Citation: | MA Zhiguo, LIU Xiangcen, YUAN Chenyang, et al. Construction of Engineering Bacteria for Transforming Phytosterol to 22-hydroxy-23, 24-bisnorchola-1, 4-diene-3-ketone(HPD) and Optimization of Fermentation Medium[J]. Science and Technology of Food Industry, 2021, 42(15): 131−138. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120281. |
[1] |
Donova MV, Egorova OV. Microbial steroid transformations: current state and prospects[J]. Applied Microbiology and Biotechnology,2012,94(6):1423−1447. doi: 10.1007/s00253-012-4078-0
|
[2] |
Nassiri KN, Faramarzi MA. Recent developments in the fungal transformation of steroids[J]. Biocatal Biotransfor,2015,33(1):1−28.
|
[3] |
Fernandez CL, Galan B, Garcia J. New insights on steriod biotechnology[J]. Frontiers in Microbiology,2018,9(958):1−15.
|
[4] |
He XJ, Liu B, Wang GH, et al. Microbial metabolism of methyl protodioscin by Aspergillus niger culture-A new androstenedione producing way from steroid[J]. Journal of Steroid Biochemistry and Molecular Biology,2006,100(1):87−94.
|
[5] |
王欣, 王枫. 植物固醇的研究新进展[J]. 国外医学,2007(2):98−101.
|
[6] |
张娜, 郭庆启, 张岭. 植物固醇/固烷醇(酯)作为降低胆固醇功能性食品的研究进展[J]. 中国调味品,2010,35(10):45−47+51. [Zhang N, Guo Q Q, Zhang L. Research Progress of Phytosterols/Stanols (Esters) as Functional Foods for Lowering Cholesterol[J]. China Condiment,2010,35(10):45−47+51]. doi: 10.3969/j.issn.1000-9973.2010.10.006
|
[7] |
金俊, 卢梦瑶, 厉秋岳, 等. 以甾醇为底物微生物法合成甾体类化合物的研究进展[J]. 食品研究与开发,2018,39(10):205−209. doi: 10.3969/j.issn.1005-6521.2018.10.038
|
[8] |
杨顺楷, 杨亚力, 吴中柳, 等. 微生物发酵降解植物甾醇侧链生产17-酮甾体研究进展[J]. 生物加工过程,2010,8(5):69−77. doi: 10.3969/j.issn.1672-3678.2010.05.015
|
[9] |
Yao K, Xu LQ, Wang FQ, et al. Characterization and engineering of 3-ketosteroid-delta (1)-dehydrogenase and 3-ketosteroid-9 alpha-hydroxylase in Mycobacterium neoaurum ATCC 25795 to produce 9 alpha-hydroxy-4-androstene-3, 17-dione through the catabolism of sterols[J]. Metabolic Engineering,2014,24:181−91. doi: 10.1016/j.ymben.2014.05.005
|
[10] |
Boland E W. The effects of cortisone and adrenocorticotropic hormone (ACTH) on certain rheumatic diseases[J]. Calif Med,1950,72(6):405−14.
|
[11] |
Toro A and Ambrus G. Oxidative decarboxxylation of 17(20)-dehydro-23, 24-dinorcholanoic acids[J]. Tetrahedron Letters,1990,31(24):3475−3476. doi: 10.1016/S0040-4039(00)97426-4
|
[12] |
Chen DJ, Zhu BQ. Application of microbial transformation in modern pharmaceutical industry[J]. Chinese Journal of Antibiotics,2006,31(2):112−118.
