Citation: | SHEN Suqing, XU Yayuan, LI Dajing, et al. Research on Microwave Drying Characteristics and Kinetic Model of Green Bananas[J]. Science and Technology of Food Industry, 2022, 43(14): 110−117. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021110276. |
[1] |
罗国光. 果树词典[M]. 北京: 中国农业出版社, 2007: 425−426
LUO G G. Fruit tree dictionary[M]. Beijing: China Agricultural Press, 2007: 425−426.
|
[2] |
ODENIGBO A M, ASUMUGHA V U, UBBOR S, et al. In vitro starch digestibility of plantain and cooking-banana at ripe and unripe stages[J]. International Food Research Journal,2013,20(6):3027−3031.
|
[3] |
徐亚元, 沈素晴, 李大婧, 等. 青香蕉微波干燥中淀粉糊化行为及消化特性的研究[J]. 食品工业科技, 2022, 43(3): 88−96.
XU Y Y, SHEN S Q, LI D J, et al. Study on starch gelatinization behaviors and digestibility of green bananas during microwave drying[J]. Science and Technology of Food Industry, 2022, 43(3): 88−96.
|
[4] |
ZHANG F, ZHANG M, MUJUMDAR A S. Drying characteristics and quality of restructured wild cabbage chips processed using different drying methods[J]. Drying Technology,2011,29(6):682−688. doi: 10.1080/07373937.2010.525729
|
[5] |
林鹏程, 张钟元, 江宁, 等. 紫菜热风/微波联合干燥工艺优化及品质分析[J]. 食品工业科技, 2022, 43(3): 215−225.
LING P C, ZHANG Z Y, JIANG N, et al. Optimization of two step drying process of porphyra by hot air and microwave and quality evaluation study on starch gelatinization behaviors and digestibility of green bananas during microwave drying[J]. Science and Technology of Food Industry, 2022, 43(3): 215−225.
|
[6] |
何方健. 山楂微波干燥过程中品质监测与工艺优化研究[D]. 无锡: 江南大学, 2021
HE F J. Study on quality monitoring and process optimization of hawthorn during microwave drying[D]. Wuxi: Jiangnan University, 2021.
|
[7] |
叶大鹏, 崔蕴涵, 翁海勇, 等. 莲子间歇式微波分段变功率真空干燥方法[J]. 农业工程学报,2021,37(8):288−295. [YE D P, CUI Y H, WENG H Y, et al. Lotus seed drying by intermittent phased varying power microwave under vacuum[J]. Transactions of the Chinese Society of Agricultural Engineering,2021,37(8):288−295. doi: 10.11975/j.issn.1002-6819.2021.08.033
YE D P, CUI Y H, WENG H Y, et al. Lotus seed drying by intermittent phased varying power microwave under vacuum[J]. Transactions of the Chinese Society of Agricultural Engineering, 2021, 37(8): 288-295. doi: 10.11975/j.issn.1002-6819.2021.08.033
|
[8] |
温家豪, 董继先, 王栋等. 马铃薯片间歇微波真空干燥工艺优化[J]. 食品工业,2021,42(1):130−135. [WEN J H, DONG J X, WANG D, et al. Optimization of intermittent microwave-vacuum drying of potato slices[J]. Technology of Food Industry,2021,42(1):130−135.
WEN J H, DONG J X, WANG D, et al. Optimization of intermittent microwave-Vacuum drying of potato slices[J]. Technology of Food Industry, 2021, 42(1): 130-135.
|
[9] |
陈燕珠. 香蕉片微波真空干燥水分特性的研究[J]. 闽西职业技术学院学报,2010,12(3):107−111. [CHEN Y Z. Research on moisture content properties of banana slice under microwave vacuum drying condition[J]. Journal of Minxi Vocational and Technical College,2010,12(3):107−111. doi: 10.3969/j.issn.1673-4823.2010.03.027
CHEN Y Z. Research on moisture content properties of banana slice under microwave vacuum drying condition[J]. Journal of Minxi Vocational and Technical College, 2010, 12(3): 107-111. doi: 10.3969/j.issn.1673-4823.2010.03.027
|
[10] |
OMOLOLA A O, JIDEANI A, KAPILA P F. Modeling microwave drying kinetics and moisture diffusivity of Mabonde banana variety[J]. International Journal of Agricultural & Biological Engineering,2014,7(6):107−113.
