Citation: | WANG Shengnan, FU Xiaoting, XU Jiachao, et al. Protective Effects of Fucoidan Isolated from Sargassum fusiform on AAPH-induced Antioxidant Response in Zebrafish Model[J]. Science and Technology of Food Industry, 2021, 42(18): 356−365. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020120007. |
[1] |
倪立颖, 邹娅雪, 付晓婷, 等. 利用LPS诱导胚胎期斑马鱼炎症模型研究羊栖菜多酚抗炎机制[J]. 食品工业科技,2019,40(21):279−285. [Ni Liying, Zou Yaxue, Fu Xiaoting, et al. Anti-inflammatory mechanism of phenolic compounds from Sargassum fusiforme by LPS-induced zebrafish embryo model[J]. Science and Technology of Food Industry,2019,40(21):279−285.
|
[2] |
Zhang R, Zhang X, Tang Y, et al. Composition, isolation, purification and biological activities of Sargassum fusiforme polysaccharides: A review[J]. Carbohydrate Polymers,2020,228:115381. doi: 10.1016/j.carbpol.2019.115381
|
[3] |
Draget K I, Taylor C. Chemical, physical and biological properties of alginates and their biomedical implications[J]. Food Hydrocolloids,2011,25(2):251−256.
|
[4] |
Yu W, Maochen X, Qi C, et al. Biological activities of fucoidan and the factors mediating its therapeutic effects: A review of recent studies[J]. Marine Drugs,2019,3(17):183.
|
[5] |
Chen L, Chen P, Jian L, et al. Sargassum fusiforme polysaccharide SFP-F2 activates the NF-κB signaling pathway via CD14/IKK and P38 Axes in RAW264.7 Cells[J]. Marine Drugs,2018,16(8):264.
|
[6] |
Wang L, Oh J Y, Jayawardena T U, et al. Anti-inflammatory and anti-melanogenesis activities of sulfated polysaccharides isolated from Hizikia fusiforme: Short communication[J]. International Journal of Biological Macromolecules,2020,142:542−550.
|
[7] |
Cheng Y, Sibusiso L, Hou L, et al. Sargassum fusiforme fucoidan modifies the gut microbiota during alleviation of streptozotocin-induced hyperglycemia in mice[J]. International Journal of Biological Macromolecules,2019:131.
|
[8] |
赵子慧, 徐曼, 刘阿梅, 等. 羊栖菜多糖通过激活JNK/Nrf2/ARE信号通路延缓小鼠衰老进程作用研究[J]. 中草药,2018,49(23):5600−5609. [Zhao Zihui, Xu Man, Liu Amei, et al. Effect of Sargassum fusiforme polysaccharides on activating JNK/Nrf2/ARE signaling pathway and slowing down aging process[J]. Chinese Traditional and Herbal Drugs,2018,49(23):5600−5609. doi: 10.7501/j.issn.0253-2670.2018.23.018
|
[9] |
Li Y, Chen B, Wu W, et al. Antioxidant and antimicrobial evaluation of carboxymethylated and hydroxamated degraded polysaccharides from Sargassum fusiforme[J]. International Journal of Biological Macromolecules,2018,118:1550−1557. doi: 10.1016/j.ijbiomac.2018.06.196
|
[10] |
Wang L, Oh J Y, Yang H W, et al. Protective effect of sulfated polysaccharides from a celluclast-assisted extract of Hizikia fusiforme against ultraviolet B-induced photoaging in vitro in human keratinocytes and in vivo in zebrafsh[J]. Marine Life Science & Technology,2019(1):104−111.
|
[11] |
吴娟, 欧志荣, 李昭蓉, 等. 稀酸提取羊栖菜多糖的结构及其抗氧化特性研究[J]. 福建农业学报,2019,34(7):842−851. [Wu Juan, Ou Zhirong, Zhao Mouming. Structure and antioxidant activity of polysaccharides extracted from Sargassum fusiforme[J]. Fujian Journal of Agricultural Sciences,2019,34(7):842−851.
|
[12] |
吴利敏, 夏盛隆, 申苏建,等. L02脂肪变模型中氧化应激的发生及羊栖菜多糖的干预作用[J]. 中国现代医生,2017,34(55):17−23. [Wu Limin, Xia Shenglong, Shen sujian, et al. The occurrence of oxidative stress in L02 fatty model and the intervention of Sargassum fusiform polysaccharide[J]. China Modern Doctor,2017,34(55):17−23.
