CHEN Yu, LIANG Ying, ZHOU Pingping, et al. Establishment of Growth Prediction Model of Escherichia coli in Imported Fresh Beef at Different Temperatures [J]. Science and Technology of Food Industry, 2021, 42(12): 81−88. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110003.
Citation: CHEN Yu, LIANG Ying, ZHOU Pingping, et al. Establishment of Growth Prediction Model of Escherichia coli in Imported Fresh Beef at Different Temperatures [J]. Science and Technology of Food Industry, 2021, 42(12): 81−88. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020110003.

Establishment of Growth Prediction Model of Escherichia coli in Imported Fresh Beef at Different Temperatures

More Information
  • Received Date: November 02, 2020
  • Available Online: April 20, 2021
  • In order to establish the growth prediction model of Escherichia coli O157:H7 in imported fresh beef at different temperatures. Fresh imported beef purchased from supermarkets and Escherichia coli O157:H7 were selected as the research objects. The growth data of Escherichia coli in imported fresh beef stored at 4, 16, 25, 30 and 37 ℃ were monitored and the growth curve was drawn. Four models of modified Gompertz, Logistic, Richards and MMF were used to fit the growth curve, and the first-order model of Escherichia coli in imported fresh beef was established. The data fitted by the first-order model was substituted into Ratkowsky equation to establish the second-order model. The accuracy of the model was tested by the accuracy factor, bias factor and root mean square error. Results showed that, the correlation coefficients of the four models were all above 0.98. The data of modified Gompertz model showed that the fitting degree of the modified Gompertz model was the best, and it was most suitable to predict the growth dynamics of E.coli in imported fresh beef. The accuracy factors of the models were 0.99, the bias factors were 1.14 and 1.03, and the determination coefficients R2 were 0.97 and 0.99, indicating that the established model was highly reliable. The growth prediction model established in this study could effectively predict the growth of Escherichia coliO157:H7 in imported fresh beef at 4~37 ℃.
  • [1]
    Bibbal D, Loukiadis E, Kérourédan M, et al. Prevalence of carriage of shiga toxin-producing Escherichia coli serotypes O157: H7, O26: H11, O103: H2, O111: H8, and O145: H28 among slaughtered adult cattle in france[J]. Applied and Environmental Microbiology,2015,81(4):1397−1405. doi: 10.1128/AEM.03315-14
    [2]
    李军, 禤雄标, 谢宇舟, 等. 广西畜禽大肠杆菌O157∶H7流行病学调查[J]. 中国人兽共患病学报,2011,27(12):1151−1155. doi: 10.3969/j.issn.1002-2694.2011.12.021
    [3]
    Jang J, Hur H G, Sadowsky M J, et al. Environmental Escherichia coli: Ecology and public health implications-a review[J]. J Appl Microbiol,2017,123(3):570−581. doi: 10.1111/jam.13468
    [4]
    Farrokh C, Jordan K, Auvray F, et al. Review of Shiga-toxin-producing Escherichia coli (STEC) and their significance in dairy production[J]. International Journal of Food Microbiology,2013,162(2):190−212. doi: 10.1016/j.ijfoodmicro.2012.08.008
    [5]
    Lim J Y, Yoon J, Hovde C J. A brief overview of Escherichia coli O157: H7 and its plasmid O157[J]. Journal of Microbiology and Biotechnology,2010,20(1):5. doi: 10.4014/jmb.0908.08007
    [6]
    Saxena T, Kaushik P, Krishna M M. Prevalence of E. coli O157: H7 in water sources: an overview on associated diseases, outbreaks and detection methods[J]. Diagn Microbiol Infect Dis,2015,82(3):249−264. doi: 10.1016/j.diagmicrobio.2015.03.015
    [7]
    邓秀武, 高亚娟, 司海丰, 等. 食源性疾病现状及监控技术的研究[J]. 食品安全质量检测学报,2016,7(6):2235−2239.
    [8]
    白凤翎, 李鸿雁. 肉品微生物污染现状分析与安全对策[J]. 肉类工业,2007(12):36−38. doi: 10.3969/j.issn.1008-5467.2007.12.016
    [9]
    龚玲芬, 殷俊, 刘萍, 等. 2016-2018年无锡市食源性疾病监测结果[J]. 职业与健康,2019,35(21):2944−2947.
    [10]
    李鹏. 2018年酒泉市部分地区市售牛羊肉食源性致病菌污染情况调查与分析[J]. 中国草食动物科学,2020,40(5):53−55. doi: 10.3969/j.issn.2095-3887.2020.05.011
    [11]