|
[11] |
GB 5009.3−2016 食品安全国家标准食品中水分的测定[S]. 2016
GB 5009.3-2016 National Food Safety Standard: Determination of moisture in food[S]. 2016.
|
[12] |
朱文学, 尤泰斐, 白喜婷, 等. 基于低场核磁的马铃薯切片干燥过程水分迁移规律研究[J]. 农业机械学报,2018,49(12):364−370. [ZHU W X, YOU T F, BAI X T, et al. Analysis of moisture transfer of potato slices during drying using low-field NMR[J]. Transactions of The Chinese Society of Agricultural Machinery,2018,49(12):364−370. doi: 10.6041/j.issn.1000-1298.2018.12.043
ZHU W X, YOU T F, BAI X T, et al. Analysis of moisture transfer of potato slices during drying using low-field NMR[J]. Transactions of The Chinese Society of Agricultural Machinery, 2018, 49(12): 364-370. doi: 10.6041/j.issn.1000-1298.2018.12.043
|
[13] |
FANEK H, FAVA C, HUANG E C. Determination of effective diffusion coefficient of water in marshmallow from drying data using finite difference method[J]. International Food Research Journal,2012:1351−1354.
|
[14] |
任爱清, 邓珊, 唐小闲, 等. 香菇脆片真空油炸过程中传质规律[J]. 食品工业科技,2021,42(4):50−54. [REN A Q, DENG S, TANG X X, et al. Mass transfer during vacuum frying of shiitake mushroom chips[J]. Science and Technology of Food Industry,2021,42(4):50−54.
REN Ai Q, DENG S, TANG X X, et al. Mass transfer during vacuum frying of shiitake mushroom chips[J]. Science and Technology of Food Industry, 2021, 42(4): 50-54.
|
[15] |
楚文靖, 盛丹梅, 张楠, 等. 红心火龙果热风干燥动力学模型及品质变化[J]. 食品科学,2019,40(17):150−155. [CHU W J, SHENG D M, ZHANG N, et al. Hot-air drying of red-fleshed pitaya: Kinetic modelling and quality changes[J]. Food Science,2019,40(17):150−155. doi: 10.7506/spkx1002-6630-20190415-196
CHU W J, SHENG D M, ZHANG N, et al. Hot-air drying of red-fleshed pitaya: Kinetic modelling and quality changes[J]. Food Science, 2019, 40(17): 150-155. doi: 10.7506/spkx1002-6630-20190415-196
|
[16] |
LI L L, ZHANG M, BHANDARI B, et al. LF-NMR online detection of water dynamics in apple cubes during microwave vacuum drying[J]. Drying Technology,2018,36(16):2006−2015. doi: 10.1080/07373937.2018.1432643
|
[17] |
孙畅莹, 刘云宏, 曾雅, 等. 直触式超声强化热风干燥梨片的干燥特性[J]. 食品与机械,2018,34(9):37−42. [SUN C Y, LIU Y H, ZENG Y, et al. Effect of contact ultrasound power on internal moisture migration of pear slices during ultrasound enhanced hot air drying[J]. Food & Machinery,2018,34(9):37−42.
SUN C Y, LIU Y H, ZENG Y, et al. Effect of contact ultrasound power on internal moisture migration of pear slices during ultrasound enhanced hot air drying[J]. Food & Machinery, 2018, 34(9): 37-42.