|
[13] |
Wang W, Lu J, Wang C, et al. Effects of Sargassum fusiforme polysaccharides on antioxidant activities and intestinal functions in mice[J]. International Journal of Biological Macromolecules,2013,58:127−132. doi: 10.1016/j.ijbiomac.2013.03.062
|
[14] |
Wang L, Oh J Y, Kim H S, et al. Protective effect of polysaccharides from celluclast-assisted extract of Hizikiafusiforme against hydrogen peroxide-induced oxidative stress in vitro in Vero cells and in vivo in zebrafish[J]. International Journal of Biological Macromolecules,2018,112:483−489. doi: 10.1016/j.ijbiomac.2018.01.212
|
[15] |
董乐, 董笑瀛, 王芳, 等. 羊栖菜硫酸多糖的超声辅助提取工艺优化及抗氧化活性研究[J]. 食品工业科技,2015,36(12):265−269. [Dong Le, Dong Xiaoying, Wang Fang, et al. Optimization of extraction and antioxidative activity in vitro ofsulfated polysaccharides from Sargassum fusiforme(Hary) Setch[J]. Science and Technology of Food Industry,2015,36(12):265−269.
|
[16] |
Weihua J, Wenjing Z, Jing W, et al. A study of neuroprotective and antioxidant activities of heteropolysaccharides from six Sargassum species[J]. International Journal of Biological Macromolecules,2014,67:336−342. doi: 10.1016/j.ijbiomac.2014.03.031
|
[17] |
Kim E, Kang M, Lee J, et al. Protective effect of marine brown algal polyphenols against oxidative stressed zebrafish with high glucose[J]. RSC Advances,2015,5:25738−25746. doi: 10.1039/C5RA00338E
|
[18] |
Lee S, Ko C, Jee Y, et al. Anti-inflammatory effect of fucoidan extracted from Ecklonia cava in zebrafish model[J]. Carbohydrate Polymers,2013,92(1):84−89. doi: 10.1016/j.carbpol.2012.09.066
|
[19] |
Lieschke G J, Currie P D. Animal models of human disease: Zebrafish swim into view[J]. Nature Reviews Genetics,2007,8(5):353−367. doi: 10.1038/nrg2091
|
[20] |
Schoonheim P J, Chatzopoulou A, Schaaf M J M. The zebrafish as an in vivo model system for glucocorticoid resistance[J]. Steroids,2010,75(12):918−925. doi: 10.1016/j.steroids.2010.05.010
|
[21] |
Eisen J S. Zebrafish make a big splash[J]. Cell,1996,87(6):969−977. doi: 10.1016/S0092-8674(00)81792-4
|
[22] |
Wang L, Oh J Y, Hwang J, et al. In vitro and in vivo antioxidant activities of polysaccharides isolated from celluclast-assisted extract of an edible brown seaweed, Sargassum fulvellum[J]. Antioxidants,2019,8(10):493. doi: 10.3390/antiox8100493
|
[23] |
Kang M, Cha S H, Wijesinghe W A J P, et al. Protective effect of marine algae phlorotannins against AAPH-induced oxidative stress in zebrafish embryo[J]. Food Chemistry,2013,138(2−3):950−955. doi: 10.1016/j.foodchem.2012.11.005
|
[24] |
Ni Liying, Wang Lei, Fu Xiaoting, et al. In vitro and in vivo anti-inflammatory activities of a fucose-rich fucoidan isolated from Saccharina japonica[J]. International Journal of Biological Macromolecules,2020,156:717−729. doi: 10.1016/j.ijbiomac.2020.04.012
|
[25] |
李雅静. 两品系羊栖菜(Sargassum fusiforme)的营养品质及活性成分研究[D]. 青岛: 中国海洋大学, 2018.
