YIN Haiyang, LIU Zhenchun, ZHANG Shikang, et al. Optimization of Ultrasonic-assisted Enzymatic Extraction of ACE Inhibitory Peptides from Cyperus esculentus by Response Surface Method[J]. Science and Technology of Food Industry, 2021, 42(14): 182−187. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020100130.
Citation: YIN Haiyang, LIU Zhenchun, ZHANG Shikang, et al. Optimization of Ultrasonic-assisted Enzymatic Extraction of ACE Inhibitory Peptides from Cyperus esculentus by Response Surface Method[J]. Science and Technology of Food Industry, 2021, 42(14): 182−187. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020100130.

Optimization of Ultrasonic-assisted Enzymatic Extraction of ACE Inhibitory Peptides from Cyperus esculentus by Response Surface Method

More Information
  • Received Date: October 19, 2020
  • Available Online: May 19, 2021
  • In this paper, based on the single-factor experiment, the response surface method was used to optimize the ultrasonic-assisted enzyme extraction process of Cyperus esculentus ACE inhibitory peptide, and the best auxiliary enzyme was selected through the inhibition experiment of angiotensin converting enzyme. The results showed that the optimal process conditions for the ultrasonic-assisted enzymatic extraction of Cyperus esculentus ACE inhibitory peptides were: Substrate concentration 3%, ultrasonic treatment time 20 min, enzymolysis temperature 45 ℃, enzyme addition 5000 U/g, ultrasonic power 180 W, enzymolysis time 3 h, the best auxiliary enzyme-alkaline protease, under this condition, the ACE inhibition rate was 74.16%. This study would provide a theoretical basis for the extraction of Cyperus esculentus ACE inhibitory peptides, which laid a foundation for further research on Cyperus esculentus ACE inhibitory peptide.
  • [1]
    于红, 敬思群. 油莎豆化学成分及应用研究进展[J]. 食品工业,2015,36(6):242−245.
    [2]
    阳振乐. 油莎豆的特性及其研究进展[J]. 北方园艺,2017,17(392):199−208.
    [3]
    Rahul V Manek, Philip F Builders, William M Kolling, et al. Physicochemical and binder properties of starch obtained from Cyperus esculentus[J]. AAPS Pharm Sci Tech,2012,13(2):379−388. doi: 10.1208/s12249-012-9761-z
    [4]
    Moonjung Kim, Siwon No, Suk Hoo Yoon. Stereospecific analysis of fatty acid composition of Chufa (Cyperus esculentus L.) tuber oil[J]. Journal of the American Oil Chemists' Society,2007,84(11):1079−1080. doi: 10.1007/s11746-007-1131-8
    [5]
    陈星, 陈滴, 刘蕾. 油莎豆全成分分析[J]. 食品科技,2009,34(3):165−168.
    [6]
    杨帆, 朱文学. 油莎豆研究现状及展望[J]. 粮食与油脂,2020,33(7):4−6.
    [7]
    Hankins C N, Shannon L M. Physical and enzymatic properties of a phytohemagglutinin from mung beans[J]. Journal of Biological Chemistry,1978,253(21):7791−7797. doi: 10.1016/S0021-9258(17)34439-3
    [8]
    Wei-Liang W, Guo-Jie W, Dao-Shuang L, et al. The physiological function and research progress of angiotensin-i-converting enzyme inhibitory petides[J]. Modern Food Science and Technology,2006,22(3):251−254.
    [9]
    孙宁玲. 高血压领域的热点及思考[J]. 中华高血压杂志,2015,23(3):203−205.
    [10]
    罗鹏. 葵花籽ACE抑制肽的分离纯化、结构分析与稳态化研究[D]. 武汉: 华中农业大学, 2018.
    [11]
    Martin M, Deussen A. Effects of natural peptides from food proteins on angiotensin converting enzyme activity and hypertension[J]. Critical Reviews in Food Science and Nutrition,2019,59(8):1264−1283. doi: 10.1080/10408398.2017.1402750
    [12]
    Fagyas M, Úri K, Siket I M, et al. New perspectives in the renin-angiotensin-aldosterone system (RAAS) I: Endogenous angiotensin converting enzyme (ACE) inhibition[J]. PLoS One, 2014, 9(4): e87843.
    [13]
    Ceren D D, Aysun Y, Funda K G, et al. Angiotensin-i-converting enzyme (ACE)-inhibitory peptides from plants[J]. Nutrients,2017,9(4):316. doi: 10.3390/nu9040316
    [14]
    Wei L W, Guo J W, Dao S L, et al. The physiological function and research progress of angiotensin-i-converting enzyme inhibitory petides[J]. Modern Food Science and Technology,2006(3):251−254.
    [15]
    韩飞, 于婷婷, 周孟良, 等. 酶法生产大豆蛋ACE抑制肽的研究[J]. 食品科学,2008,29(11):369−374. doi: 10.3321/j.issn:1002-6630.2008.11.084
    [16]
    胡炜东, 蔡永敏, 鲁富宽. 响应面法优化油莎豆粕蛋白抗氧化肽制备工艺[J]. 食品工业,2014,35(2):105−108.
    [17]
    胡炜东, 蔡永敏, 鲁富宽, 等. 响应面分析法优化油莎豆粕蛋白提取工艺[J]. 食品科技,2013,38(6):171−175, 184.
    [18]
    Cushman D W, Cheung H S. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung[J]. Elsevier,1971,20(7):1637−1648.
    [19]
    杨叶波, 蔡培培, 何文森. 大豆蛋白质的提取技术的研究进展[J]. 广州化工,2015,43(9):26−27. doi: 10.3969/j.issn.1001-9677.2015.09.011
    [20]
    安传相. 核桃源蛋白ACE抑制肽制备及分离纯化的研究[D]. 贵阳: 贵州大学, 2018.
    [21]
    胡庆娟, 吴光杰, 牛庆川, 等. 响应面试验优化木瓜蛋白酶法脱马齿苋多糖蛋白工艺[J]. 食品科学,2018,39(20):246−252. doi: 10.7506/spkx1002-6630-201820036
    [22]
    周洁静, 侯银臣, 刘旺旺, 等. 羊胎盘提取残余物免疫肽制备工艺的优化[J]. 食品与发酵工业,2015,41(3):129−134.
    [23]
    韩扬. 超声辅助酶法制备燕麦ACE抑制肽的研究[D]. 北京: 北京工商大学, 2010.
    [24]
    麻成金, 黄伟, 黄群, 等. 复合酶法提取仿栗籽蛋白的工艺优化[J]. 食品科学,2012,33(20):27−32.
  • Cited by