|
[18] |
SILVA W, E SILVA C, GAMA F, et al. Mathematical models to describe thin-layer drying and to determine drying rate of whole bananas[J]. Journal of the Saudi Society of Agricultural Sciences,2014,13(1):67−74. doi: 10.1016/j.jssas.2013.01.003
|
[19] |
TOĞRUL İT, PEHLIVAN D. Mathematical modelling of solar drying of apricots in thin layers[J]. Journal of Food Engineering,2002,55(3):209−216. doi: 10.1016/S0260-8774(02)00065-1
|
[20] |
DHANUSHKODI S, WILSON V H, SUDHAKAR K. Mathematical modeling of drying behavior of cashew in a solar biomass hybrid dryer[J]. Resource-Efficient Technologies,2017,3(4):359−364. doi: 10.1016/j.reffit.2016.12.002
|
[21] |
李叶贝, 任广跃, 屈展平, 等. 马铃薯小麦复合面条热泵干燥特性及数学模型的研究[J]. 中国粮油学报,2019,34(10):7−15. [LI Y B, REN G Y, QU Z P, et al. Heat pump drying characteristics and mathematical model of potato wheat compound noodle[J]. Journal of the Chinese Cereals and Oils Association,2019,34(10):7−15. doi: 10.3969/j.issn.1003-0174.2019.10.003
LI Y B, REN G Y, QU Z P, et al. Heat pump drying characteristics and mathematical model of potato wheat compound noodle[J]. Journal of the Chinese Cereals and Oils Association, 2019, 34(10): 7-15. doi: 10.3969/j.issn.1003-0174.2019.10.003
|
[22] |
代建武, 杨升霖, 王杰, 等. 微波真空干燥对香蕉片干燥特性及品质的影响[J]. 农业机械学报,2020,51(s1):500−507. [DAI J W, YANG S L, WANG J, et al. Effect of microwave vacuum drying conditions on drying characteristics and texture structure of banana chips[J]. Transactions of The Chinese Society of Agricultural Machinery,2020,51(s1):500−507.
DAI J W, YANG S L, WANG J, et al. Effect of microwave vacuum drying conditions on drying characteristics and texture structure of banana chips[J]. Transactions of The Chinese Society of Agricultural Machinery, 2020, 51(s1): 500-507.
|
[23] |
乔柱, 关二旗, 卞科. 玉米热风和过热蒸汽干燥特性及其品质对比研究[J]. 河南工业大学学报(自然科学版),2016,37(3):1−6. [QIAN Z, GUAN E Q, BIAN K. Comparison of characteristics and quality of maize by hot air and superheated steam drying[J]. Journal of Henan University of Technology (Natural Science Edition),2016,37(3):1−6.
QIAN Z, GUAN E Q, BIAN K. Comparison of characteristics and quality of maize by hot air and superheated steam drying[J]. Journal of Henan University of Technology (Natural Science Edition), 2016, 37(3): 1-6.
|
[24] |
JAIN D, PATHARE P B. Study the drying kinetics of open sun drying of fish[J]. Journal of Food Engineering,2007,78(4):1315−1319. doi: 10.1016/j.jfoodeng.2005.12.044
|
[25] |
段柳柳, 段续, 任广跃. 怀山药微波冻干过程的水分扩散特性及干燥模型[J]. 食品科学,2019,40(1):23−30. [DUAN L L, DUAN X, REN G Y. Water diffusion characteristics and microwave vacuum freeze-drying modelling of chinese yam (Dioscorea opposite) tubers[J]. Food Science,2019,40(1):23−30. doi: 10.7506/spkx1002-6630-20180610-129
DUAN L L, DUAN X, REN G Y. Water diffusion characteristics and microwave vacuum freeze-drying modelling of chinese yam (Dioscorea opposite) tubers[J]. Food Science, 2019, 40(1): 23-30. doi: 10.7506/spkx1002-6630-20180610-129
|
[26] |
HU Q G, ZHANG M, MUJUMDAR A S, et al. Drying of edamames by hot air and vacuum microwave combination[J]. Journal of Food Engineering,2006,77(4):977−982. doi: 10.1016/j.jfoodeng.2005.08.025