Li Yajing. Study on nutritional quality and active components of two strands of Sargassum fusiforme[D]. Qingdao: Ocean University of China, 2018.
|
[26] |
Dubois M, Gilles K A, Hamilton J K, et al. Colorimetric method for determination of sugars and related substances[J]. American Chemical Society,1956,3(28):350−356.
|
[27] |
Kawai Y, Seno N, Anno K. A modified method for chondrosulfatase assay[J]. Analytical Biochemistry,1969(32):314−321.
|
[28] |
Winters A L, Minchin F R. Modification of the lowry assay to measure proteins and phenols in covalently bound complexes[J]. Analytical Biochemistry,2005,346(1):43−48. doi: 10.1016/j.ab.2005.07.041
|
[29] |
Chandler S F, Dodds J H. The effect of phosphate, nitrogen and sucrose on the production of phenolics and solasodine in callus cultures of Solanum laciniatum[J]. Plant Cell Reports,1983,2(4):205−208. doi: 10.1007/BF00270105
|
[30] |
Tierney M S, Smyth T J, Rai D K, et al. Enrichment of polyphenol contents and antioxidant activities of Irish brown macroalgae using food-friendly techniques based on polarity and molecular size[J]. Food Chemistry,2013,139(1−4):753−761. doi: 10.1016/j.foodchem.2013.01.019
|
[31] |
Li Y, Fu X, Duan D, et al. Extraction and identification of phlorotannins from the brown alga, Sargassum fusiforme(Harvey) setchell[J]. Marine Drugs,2017,15(2):49. doi: 10.3390/md15020049
|
[32] |
Frattaruolo L, Carullo G, Brindisi M, et al. Antioxidant and anti-inflammatory activities of flavanones from Glycyrrhiza glabra L. (licorice) leaf phytocomplexes: Identification of licoflavanone as a modulator of nf-kb/mapk pathway[J]. Antioxidants,2019,8:186. doi: 10.3390/antiox8060186
|
[33] |
邹娅雪, 付晓婷, 段德麟, 等. 利用斑马鱼模型研究琼胶寡糖抗氧化机制[J]. 食品工业科技,2019(4):286−298. [Zou Yaxue, Fu Xiaoting, Duan Deilin, et al. Antioxidant activities of agaro-oligosaccharides in AAPH-induced zebrafish model[J]. Science and Technology of Food Industry,2019(4):286−298.
|
[34] |
Zou Y, Fu X, Liu N, et al. The synergistic anti-inflammatory activities of agaro-oligosaccharides with different degrees of polymerization[J]. Journal of Applied Phycology,2019,31(4):2547−2558. doi: 10.1007/s10811-019-1740-2
|
[35] |
Na Yi-rang, Seok Seung-hyeok, Bae Min-won, et al. Protective effects of vitamin E against 3, 3', 4, 4', 5-pentachlorobiphenyl (PCB126) induced toxicity in zebrafish embryos[J]. Ecotoxicology and Environmental Safety,2009,72(3):714−719. doi: 10.1016/j.ecoenv.2008.09.015
|
[36] |
Tae-Young C, Jin-Hwa K, Han K D, et al. Zebrafish as a new model for phenotype-based screening of melanogenic regulatory compounds[J]. Pigment cell Research,2007,20(2):120−127. doi: 10.1111/j.1600-0749.2007.00365.x
|
[37] |
Jacobsen C, Sørensen, Ann-Dorit M, et al. Source, extraction, characterization, and applications of novel antioxidants from seaweed[J]. Annual Review of Food Science and Technology,2019,10(1).
|
[38] |
Dion M Z, Wang Y J, Bregante D, et al. The use of a 2,2'-azobis(2-amidinopropane) dihydrochloride stress model as an indicator of oxidation susceptibility for monoclonal antibodies[J]. Journal of Pharmaceutical Ences,2018,107(2):550−558.
|
[39] |
Betigeri S, Thakur A, Raghavan K. Use of 2, 2′-azobis(2-amidinopropane) dihydrochloride as a reagent tool for evaluation of oxidative stability of drugs[J]. Pharmaceutical Research,2005,22(2):310−317. doi: 10.1007/s11095-004-1199-x
|
[40] |
陈汝家, 朱俊靖, 周盛梅, 等. 斑马鱼模型在药物毒性与安全性评价中的应用[J]. 毒理学杂志,2012,26(3):224−228. [Chen Rujia, Zhu Junjing, Zhou Shengmei. Application of zebrafish model in drug toxicity and safety evaluation[J]. Journal of Toxical,2012,26(3):224−228.
