FU Wenqian, GURI Nailsieli, LIU Yuming, et al. Establishment of the Kinetic Model of Microwave Drying of Traditional Surface Patch in Soup[J]. Science and Technology of Food Industry, 2021, 42(16): 44−52. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120068.
Citation: FU Wenqian, GURI Nailsieli, LIU Yuming, et al. Establishment of the Kinetic Model of Microwave Drying of Traditional Surface Patch in Soup[J]. Science and Technology of Food Industry, 2021, 42(16): 44−52. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120068.

Establishment of the Kinetic Model of Microwave Drying of Traditional Surface Patch in Soup

More Information
  • Received Date: December 08, 2020
  • Available Online: June 14, 2021
  • In this paper, the influence of microwave power, thermal power and loading capacity on the drying characteristics of Xinjiang traditional surface patch in soup were studied. Based on the variation trend of dry base moisture content, drying water loss rate and water ratio of the surface patch in microwave drying process, the water loss rule of the surface patch in microwave drying process was obtained. The results showed that: With the increasing of microwave power, the greater of the firepower, the smaller of the loading capacity, the faster decreased of the moisture content of dry basis, and the greater of the change of drying rate and moisture ratio. And the curves of lnMR-t and ln(−lnMR)−lnt showed that the Page equation could better reflect the microwave drying law of the surface. The Page equation under different microwave power (G) was as follows: ln(−lnMR)1=8.3519×10−3G+8.1588×10−6G2−1.5967+(0.45334+2.9425×10−3G−2.285×10−6G2)lnt. Under different microwave firepower (H), the Page equation was ln(−lnMR)2=2.1635×10−2H−6.44063×10−5H2−4.39914+(1.4709−4.7125×10−3H+2.0625×10−5H2)lnt. Under different loads (S), the Page equation was ln(−lnMR)3 =4.8846×10−2S−4.7936×10−4S2−1.57847+(0.12282+2.71275×10−2S−1.319375×10−4S2)lnt. Combined with the surface quality and factory production, the better microwave drying combination of power, firepower and surface loading capacity was 550 W, 60% and 100 g, which was verified to have strong feasibility and would provide the technical support for the surface microwave drying process.
  • [1]
    宋蕊, 白羽嘉, 阿衣古丽·阿力木, 等. 响应面法优化新疆汤饭羊肉块工艺[J]. 食品科技,2021,46(1):127−133.
    [2]
    魏益民, 王振华, 于晓磊, 等. 挂面干燥动力学研究[J]. 中国粮油学报,2020,35(3):14−22. doi: 10.3969/j.issn.1003-0174.2020.03.004
    [3]
    魏益民, 王振华, 于晓磊, 等. 挂面干燥过程水分迁移规律研究[J]. 中国食品学报,2017,17(12):1−12.
    [4]
    韩旭, 董京磊, 宫俊杰, 等. 果蔬干燥技术的研究进展[J]. 中国食物与营养,2020,26(9):37−40. doi: 10.3969/j.issn.1006-9577.2020.09.009
    [5]
    唐小闲, 段振华, 任爱清, 等. 即食慈姑片微波干燥特性及动力学模型研究[J]. 食品与机械,2020,36(10):177−182, 227.
    [6]
    李涛. 农产品微波干燥工艺的研究[D]. 江西: 江西农业大学, 2013.
    [7]
    田华. 生姜微波干燥动力学模型构建[J]. 保鲜与加工,2020,20(1):127−132. doi: 10.3969/j.issn.1009-6221.2020.01.021
    [8]
    王杰. 挂面干燥工艺及过程控制研究[D]. 北京: 中国农业科学院, 2014.
    [9]
    郭颖, 陆启玉. 不同烘干温度挂面中淀粉和蛋白组分变化研究[J]. 粮食与油脂,2015,28(2):13−16. doi: 10.3969/j.issn.1008-9578.2015.02.004
    [10]