|
[13] |
徐慧静, 刘萍, 崔立迁, 等. 甾体激素药物的生物转化研究进展[J]. 生物加工过程,2019,17(5):542−550. doi: 10.3969/j.issn.1672-3678.2019.05.016
|
[14] |
Zhang W, Shao M, Rao Z, et al. Bioconversion of 4-androstene-3, 17-dione to androst-1, 4-diene-3, 17-dione by recombinant Bacillus subtilis expressing ksdd gene encoding 3-ketosteroid-Delta1-dehydrogenase fromMycobacterium neoaurum JC-12[J]. Journal of Steroid Biochemistry and Molecular Biology,2013,135:36−42. doi: 10.1016/j.jsbmb.2012.12.016
|
[15] |
Rohman A, Oosterwijk NV, Dijkstra BW. Purification, crystallization and preliminary X-ray crystallographic analysis of 3-ketosteroid Δ1-dehydrogenase from Rhodococcus erythropolis SQ1[J]. Acta Crystallographica Section F-Structural Biology Communications,2012,68(5):551−556. doi: 10.1107/S1744309112011025
|
[16] |
Choi KP, Yamashita M, Murooka Y, et al. Purification and Characterization of the 3-Ketosteroid-Δ1-Dehydrogenase ofArthrobacter simplex Produced in Streptomyces liuidans[J]. Journal of Biochemistry,1995,117(5):1043−1049. doi: 10.1093/oxfordjournals.jbchem.a124804
|
[17] |
Molnár I, Choi KP, Yamashita M, et al. Molecular cloning, expression in Streptomyces livdans, and analysis of a gene cluster from Arthrobacter simplex encoding 3-ketosteroid-Δ1-dehydrogenase, 3-ketosteroid-Δ5-isomerase and a hypothetical regulatory protein[J]. Molecular microbiology,1995,15(5):895−905. doi: 10.1111/j.1365-2958.1995.tb02359.x
|
[18] |
Geize RVD, Hessels GI, Gerwen RV, et al. Targeted disruption of the KstD gene encoding a 3-ketosteroid-Δ1-dehydrogenase isoenzyme of Rhodococcus erythropolis strain SQ1[J]. Applied and Environmental Microbiology,2000,66(5):2029−2036. doi: 10.1128/AEM.66.5.2029-2036.2000
|
[19] |
Zhang RJ, Liu XC, Wang YS, et al. Identification, function, and application of 3-ketosteroid Δ1-dehydrogenase isozymes in Mycobacterium neoaurum DSM 1381 for the production of steroidic synthons[J]. Microb Cell Fact,2018,17(1):77−93. doi: 10.1186/s12934-018-0916-9
|
[20] |
Sonomoto K, Usui N, Tanaka A, et al. 9α-Hydroxylation of 4-androstene-3, 17-dione by gel-entrappedCorynebacterium sp. cells[J]. Applied Microbiology and Biotechnology,1983,17(4):203−210. doi: 10.1007/BF00510416
|
[21] |
Geize Rvd, Hessels GI, Gerwen RV, et al. Molecular and functional characterization of kshA andkshB, encoding two components of 3-ketosteroid 9α-hydroxylase, a class IA monooxygenase, in Rhodococcus erythropolis strain SQ1[J]. Molecular Microbiology,2002,45(4):1007−1018. doi: 10.1046/j.1365-2958.2002.03069.x
|
[22] |
Sarmah U, Roy MK, Singh HD. Steroid transformations by a strain of Arthrobacter oxydans incapable of steroid ring degradation[J]. Journal of Basic Microbiology,1989,29(2):85−92. doi: 10.1002/jobm.3620290206
|
[23] |
Xu LQ, Liu YJ, Yao K, et al. Unraveling and engineering the production of 23, 24-bisnorcholenic steroids in sterol metabolism[J]. Scientific Reports,2016,6(1):269−293.
|
[24] |
Imada Y T K. Process for producing steroidal alcohols: US, 4223091[P]. 1980.
|
[25] |
Liu XC, Zhang RJ, Bao ZW, et al. Biotransformation of Phytosterols to Androst-1, 4-Diene-3, 17-Dione by Mycobacterium sp ZFZ Expressing 3-Ketosteroid-∆1-Dehydrogenase[J]. Catalysts,2020,10(6):663−673. doi: 10.3390/catal10060663
|
[26] |
张乐乐. Mycobacterium neoaurum高效表达载体的构建及其在合成雄甾-1, 4-二烯-3, 17-二酮中的应用[D]. 无锡: 江南大学, 2015.
|
[27] |
姚抗. 分枝杆菌甾醇转化机制的解析及其代谢工程改造应用于制备重要甾药中间体的研究[D]. 上海: 华东理工大学, 2014.
Y
|
[28] |
冯建勋, 陈瑞, 高兴强, 等. Tween-80和羟丙基-β-环糊精对分枝杆菌转化植物甾醇代谢途径的影响[J]. 中国医药工业杂志,2016,47(1):25−30.
|
[29] |
李珍柱. 三种类黄酮纯度标准物质的研制[D]. 重庆: 西南大学, 2018.
|
[30] |
曹慧锦, 马治国, 刘相岑, 等. 降解植物甾醇9α-羟基雄烯二酮工程菌株构建及发酵工艺优化[J]. 食品工业科技,2020,41(14):101−107.
|
[31] |
柳相鹤, 张瑞婕, 赵树欣, 等. Mycobacterium sp. BFZ304转化植物甾醇产9α-羟基雄烯二酮培养基的响应面优化[J]. 食品工业科技,2017,37(16):172−177.
|
[32] |
刘相岑, 郝晓蔚, 张瑞婕, 等. 降解植物甾醇产雄甾-1, 4-二烯-3, 17-二酮工程菌株的构建及转化培养基优化[J]. 食品工业科技,2018,39(18):110−116.
|
[33] |
刘波, 邬应龙, 张霞, 等. 红曲霉固态发酵产木聚糖酶培养基的响应面优化[J]. 食品工业科技,2014,35(1):254−258.
