NI Jun, YUAN Cailian, SHE Rong, et al. Effect of Cell Generations on t-BHP-induced Oxidative Stress Model of Caco-2 Cells[J]. Science and Technology of Food Industry, 2023, 44(5): 60−66. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022050222.
Citation: NI Jun, YUAN Cailian, SHE Rong, et al. Effect of Cell Generations on t-BHP-induced Oxidative Stress Model of Caco-2 Cells[J]. Science and Technology of Food Industry, 2023, 44(5): 60−66. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022050222.

Effect of Cell Generations on t-BHP-induced Oxidative Stress Model of Caco-2 Cells

More Information
  • Received Date: May 18, 2022
  • Available Online: January 03, 2023
  • Objective: To investigate the effects of cell passage number on the establishment of an oxidative stress model in human colon adenocarcinoma cells (Caco-2) caused by tert-butyl hydroperoxide (t-BHP). Methods: First, by applying various t-BHP concentrations (1, 2 and 3 mmol/L) to the F15 generation of Caco-2 cells for 1, 2, 3, 4, 5 and 6 hours, the content of malondialdehyde (MDA) and 8-hydroxydeoxyguanosine (8-OHdG) in different treatment groups were measured to determine the basic conditions for constructing the oxidative stress model of Caco-2 cells. Then, based on the fundamental parameters, the effect of cell passage number (F14, F15, F18, F19 and F20) on the development of oxidative stress model was investigated using the content of 8-OHdG as an index. Results: When exposed to 1, 2 and 3 mmol/L of t-BHP for 3 to 6 hours, the oxidative stress model of Caco-2 cells from the F15 generation could be established steadily. The content of 8-OHdG in Caco-2 cells of the F14, F15 and F18 generations was significantly higher than that in control group (which had not been treated with t-BHP) after being exposed to 2.0 mmol/L t-BHP for 5 hours (P<0.05), whereas there was no significant difference between the F19 and F20 generations and the control group. Conclusion: The development of the oxidative stress model of Caco-2 cells will be strongly impacted by cell passage number. By subjecting Caco-2 cells prior to F19 to 2 mmol/L t-BHP for 5 hours, the oxidative stress model may be successfully constructed.
  • [1]
    杨胜利, 张凯奕. 我国人民健康现状、问题及对策研究[J]. 人口与健康,2021(10):46−48. [YANG S L, ZHANG K Y. Research on health status, problems and countermeasures of Chinese people[J]. Population and Health,2021(10):46−48.
    [2]
    REPINE J E, BAST A, LANKHORST I D A, et al. Oxidative stress in chronic obstructive pulmonary disease[J]. American Journal of Respiratory and Critical Care Medicine,1997,156(2):341−357. doi: 10.1164/ajrccm.156.2.9611013
    [3]
    VASSALLE C, GAGGINI M. Type 2 diabetes and oxidative stress and inflammation: Pathophysiological mechanisms and possible therapeutic options[J]. Antioxidants,2022,11(5):953. doi: 10.3390/antiox11050953
    [4]
    陈渝春, 冯兰超. 癌症患者抗氧化态与氧化应激的变化[J]. 四川医学,2008(7):844−846. [CHEN Y C, FENG L C. Changes of antioxidant status and oxidative stress in cancer patients[J]. Sichuan Medical Journal,2008(7):844−846. doi: 10.3969/j.issn.1004-0501.2008.07.019
    [5]
    BRADES R P, KREUZER J. Vascular NADPH oxidases: Molecular mechanisms of activation[J]. Cardiovasc Res,2005,65(1):16−27. doi: 10.1016/j.cardiores.2004.08.007
    [6]
    SCHIEBER M, CHANDEL N S. ROS function in redox signaling and oxidative stress[J]. Curr Biol,2014,24(10):R453−462. doi: 10.1016/j.cub.2014.03.034
    [7]
    石宝明, 迟子涵. 自由基对动物的危害及消除技术研究进展[J]. 饲料工业,2021,42(9):1−6. [SHI B M, CHI Z H. Research progress on harm of free radical to animals and its elimination technology[J]. Feed Industry,2021,42(9):1−6. doi: 10.13302/j.cnki.fi.2021.09.001
    [8]
    骆佳铭, 李机, 赵伟. 氧化应激介导的DNA损伤在大鼠心肌H9C2细胞缺氧/复氧损伤中的作用[J]. 重庆医学,2021,50(12):1993−1997. [LUO J M, LI J, ZHAO W. Role of oxidative stress-mediated DNA damage in hypoxia/reoxygenation damage of rat myocardial H9C2 cells[J]. Chongqing Medicine,2021,50(12):1993−1997. doi: 10.3969/j.issn.1671-8348.2021.12.003
    [9]
    裘红权, 沈小铁, 刘璟, 等. 脂质过氧化在环境污染物生化效应研究中的应用与展望[J]. 浙江大学学报(农业与生命科学版),2021,47(5):543−556. [QIU H Q, SHENG X T, LIU J, et al. Application and prospect of lipid peroxidation in the study of biochemical effects of environmental pollutants[J]. Journal of Zhejiang University (Agriculture and Life Sciences),2021,47(5):543−556. doi: 10.3785/j.issn.1008-9209.2020.10.281
    [10]
    PIRINCCIOGLU A G, GOKALP D, PIRINCCIOGLU M, et al. Malondialdehyde (MDA) and protein carbonyl (PCO) levels as biomarkers of oxidative stress in subjects with familial hypercholesterolemia[J]. Clinical Biochemistry,2010,43(15):1220−1224. doi: 10.1016/j.clinbiochem.2010.07.022
    [11]
    KULINSKY V I. Biochemical aspects of inflammation[J]. Bio-chemistry,2007,72:595−607.