    郑向梅, 王建平, 高景枝, 等. 十堰市2000~2006年食源性致病菌监测分析[J]. 中国卫生检验杂志,2007(7):1255−1257. doi: 10.3969/j.issn.1004-8685.2007.07.046
    [12]
    李蕙, 孙晓岩, 郭素英, 等. 2015-2018年营口市食品安全风险微生物检测结果分析[J]. 社区医学杂志,2019,17(19):1181−1184.
    [13]
    毛书奇, 胡群雄, 徐明敏, 等. 2017年宁波市北仑区熟肉制品风险监测结果分析[J]. 河南预防医学杂志,2019,30(10):801−802.
    [14]
    梅国勇, 徐彦, 姚孝明, 等. 2016-2017年南京市栖霞区食源性疾病流行病学现状及监测结果分析[J]. 环境卫生学杂志,2019,9(2):113−117.
    [15]
    罗伟倩, 潘伟芬, 黄群娣. 增城区2016~2017年食品安全风险监测微生物检测结果分析[J]. 食品安全导刊,2018(25):67−69. doi: 10.3969/j.issn.1674-0270.2018.25.028
    [16]
    Mcmeekin T, Bowman J, Mcquestin O, et al. The future of predictive microbiology: Strategic research, innovative applications and great expectations[J]. International Journal of Food Microbiology,2008,128(1):2−9. doi: 10.1016/j.ijfoodmicro.2008.06.026
    [17]
    唐佳妮, 张爱萍, 刘东红. 预测微生物学的研究进展及其在食品中的应用[J]. 中国食品学报,2010,10(6):162−166. doi: 10.3969/j.issn.1009-7848.2010.06.027
    [18]
    Havelaar A H, Brul S, de Jong A, et al. Future challenges to microbial food safety[J]. International Journal of Food Microbiology,2010,139:S79−S94. doi: 10.1016/j.ijfoodmicro.2009.10.015
    [19]
    Ratkowsky D A, Lowry R K, Mcmeekin T A, et al. Model for bacterial culture growth rate throughout the entire biokinetic temperature range[J]. J Bacteriol,1983,154(3):1222−1226. doi: 10.1128/JB.154.3.1222-1226.1983
    [20]
    Tenaillon O, Barrick J E, Ribeck N, et al. Tempo and mode of genome evolution in a 50, 000-generation experiment[J]. Nature,2016,536(7615):165−170. doi: 10.1038/nature18959
    [21]
    Whitman R L, Shively D A, Pawlik H, et al. Occurrence of Escherichia coli and enterococci in Cladophora (Chlorophyta) in nearshore water and beach sand of Lake Michigan[J]. Appl Environ Microbiol,2003,69(8):4714−4719. doi: 10.1128/AEM.69.8.4714-4719.2003
    [22]
    Duffy G, Cummins E, Nally P, et al. A review of quantitative microbial risk assessment in the management of Escherichia coli O157: H7 on beef[J]. Meat Science,2006,74(1):76−88. doi: 10.1016/j.meatsci.2006.04.011
    [23]
    Yu H H, Song Y J, Kim Y J, et al. Predictive model of growth kinetics for Staphylococcus aureus in raw beef under various packaging systems[J]. Meat Science,2020,165:108108. doi: 10.1016/j.meatsci.2020.108108
    [24]
    Li M Y, Sun X M, Zhao G M, et al. Comparison of mathematical models of lactic acid bacteria growth in vacuum-packaged raw beef stored at different temperatures[J]. J Food Sci,2013,78(4):M600−M604. doi: 10.1111/j.1750-3841.2012.02995.x
    [25]
    Juneja V K, Melendres M V, Huang L, et al. Mathematical modeling of growth of Salmonella in raw ground beef under isothermal conditions from 10 to 45 °C[J]. International Journal of Food Microbiology,2009,131(2-3):106−111. doi: 10.1016/j.ijfoodmicro.2009.01.034
    [26]
    金鑫, 禹迎迎, 吴菊清, 等. 大肠杆菌和假单胞菌在猪背最长肌上混合预测模型的建立[J]. 食品科学,2013,34(17):87−91. doi: 10.7506/spkx1002-6630-201317020
    [27]
    赵格, 宋雪, 赵建梅, 等. 鸡蛋中常见食源性致病菌的生长预测模型研究[J]. 中国动物检疫,2016,33(6):68−71. doi: 10.3969/j.issn.1005-944X.2016.06.022
    [28]
    Posada-Izquierdo G, Del R S, Valero A, et al. Assessing the growth of Escherichia coli O157: H7 and Salmonella in spinach, lettuce, parsley and chard extracts at different storage temperatures[J]. J Appl Microbiol,2016,120(6):1701−1710. doi: 10.1111/jam.13122
    [29]
    Mishra A, Guo M, Buchanan R L, et al. Prediction of Escherichia coli O157: H7, Salmonella, and Listeria monocytogenes growth in leafy greens without temperature control[J]. J Food Prot,2017,80(1):68−73. doi: 10.4315/0362-028X.JFP-16-153
    [30]
    Wang D, Huber A, Dunfield K, et al. Comparative persistence of Salmonella and Escherichia coli O157: H7 in loam or sandy loam soil amended with bovine or swine manure[J]. Canadian Journal of Microbiology,2018,64(12):979−991. doi: 10.1139/cjm-2018-0234
    [31]
    Gullian-Klanian M, Sánchez-Solis M J. Growth kinetics of Escherichia coli O157: H7 on the epicarp of fresh vegetables and fruits[J]. Brazilian Journal of Microbiology,2018,49(1):104−111. doi: 10.1016/j.bjm.2017.08.001
  • Cited by

