surface Methodology[J]. Science and Technology of Food Industry, 2022, 43(4): 153-160. DOI: 10.13386/j.issn1002-0306.2021070335 |
[3] | WU Jun-lin, BAI Jian-ling, MO Shu-ping, ZHANG Ju-mei. Optimization of fermentation medium of lactic acid bacteria cultured in high concentration[J]. Science and Technology of Food Industry, 2018, 39(9): 96-101. DOI: 10.13386/j.issn1002-0306.2018.09.017 |
[4] | ZHU Yun-peng, TIAN You-ming, HONG Qing-lin, NI Hui, XIAO An-feng, YANG Qiu-ming. Optimization of medium composition and culture conditions for Aspergillus tubingensis production[J]. Science and Technology of Food Industry, 2018, 39(3): 82-86,91. DOI: 10.13386/j.issn1002-0306.2018.03.017 |
[5] | HU Yan-xin, LIU Xiao-li, WANG Ying, DONG Ming-sheng, ZHOU Jian-zhong. Optimization on fermentation conditions and medium for bacteriocin produced by Lactobacillus farcimini[J]. Science and Technology of Food Industry, 2016, (10): 255-259. DOI: 10.13386/j.issn1002-0306.2016.10.043 |
[6] | WANG Can, ZHANG Wei, ZHANG Ming-liang, HUANG Jian-zhong. Optimization of Schizochytrium sp. FJU-512 fermentation medium producing DHA[J]. Science and Technology of Food Industry, 2015, (04): 171-174. DOI: 10.13386/j.issn1002-0306.2015.04.029 |
[7] | DONG Ting, ZHOU Zhi-jiang, HAN Ye. Optimization of fermentation medium and fermentation conditions for Pediococcus acidilactici PA003[J]. Science and Technology of Food Industry, 2014, (14): 192-196. DOI: 10.13386/j.issn1002-0306.2014.14.034 |
[8] | LIU Ying-ying, LIU Ying, ZHANG Guang, SUN Bing-yu, WANG Jin-feng, SHI Yan-guo. Optimum fermentation medium of high-yielding neutral protease of mucor[J]. Science and Technology of Food Industry, 2014, (06): 166-170. DOI: 10.13386/j.issn1002-0306.2014.06.032 |
[9] | AN Jun-ying, LIU Ying, ZHU Wen-juan, HU Xue-qiong, YE Li-zhen. Optimization of fermentation medium of Bacillus amyloliquefaciens ZJHD-06 by response surface methodology[J]. Science and Technology of Food Industry, 2014, (01): 191-195. DOI: 10.13386/j.issn1002-0306.2014.01.031 |
[10] | Optimization of solid state fermentation medium to produce β-galactosidase by Aspergillus oryzae[J]. Science and Technology of Food Industry, 2013, (08): 232-235. DOI: 10.13386/j.issn1002-0306.2013.08.033 |
1. |
谢雨佳,彭小杰,李明逸,李政,王娟,肖珊珊,张少辉. 乳清蛋白源抗真菌多肽的制备工艺优化. 中国乳品工业. 2024(06): 59-64 .
![]() |