    [12]
    GILL R, TSUNG A, BILLIAR T. Linking oxidative stress to inflammation: Toll-like receptors[J]. Free Radic Biol Med,2010,128:92−105.
    [13]
    肖文, 杨旭. 中国大健康面临的关键问题: 能量摄入过剩和氧化炎症[J]. 中国中药杂志,2022,47(4):853−861. [XIAO W, YANG X. A key issue of national health in China: Excess energy intake and oxidative inflammation[J]. China Journal of Chinese Materia Medica,2022,47(4):853−861.
    [14]
    李冰玥, 王梅. 维生素合理应用[J]. 临床合理用药杂志,2019,12(5):180−181. [LI B Y, WANG M. Rational use of vitamins[J]. Chinese Journal of Clinical Rational Drug Use,2019,12(5):180−181. doi: 10.15887/j.cnki.13-1389/r.2019.05.121
    [15]
    JC L. Recent european food safety authority toxicological e-valuations of major phthalates used in food contact materials[J]. Molecular Nutrition Food Res,2009,53(8):1063−1070. doi: 10.1002/mnfr.200800076
    [16]
    陈香君, 俸婷婷, 杨周洁, 等. 大血藤不同极性部位对H2O2损伤成骨细胞的保护作用研究[J]. 中国骨质疏松杂志,2017,23(3):291−297. [CHEN X J, FENG T T, YANG Z J, et al. Protective effect of sargentodoxa cuneata of different polar fractions on H2O2 induced damage in osteoblasts in vitro[J]. Chinese Journal of Osteoporosis,2017,23(3):291−297. doi: 10.3969/j.issn.1006-7108.2017.03.003
    [17]
    张艳梅, 敖长金, 萨茹丽, 等. 沙葱总黄酮对过氧化氢诱导的红细胞氧化损伤的保护作用[J]. 动物营养学报,2019,31(2):858−864. [ZHANG Y M, AO C J, SA R L, et al. Protective effects of total flavonoids from Allium mongolicum Regel on oxidative damage of erythrocytes induced by hydrogen peroxide[J]. Chinese Journal of Animal Nutrition,2019,31(2):858−864. doi: 10.3969/j.issn.1006-267x.2019.02.042
    [18]
    杨松, 王隶书, 刘美辰, 等. 人参多糖对氧化应激损伤肝细胞的保护作用机制研究[J]. 食品工业科技,2020,41(5):280−285, 292. [YANG S, WANG L S, LIU M C, et al. Mechanism of protective effect of ginseng polysaccharide on hepatocytes induced by oxidative stress[J]. Science and Technology of Food Industry,2020,41(5):280−285, 292. doi: 10.13386/j.issn1002-0306.2020.05.046
    [19]
    李莉, 马升, 张京, 等. 微生物源性抗氧化剂对葡聚糖硫酸钠诱发小鼠肝脏氧化损伤和炎症反应的影响[J]. 动物营养学报,2021,33(7):4123−4132. [LI L, MA S, ZHANG J, et al. Effects of microbe-derived antioxidants on oxidative damage and inflammatory response in liver of mice induced by dextran sulfate sodium salt[J]. Chinese Journal of Animal Nutrition,2021,33(7):4123−4132. doi: 10.3969/j.issn.1006-267x.2021.07.053
    [20]
    李帅. 硫辛酸对2型糖尿病患者氧化应激反应及炎症递质水平的影响[J]. 现代中西医结合杂志,2015,24(7):717−719. [LI S. Effects of lipoic acid on oxidative stress response and inflammatory transmitter levels in type 2 diabetes mellitus[J]. Modern Journal of Integrated Traditional Chinese and Western Medicine,2015,24(7):717−719. doi: 10.3969/j.issn.1008-8849.2015.07.013
    [21]
    何方婷, 陈嘉熠, 徐佳伊, 等. 氧化应激细胞模型建立的研究进展[J]. 食品工业科技,2019,40(7):341−345. [HE F T, CHEN J Y, XU J Y, et al. Research progress of establishing cellular oxidative stress model[J]. Science and Technology of Food Industry,2019,40(7):341−345. doi: 10.13386/j.issn1002-0306.2019.07.059
    [22]
    张斌, 夏作理, 赵晓民, 等. 氧化应激模型的建立及其评价[J]. 中国临床康复,2006(44):112−114. [ZHANG B, XIA Z L, ZHAO X M, et al. Establishment and evaluation of oxidative stress models[J]. Chinese Journal of Tissue Engineering Research,2006(44):112−114.