    Periodical cited type(8)

    1. 倪策,曹天红,陈敏,喻勋,吴昊,文李. 核桃粕源抗氧化活性肽的酶解制备及活性分析. 食品与机械. 2024(05): 51-61 .
    2. 何嘉怡,杨卫平,方娅妮,陆伟,张松姿,贾福怀. 化妆品功效评价的研究进展. 广东化工. 2024(18): 95-97 .
    3. 郑丹阳,徐梦漪,李淑敏,朱永闯,龚盛昭,蔡丽华,胡翠萍. 斑马鱼模型在化妆品功效评价研究中的应用进展. 中国实验动物学报. 2023(04): 541-548 .
    4. 宋佳,刘思雅,李露静,田思雨,水珊珊,武天昕,郑文雄,杨榕琳,张宾. 琼胶寡糖对冻藏南美白对虾蛋白质功能特性的影响. 食品安全质量检测学报. 2023(19): 199-206 .
    5. 陈秋燕,王瑞芳,王园,安晓萍,杨艳平,宋敏,齐景伟. 基于斑马鱼模型评价发酵对麦麸多糖抗氧化活性的影响. 中国粮油学报. 2022(12): 35-43 .
    6. 王胜男,付晓婷,许加超,高昕. 羊栖菜褐藻糖胶对AAPH诱导的斑马鱼氧化应激模型的保护作用. 食品工业科技. 2021(18): 356-365 . 本站查看
    7. 王杰,王瑞芳,王园,任雪荣,陈秋燕,齐景伟,王浩然,杨帆,赵旭阳,郭文浩,安晓萍. 响应面优化马齿苋黄酮水提工艺及其抗氧化活性评价. 食品与发酵工业. 2020(19): 197-204 .
    8. 倪立颖,邹娅雪,付晓婷,段德麟,许加超,高昕. 利用LPS诱导胚胎期斑马鱼炎症模型研究羊栖菜多酚抗炎机制. 食品工业科技. 2019(21): 279-285 . 本站查看

    Other cited types(5)

Catalog

    Article Metrics

    Article views (234) PDF downloads (21) Cited by(13)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return