|
[41] |
Phull A, Majid M, Haq I, et al. In vitro and in vivo evaluation of anti-arthritic, antioxidant efficacy of fucoidan from Undaria pinnatifida (Harvey) Suringar[J]. International Journal of Biological Macromolecules,2017,97:468−480. doi: 10.1016/j.ijbiomac.2017.01.051
|
[42] |
Lee W, Kang N, Kim E, et al. Radioprotective effects of a polysaccharide purified from Lactobacillus plantarum-fermented Ishigeokamurae against oxidative stress caused by gamma ray-irradiation in zebrafish in vivo model[J]. Journal of Functional Foods,2017,28:83−89. doi: 10.1016/j.jff.2016.11.004
|
[1] | CHEN Xuepeng, DAI Shan, YU Yougui, ZHANG Yingying, WU Qiang, ZHENG Qing, XIONG Xiang. Optimization of Second Distillation Process of Nongxiang Cude Baijiu by Response Surface Methodology[J]. Science and Technology of Food Industry, 2022, 43(7): 233-238. DOI: 10.13386/j.issn1002-0306.2021080134 |
[2] | Chuanyan ZHAO, Yongqi YIN, Zhengfei YANG, Weiming FANG. Optimization of Preparation Technology of Crystallized Malt by Response Surface Methodology[J]. Science and Technology of Food Industry, 2021, 42(9): 186-193. DOI: 10.13386/j.issn1002-0306.2020070322 |
[3] | Wei ZHANG, Xinyue HU, Hang ZHAO, Bing LIU, Zhen ZHOU, Ruomin LI, Saikun PAN. Response Surface Methodology for Optimization of Enzymatic Preparation of Umami Peptides from Mytilus edulis[J]. Science and Technology of Food Industry, 2021, 42(8): 206-214. DOI: 10.13386/j.issn1002-0306.2020080086 |
[4] | SUN Zi-qin, WANG Yan, WU Wei-guo, OUYANG Meng-yun, ZHAO Chuan-wen. Optimization of Anti-browning Technology of Fresh Wet Noodles by Response Surface Methodology[J]. Science and Technology of Food Industry, 2019, 40(19): 158-163. DOI: 10.13386/j.issn1002-0306.2019.19.026 |
[5] | WU Peng, JIA Chao-shuang, LI Xiang-yang, ZHOU Tao, FAN An-qi, XU Ruo-ying, TANG Lu-ying, SUN Yu-gang. Determination of the Total Phenolic Content from Cherry Wine by Folin-ciocalteu Method Optimized by Response Surface Methodology[J]. Science and Technology of Food Industry, 2018, 39(20): 200-206,211. DOI: 10.13386/j.issn1002-0306.2018.20.033 |
[6] | WANG Ju, ZHANG Xiu-ling, GAO Ning, YU Hai-xin. Optimization of Chlorophyll Protection Technology of Heracleum moellendorffii Hance by Response Surface Methodology[J]. Science and Technology of Food Industry, 2018, 39(17): 152-158,166. DOI: 10.13386/j.issn1002-0306.2018.17.026 |
[7] | WANG Yu-xin, TIAN Xiao-qing, LI Jiao-yang, TU Lu-dan, TAN Shu-yun, WU Wen-hui, BAO Bin. Extraction Optimization Using Response Surface Methodology and Structure Identification of Phlorotannins from Sargassum horneri[J]. Science and Technology of Food Industry, 2018, 39(16): 143-149. DOI: 10.13386/j.issn1002-0306.2018.16.026 |
[8] | WU Wan-yi, LI Lu, XIE Xin-an, LI Yan. Preparation of astaxanthin-loaded nanoemulsions by response surface methodology[J]. Science and Technology of Food Industry, 2018, 39(10): 204-210. DOI: 10.13386/j.issn1002-0306.2018.10.037 |
[9] | KANG Chao, YANG Yu-xia, LIU Li-li, XIE You-qiang, WU Shu-Jie, DUAN Zhen-hua. Optimization of enzymolysis technology of passifloraceae by response surface methodology[J]. Science and Technology of Food Industry, 2017, (21): 157-161. DOI: 10.13386/j.issn1002-0306.2017.21.032 |
[10] | WANG Yan, LUO Shui-zhong, CAI Jing, ZHAO Yan-yan, ZHONG Xi-yang, JIANG Shao-tong, ZHENG Zhi, . Optimization of the fermentation conditions for transglutaminase by response surface methodology[J]. Science and Technology of Food Industry, 2015, (16): 203-207. DOI: 10.13386/j.issn1002-0306.2015.16.033 |