    Inazu T, Iwasaki K, Furuta T. Effect of temperature and relative humidity on drying kinetics of fresh Japanese noodle (udon)[J]. LWT-Food Science and Technology,2002,35(8):649−655. doi: 10.1006/fstl.2002.0921
    [11]
    Pronyk C, Cenkowski S, Muir W E, et al. Optimum processing conditions of instant Asian noodles in superheated steam[J]. Drying Technology,2008,26(2):204−210. doi: 10.1080/07373930701831457
    [12]
    Pronyk C, Cenkowski S, Muir W E. Drying kinetics of instant Asian noodles processed in superheated steam[J]. Drying Technology,2010,28(2):304−314. doi: 10.1080/07373930903534545
    [13]
    Ogawa T, Kobayashi T, AdachiS. Prediction of pasta drying process based on athermogravimetric analysis[J]. Journal of Food Engineering,2012,111(1):129−134. doi: 10.1016/j.jfoodeng.2012.01.011
    [14]
    De Temmerman J, Verboven P, Ramon H. Modelling of transient moisture concentration of semolina pasta during air drying[J]. Journal of Food Engineering,2007,80(3):892−903. doi: 10.1016/j.jfoodeng.2006.08.004
    [15]
    Villeneuve S, Gélinas P. Drying kinetics of whole durum wheat pasta according to temperature and relative humidity[J]. LWT-Food Science and Technology,2007,40(3):465−471. doi: 10.1016/j.lwt.2006.01.004
    [16]
    Inazu T, Iwasaki K. Mathematical evaluation of effective moisture diffusivity in fresh Japanese noodles (udon) by regular regime theory[J]. Journal of Food Science,2000,65(3):440−444. doi: 10.1111/j.1365-2621.2000.tb16024.x
    [17]
    Inazu T, Iwasaki K, Furuta T. Effect of air velocity on fresh Japanese noodle (Udon) drying[J]. LWT-Food Science and Technology,2003,36(2):277−280. doi: 10.1016/S0023-6438(02)00185-8
    [18]
    中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. GB/T 25005-2010 感官分析方便面感官评价方法[S]. 北京: 中国标准出版社, 2010.
    [19]
    张梦超. 非油炸方便型马铃薯热干面的品质改良及其干燥特性研究[D]. 湖北: 华中农业大学, 2019.
    [20]
    中华人民共和国国家卫生和计划生育委员会. GB 5009.3-2016 食品安全国家标准食品中水分的测定[S]. 北京: 中国标准出版社, 2016.
    [21]
    武亮, 张影全, 王振华, 等. 挂面干燥特性与模型拟合研究[J]. 中国食品学报,2019(19):125−135.
    [22]
    许晴晴, 陈杭君, 郜海燕, 等. 真空冷冻和热风干燥对蓝莓品质的影响[J]. 食品科学,2014(35):64−68.
    [23]
    Menges H O, Erekin C. Mathematical modeling of thin layer drying of golden apples[J]. Journal of Food Engineering,2005,77(1):141−145.
    [24]
    Abalone R, Gaston A, Cassinera A, et al. Thin layer drying of amaranth seeds[J]. Biosystems Engineering,2005,93(2):421−424.
    [25]
    Biach D A, Young W R, Franks P J S. Thin layers of plankton: Formation by shear and death by diffusion[J]. Deep Sea Research Part I Oceanographic Research Papers,2008,55(3):277−295. doi: 10.1016/j.dsr.2007.11.009
    [26]
    毛志幸, 孙辉, 陈宗道. 白果微波干燥特性及干燥动力学模型研究[J]. 食品工业科技,2017,38(22):11−16, 21.
    [27]
    宋树杰, 王蒙. 熟化紫薯片微波干燥特性及数学模型[J]. 食品与发酵工业,2020,46(2):85−93.
    [28]
    王英, 张建强, 李永武, 等. 不同微波条件对速熟绿豆水分含量影响的研究[J]. 粮食科技与经济,2013(38):54−55, 58.
    [29]
    崔满满. 干燥方法对甜瓜片干燥特性及品质影响的研究[D]. 乌鲁木齐: 新疆农业大学, 2012.
    [30]
    刘旺星, 陈雄飞, 余佳佳, 等. 胡萝卜微波干燥特性及动力学模型[J]. 食品工业科技,2019,40(9):74−78, 83.
    [31]
    李雨朋, 赵一霖, 赵城彬, 等. 营养冲调粥流化床干燥特性及动力学模型的建立[J]. 食品科学,2019,40(21):108−114.
    [32]
    王金丽, 邓怡国, 黄晖. 菠萝叶纤维干燥特性试验研究[C]// 上海: 2010年国际农业工程大会, 2010国际农业工程大会现代农机新技术应用研讨会分会场论文集, 2010: 6.
  • Related Articles