    Periodical cited type(12)

    1. 赵忠祥,王家林. 酶解法制备油莎豆粕抗氧化肽工艺优化. 现代农业科技. 2024(17): 154-158 .
    2. 伍津瑶,殷明月,杨美花,康晶晶. 茶树菇降压肽制备工艺优化. 食品与机械. 2024(11): 172-179 .
    3. 段帅,吴晓彤. 油莎豆粕抗氧化肽的制备及其稳定性研究. 中国粮油学报. 2023(01): 80-89 .
    4. 颜阿娜,洪燕婷,王琳,黄茂坤. 鲭鱼酶解工艺双响应面法优化及抗氧化活性研究. 通化师范学院学报. 2023(04): 59-67 .
    5. 张敏君,段雪伟,王燕,杨慧文,刘冰,向文静,由天辉. 构树根皮活性成分乙醇提取工艺优化及其抗氧化活性分析. 食品工业科技. 2023(11): 196-203 . 本站查看
    6. 王燕,段雪伟,张敏君,杨慧文,刘冰,由天辉. 响应面法优化黑玉米粒多糖提取工艺及其抗氧化活性分析. 食品工业科技. 2023(22): 191-200 . 本站查看
    7. 詹炜君,金星鹏,陈俪锟,陈丽. 马鲛鱼黄嘌呤氧化酶抑制肽的制备工艺优化及抗氧化活性研究. 食品安全质量检测学报. 2023(22): 278-287 .
    8. 陈冰冰,欧颖仪,叶灏铎,金昶言,梁兴唐,尹艳镇,郑韵英,曹庸,苗建银. 富硒辣木叶蛋白ACE抑制肽的酶解工艺优化及活性研究. 食品工业科技. 2022(03): 1-9 . 本站查看
    9. 沈晓静,黄璐璐,聂凡秋,王青,杨俊滔,颜成慧,姜薇薇. 云南小粒咖啡花多糖提取工艺优化及其抗氧化活性分析. 食品工业科技. 2022(04): 238-245 . 本站查看
    10. 许依能,纪登杰,杨威,马洁,陈丽. 超声辅助酶法制备南极磷虾抗菌肽的工艺优化. 中国食品添加剂. 2022(05): 73-80 .
    11. 段帅,张德建,姚玉军,吴晓彤. 油莎豆营养价值及加工应用研究进展. 食品科技. 2022(07): 149-154 .
    12. 陈冰冰,杨奕,李嘉颐,金昶言,程缤霈,邓泳琪,林碧敏,梁东,唐德剑,孟莉,苗建银. 富硒辣木籽蛋白降压肽的酶法制备、硒含量及稳定性研究. 食品与机械. 2022(08): 213-221 .

    Other cited types(8)

Catalog

    Article Metrics

    Article views (354) PDF downloads (24) Cited by(20)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return