|
[34] |
杨英. 徽生物转化植物甾醇制备甾体药物关健中间体研究[D]. 合肥: 合肥工业大学, 2009: 64−67.
|
[35] |
欧阳薇, 乐龙, 王志祥, 等. 超声波优化栀子苷提取的工艺研究[J]. 中国药物警戒,2011(3):154−157. doi: 10.3969/j.issn.1672-8629.2011.03.008
|
[36] |
Xiong L B, Liu H H, Xu L Q, et al. Improving the production of 22-hydroxy-23, 24-bisnorchol-4-ene-3-one from sterols in Mycobacterium neoaurum by increasing cell permeability and modifying multiple genes[J]. Microbial Cell Factories,2017,16(1):89. doi: 10.1186/s12934-017-0705-x
|
[1] | YIN Hongmei, CHEN Haoran, YIN Ziran, TANG Zhenyi, ZENG Jinxiu, SHI Xiaodan, ZHANG Lu, TU Zongcai. Comparison of Volatile Flavor Compounds and Qualities between Traditional Fermented and Inoculated Fermented of Mei yu[J]. Science and Technology of Food Industry, 2024, 45(15): 56-65. DOI: 10.13386/j.issn1002-0306.2023070267 |
[2] | ZHANG Shiyao, XIAO Yue, WANG Xinyu, CHU Chuanqi, WANG Tao, HU Xiaosong, YI Junjie. Quality Characteristics of Fermented Chili Peppers Using Different Inoculated and Natural Fermentation Approaches[J]. Science and Technology of Food Industry, 2024, 45(12): 129-139. DOI: 10.13386/j.issn1002-0306.2023070254 |
[3] | ZHU Jiamin, MO Ziyao, LI Mengtong, XIN Yueqi, ZHU Ying'ao, WANG Hui, CHEN Qian. Study on Different Inoculation Levels of Lactobacillus sakei on the Improvement of Quality Characteristics of Low-sodium Dry Sausages[J]. Science and Technology of Food Industry, 2023, 44(7): 133-142. DOI: 10.13386/j.issn1002-0306.2022060041 |
[4] | TANG Kaiwei, HUANG Xiaoying, YI Yuwen, ZHU Chenglin, DENG Jing, YE Haixiao, TANG Junni. Effect of Fermentation with Single and Co-culture of Lactobacillus bulgaricus and Streptococcus thermophilus on the Quality of Yogurt[J]. Science and Technology of Food Industry, 2022, 43(23): 127-132. DOI: 10.13386/j.issn1002-0306.2022020250 |
[5] | LIU Chang, ZUO Changzhou, PENG Jing, CHEN Jikun, TU Kang, PAN Leiqing. Response Surface Optimization of the Fermentation Process of Tomato Juice by Lactobacillus plantarum and Its Quality Evaluation[J]. Science and Technology of Food Industry, 2022, 43(10): 246-253. DOI: 10.13386/j.issn1002-0306.2021080285 |
[6] | ZHOU Yingjun, XIE Chunliang, CHEN Baizhong, GONG Wenbing, ZHU Zuohua, XU Chao, YANG Qi, PENG Yuande. Effect of Different Yeast and Lactobacillus plantarum Combined Fermentation on the Quality of Xinhui Citrus Ferment[J]. Science and Technology of Food Industry, 2022, 43(6): 118-125. DOI: 10.13386/j.issn1002-0306.2021060189 |
[7] | ZHANG Lihua, WANG Xia, ZHA Mengmeng, TANG Peixin, SHI Xun, ZONG Wei, ZHAO Guangyuan. Effects of Lactobacillus plantarum Microcapsules Fermentation on the Quality of Carrot Chips[J]. Science and Technology of Food Industry, 2022, 43(2): 135-141. DOI: 10.13386/j.issn1002-0306.2021040234 |
[8] | ZHANG Li-hua, WANG Xia, ZHAO Guang-yuan, ZONG Wei. Effects of Adding Jujube Juice on Quality of Carrot Fermented by Lactobacillus plantarum[J]. Science and Technology of Food Industry, 2020, 41(15): 99-105. DOI: 10.13386/j.issn1002-0306.2020.15.016 |
[9] | LIU Ying-ping, CUI Li, NIU Li-ying, LI Da-jing, LIU Chun-quan, XIAO Li-xia. Study on the microwave sterilization of Lactobacillus plantarum and application of microwave on pickled lettuce[J]. Science and Technology of Food Industry, 2016, (24): 245-248. DOI: 10.13386/j.issn1002-0306.2016.24.038 |
[10] | JIN Le-tian, WU Shi-rong, LIU Tong-jie, HE Guo-qing. Effect of Lactobacillus plantarum inoculated fermentation on the quality of kimchi[J]. Science and Technology of Food Industry, 2014, (23): 195-198. DOI: 10.13386/j.issn1002-0306.2014.23.032 |