    [23]
    张思远. 水胺硫磷和甲氰菊酯对人体SH-SY5Y细胞的单一及联合效应研究[D]. 重庆: 西南大学, 2017

    ZHANG S Y. Individual and combined effect of isocarbohos and fenpropathrin to human neuroblastoma cell line SH-SY5Y[D]. Chongqing: Southwest University, 2017.
    [24]
    关溯, 陈孝, 黄民. Caco-2细胞模型——药物吸收研究的有效“工具”[J]. 中国药理学通报,2004(6):609−614. [GUAN S, CHEN X, HUANG M. Caco-2 cell model——an effective tool for the research of drug absorption[J]. Chinese Pharmacological Bulletin,2004(6):609−614. doi: 10.3321/j.issn:1001-1978.2004.06.003
    [25]
    万正瑞, 李强强, 王凯, 等. 夏枯草蜂蜜提取物对硫酸葡聚糖诱导肠上皮细胞损伤的保护作用及其机制[J]. 食品科学,2020,41(19):161−169. [WAN Z R, LI Q Q, WANG K, et al. Protective effect and mechanism of Prunella vulgaris honey extract on dextran sulfate sodium-induced injury in Caco-2 cells[J]. Food Science,2020,41(19):161−169. doi: 10.7506/spkx1002-6630-20190926-321
    [26]
    李亚会, 吉薇, 吉宏武, 等. 远东拟沙丁鱼抗氧化肽对Caco-2细胞氧化应激损伤的影响[J]. 广东海洋大学学报,2016,36(6):94−99. [LI Y H, JI W, JI H W, et al. Effect of antioxidant peptide from sardinops sagax on oxidative stress injury on Caco-2 cell[J]. Journal of Guangdong Ocean University,2016,36(6):94−99. doi: 10.3969/j.issn.1673-9159.2016.06.015
    [27]
    张景禹, 解万翠, 车红霞, 等. 超声辅助制备金乌贼墨黑色素及其对Caco-2细胞氧化损伤的保护作用[J]. 食品与机械,2020,36(5):155−159, 181. [ZHANG J Y, XIE W C, CHE H X, et al. Preparation of ink melanin from sepia esculenta by ultrasound-assisted and its protective effects on oxidative damage in Caco-2 cells[J]. Food & Machinery,2020,36(5):155−159, 181. doi: 10.13652/j.issn.1003-5788.2020.05.029
    [28]
    ALÍA M, RAMOS S, MATEOS R, et al. Response of the antioxidant defense system to tert-butyl hydroperoxide and hydrogen peroxide in a human hepatoma cell line (HepG2)[J]. Jornal Biochem Molecular Toxicology,2005,19(2):119−128. doi: 10.1002/jbt.20061
    [29]
    GARCIA-NEBOT M J, RECIO I, HERNANDEZ-LEDESMA B. Antioxidant activity and protective effects of peptide lunasin lunasin agsinst oxidative stress in intestinal Caco-2 cell[J]. Food and Chemical Toxicology,2014,65:155−161. doi: 10.1016/j.fct.2013.12.021
    [30]
    周芮, 张磊, 杨小萍, 等. 人脂肪源性血管外膜细胞的分离培养和生物学功能分析[J]. 细胞与分子免疫学杂志,2021,37(4):315−321. [ZHOU R, ZHANG L, YANG X P, et al. Isolation, culture and biological functions of human adipose-derived pericytes/perivascular cells[J]. Chinese Journal of Cellular and Molecular Immunology,2021,37(4):315−321. doi: 10.13423/j.cnki.cjcmi.009175
    [31]
    赵丽红, 韩玉帅, 邓旭明, 等. IGF1对不同培养代数梅花鹿鹿茸: 间充质层细胞增殖的影响[J]. 中国农学通报,2010,26(5):5−7. [ZHAO L H, HAN Y S, DENG X M, et al. Effects of insulin-like growth factor 1 on the proliferation of sika deer antler mesenchymal layer cells at different generation[J]. Chinese Agricultural Science Bulletin,2010,26(5):5−7.