    [1]SUN Hui, ZHANG Bo, ZHOU Jianghong, XU Zhenyi, MAO Zhixing, WANG Yuxiang, PANG Jie. Establishment of Microwave Drying Dynamic Model for Foshou Leaves Powder and Analysis of Quality Characteristics[J]. Science and Technology of Food Industry, 2025, 46(3): 278-287. DOI: 10.13386/j.issn1002-0306.2024010189
    [2]SHEN Suqing, XU Yayuan, LI Dajing, ZHANG Zhongyuan, XIAO Yadong, NIE Meimei, LIU Chunju, ZHENG Tiesong. Research on Microwave Drying Characteristics and Kinetic Model of Green Bananas[J]. Science and Technology of Food Industry, 2022, 43(14): 110-117. DOI: 10.13386/j.issn1002-0306.2021110276
    [3]LIU He, JIAO Junhua, TIAN You, LIU Jiaao, WANG Yanling, WU Xuehong. Hot Air Drying Characteristics and Shrinkage Dynamics Model of Potato Chips[J]. Science and Technology of Food Industry, 2022, 43(11): 58-64. DOI: 10.13386/j.issn1002-0306.2021080327
    [4]Qing GUI, Lijun ZHOU, Xiuquan WANG, Jianxiong HUANG, Dinghua ZHENG, Jian PAN. Hot Air Drying Characteristics and Dynamics Model of Ficus hirta Vahl.[J]. Science and Technology of Food Industry, 2021, 42(8): 58-63. DOI: 10.13386/j.issn1002-0306.2020060346
    [5]SONG Shu-jie, ZHANG Shu-qing, YAO Qian-zhuo, ZHAO Wu-qi. Microwave Drying Characteristics and Kinetic Model of Cooked Sweet Potato Slice[J]. Science and Technology of Food Industry, 2020, 41(3): 199-205. DOI: 10.13386/j.issn1002-0306.2020.03.034
    [6]LIU Wang-xing, CHEN Xiong-fei, YU Jia-jia, LIU Mu-hua, HU Shu-fen, LU Fan. Microwave Drying Characteristics and Kinetic Model of Carrot[J]. Science and Technology of Food Industry, 2019, 40(9): 68-72,77. DOI: 10.13386/j.issn1002-0306.2019.09.013
    [7]HU Yun-feng, ZHANG Li-ping, WEI Jin-jin, WEI Zeng-yu, CHEN Jun-ran. Dynamic Model of Quality Change of Eggs Coated with Chitosan[J]. Science and Technology of Food Industry, 2019, 40(1): 87-91. DOI: 10.13386/j.issn1002-0306.2019.01.016
    [8]MAO Zhi-xing, SUN Hui, CHEN Zong-dao. Study on the microwave drying characteristics and drying kinetics model of Ginkgo biloba[J]. Science and Technology of Food Industry, 2017, (22): 11-16. DOI: 10.13386/j.issn1002-0306.2017.22.003
    [9]WANG Zhao, XIE Chun-yan, LI Yan, WU Da-ke. Dynamics model and process optimization of thin-layer drying of carmine radish[J]. Science and Technology of Food Industry, 2016, (02): 265-269. DOI: 10.13386/j.issn1002-0306.2016.02.045
    [10]MA Jin, MI Shao-lei, ZHU De-quan, JIANG Rui, SONG Yu, SUN Lei. Study on the microwave drying characteristics and dynamic model of kernel of hickory( Carya cathayensis Sary)[J]. Science and Technology of Food Industry, 2015, (05): 108-112. DOI: 10.13386/j.issn1002-0306.2015.05.014
  • Cited by

    Periodical cited type(2)

    1. 郑丽萍,张建超,白羽嘉,伊丽达娜·开赛尔,孔丽洁,辛雯钰,冯作山. 玫瑰花风味杏果糕弱微波辅助干热空气干燥动力学模型的建立. 食品科技. 2022(08): 54-62 .
    2. 方良材,吴钊龙,刘梦姣,黄卫萍,黄浩. 牛大力微波干燥特性及其动力学模型分析. 南方农业学报. 2021(09): 2554-2561 .

    Other cited types(4)

Catalog

    Article Metrics

    Article views (245) PDF downloads (18) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return