|
[27] |
刘宗博, 张钟元, 李大婧, 等. 双孢菇远红外干燥过程中内部水分的变化规律[J]. 食品科学,2016,37(9):82−86. [LIU Z B, ZHANG Z Y, LI D J, et al. Analysis of moisture change during far-Infrared drying of Agaricus bisporus[J]. Food Science,2016,37(9):82−86. doi: 10.7506/spkx1002-6630-201609016
LIU Z B, ZHANG Z Y, LI D J, et al. Analysis of moisture change during far-Infrared drying of Agaricus bisporus[J]. Food Science, 2016, 37(9): 82-86. doi: 10.7506/spkx1002-6630-201609016
|
[28] |
付晓记, 唐爱清, 闵华, 等. 花生浸种过程中水分相态和水分迁移动态研究[J]. 中国油料作物学报,2018,40(4):552−557. [FU X J, TANG A Q, MIN H, et al. Analysis on water phase state and transport in process of peanut seed soaking by using low-field nuclear magnetic resonance[J]. Chinese Journal of Oil Crop Sciences,2018,40(4):552−557. doi: 10.7505/j.issn.1007-9084.2018.04.012
FU X J, TANG A Q, MIN H, et al. Analysis on water phase state and transport in process of peanut seed soaking by using low-field nuclear magnetic resonance[J]. Chinese Journal of Oil Crop Sciences, 2018, 40(4): 552-557. doi: 10.7505/j.issn.1007-9084.2018.04.012
|
[29] |
MOY J H, CHAN K C, DOLLAR A M. Bound water in fruit products by the freezing method[J]. Journal of Food Science,2010,36(3):498−499.
|
[30] |
盘喻颜, 段振华, 钟静妮. 利用低场核磁共振技术分析月柿果片微波间歇干燥过程中的内部水分变化[J]. 食品工业科技,2021,42(14):33−39. [PAN Y Y, DUAN Z H, ZHONG J N. Analysis of internal moisture changes of persimmon slices during intermittent microwave drying using low-field NMR[J]. Science and Technology of Food Industry,2021,42(14):33−39.
PAN Y Y, DUAN Z H, ZHONG J N. Analysis of internal moisture changes of persimmon slices during intermittent microwave drying using low-field NMR[J]. Science and Technology of Food Industry, 2021, 42(14): 33-39.
|
[31] |
魏硕, 王德勋, 苏家恩, 等. 低场核磁共振法测定烘烤过程中烤烟主脉的水分[J]. 烟草科技,2016,49(10):31−35. [WEI S, WANG D X, SU J E, et al. Moisture content in midrib of tobacco leaves during flue-curing as determined by LF-NMR[J]. Tobacco Science & Technology,2016,49(10):31−35.
WEI S, WANG D X, SU J E, et al. Moisture content in midrib of tobacco leaves during flue-curing as determined by LF-NMR[J]. Tobacco Science & Technology, 2016, 49(10): 31-35.
|
[32] |
徐建国, 张森旺, 徐刚, 等. 莲子薄层热风干燥特性与水分变化规律[J]. 农业工程学报,2016,32(13):303−309. [XU J G, ZHANG S W, XU G, et al. Thin-layer hot air drying characteristics and moisture diffusivity of lotus seeds[J]. Transactions of the Chinese Society of Agricultural Engineering,2016,32(13):303−309. doi: 10.11975/j.issn.1002-6819.2016.13.042
XU J G, ZHANG S W, XU G, et al. Thin-layer hot air drying characteristics and moisture diffusivity of lotus seeds[J]. Transactions of the Chinese Society of Agricultural Engineering, 2016, 32(13): 303-309. doi: 10.11975/j.issn.1002-6819.2016.13.042
|
[33] |
周四晴, 段续, 任广跃, 等. 厚度控制对怀山药远红外干燥过程中水分迁移的影响[J]. 食品与机械,2019,35(12):75−81. [ZHOU S Q, DUAN X, REN G Y, et al. Effect of thickness on moisture transfer during far-infrared drying of Dioscorea oppsite[J]. Food & Machinery,2019,35(12):75−81.
ZHOU S Q, DUAN X, REN G Y, et al. Effect of thickness on moisture transfer during far-infrared drying of Dioscorea oppsite[J]. Food & Machinery, 2019, 35(12): 75-81.
|