    [32]
    FUENTES J, DE CAMARGO A C, ATALA E, et al. Quercetin oxidation metabolite present in onion peel protects Caco-2 cells against the oxidative stress, NF-κB activation, and loss of epithelial barrier function induced by NSAIDs[J]. Journal of Agricultural and Food Chemistry,2021,69(7):2157−2167. doi: 10.1021/acs.jafc.0c07085
    [33]
    MARTÍNEZ M A, ARES I, MARTÍNEZ M, et al. Brown marine algae Gongolaria baccata extract protects Caco-2 cells from oxidative stress induced by tert-butyl hydroperoxide[J]. Food and Chemical Toxicology,2021,156:112460. doi: 10.1016/j.fct.2021.112460
    [34]
    XU F, WANG L, JU X, et al. Transepithelial transport of YWDHNNPQIR and its metabolic fate with cytoprotection against oxidative stress in human intestinal Caco-2 cells[J]. Journal of Agricultural and Food Chemistry,2017,65(10):2056−2065. doi: 10.1021/acs.jafc.6b04731
    [35]
    武阳, 常青, 杨旭. 不同浓度甲醛致大鼠肝细胞DNA氧化损伤作用[J]. 环境科学学报,2009,29(11):2415−2419. [WU Y, CHENG Q, YANG X. Oxidative DNA damage in rat liver cells induced by formaldehyde at different concentrations[J]. Acta Scientiae Circumstantiae,2009,29(11):2415−2419. doi: 10.13671/j.hjkxxb.2009.11.030
    [36]
    杨文, 韩凌, 危建安, 等. 四君子汤对t-BHP诱导Caco-2细胞氧化损伤的改善及机制探讨[J]. 时珍国医国药,2015,26(11):2568−2571. [YANG W, HAN L, WEI J A, et al. Discussion on improvement and mechanism of Sijunzi Decoction for t-BHP induced oxidantive damage of Caco-2 cells[J]. Lishizhen Medicine and Materia Medica Research,2015,26(11):2568−2571.
    [37]
    YOUSR M, ALOQBI A, OMAR U, et al. Antioxidant effect of egg yolk peptides against tert-butyl hydroperoxide induced oxidative stress in Caco-2 colon cancer cells[J]. Food Sci Technol,2016,4:36−41. doi: 10.13189/fst.2016.040302
    [38]
    张业尼, 钱磊, 陈雪, 等. 过氧化氢诱导HepG2细胞氧化应激模型的建立[J]. 食品研究与开发,2018,39(5):160−164. [ZHANG Y N, QIAN L, CHEN X, et al. Establishment of hydrogen peroxide induced oxidative stress model in HepG2 cells[J]. Food Research and Development,2018,39(5):160−164. doi: 10.3969/j.issn.1005-6521.2018.05.029
    [39]
    肖琨珉, 孔晨帆, 姚树坤. 龙胆苦苷对过氧化氢诱导HepG2细胞氧化应激损伤的保护作用研究[J]. 世界中西医结合杂志,2019,14(11):1530−1534. [XIAO K M, KONG C F, YAO S K. Protective effect of gentiopicrin on oxidative stress damage in HepG2 cells induced by H2O2[J]. World Journal of Integrated Traditional and Western Medicine,2019,14(11):1530−1534. doi: 10.13935/j.cnki.sjzx.191112
  • Cited by

    Periodical cited type(2)

    1. 赵利维,王刚,李玉玲,刘昆昂. 黑木耳Y9液体发酵产物冻干粉成分及生物活性分析. 中国食用菌. 2024(03): 72-77 .
    2. 刘聪,王吉力特,孙义,苏日古格,马捷,张凡,郭淑文. 蜜瓜籽不同溶剂提取物活性成分及抗氧化能力分析. 中国瓜菜. 2024(11): 101-106 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (273) PDF downloads (14) Cited by(2)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return