CHEN Bingbing, OU Yingyi, YE Haoduo, et al. Optimization of Enzymatic Hydrolysis Process and Activity of ACE Inhibitory Peptides from Selenium-rich Moringa oleifera Leaves Protein[J]. Science and Technology of Food Industry, 2022, 43(3): 1−9. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060268.
Citation: CHEN Bingbing, OU Yingyi, YE Haoduo, et al. Optimization of Enzymatic Hydrolysis Process and Activity of ACE Inhibitory Peptides from Selenium-rich Moringa oleifera Leaves Protein[J]. Science and Technology of Food Industry, 2022, 43(3): 1−9. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060268.

Optimization of Enzymatic Hydrolysis Process and Activity of ACE Inhibitory Peptides from Selenium-rich Moringa oleifera Leaves Protein

More Information
  • Received Date: July 01, 2021
  • Available Online: November 28, 2021
  • The selenium-rich Moringa oleifera leaves protein was extracted from the selenium-rich Moringa oleifera leaves. The preparation of angiotensin-converting enzyme (ACE) inhibitory peptides from selenium-rich Moringa oleifera leaves was optimized by single factor experiments and response surface method. The ACE inhibitory activity, amino acid composition and selenium content of the optimal enzymatic hydrolysate were analyzed and characterized. The results showed that the optimal hydrolysis conditions of ACE inhibitory peptides were as follows: time 3 h, pH7.5, enzyme to substrate ratio 0.23%, substrate concentration 5.97% and temperature 39.2 ℃. The ACE inhibitory peptides prepared under these conditions showed strong ACE inhibitory activity (IC50=0.522 mg/mL), rich in essential amino acids (24.05%) and hydrophobic amino acids (20.6%), and the selenium content was 1.86 times that of the raw material of Moringa oleifolia leaves. The ACE inhibitory peptides of selenium-rich Moringa oleifolia leaves protein had dual characteristics of functional factor and natural food. This study could provide theoretical basis for the development of antihypertensive drugs and related functional foods.
  • [1]
    WU J J, XIE D W, CHEN X J, et al. Inhibitory mechanism of a substrate-type angiotensin I-converting enzyme inhibitory peptide[J]. Process Biochemistry,2019,79:97−104. doi: 10.1016/j.procbio.2018.12.018
    [2]
    陈秋銮, 陈雪芹, 马倩, 等. 酶解法制备牡丹籽ACE抑制肽及其稳定性[J]. 食品工业科技,2020,41(19):149−156. [CHEN Q L, CHEN X Q, MA Q, et al. Preparation and stability of ACE inhibitory peptides from peony seed meal by enzymatic hydrolysis[J]. Science and Technology of Food Industry,2020,41(19):149−156.
    [3]
    HANAFI M A, HASHIM S N, YEA C S, et al. High angiotensin-I converting enzyme (ACE) inhibitory activity of alcalase-digested green soybean (Glycine max) hydrolysates[J]. Food Research International,2018,106:589−597. doi: 10.1016/j.foodres.2018.01.030
    [4]
    LEE S Y, HUR S J. Antihypertensive peptides from animal products, marine organisms, and plants[J]. Food chemistry,2017,228:506−517. doi: 10.1016/j.foodchem.2017.02.039
    [5]
    李姣, 苏继磊, 陈敏, 等. 马氏珍珠贝肉蛋白水解特征及其ACE抑制肽的筛选[J]. 食品科学,2021:1−13. [LI J, SU J L, CHEN M, et al. Hydrolysis characterization of Pinctada fucata (P. fucata) meat protein and screening for the ACE inhibitory peptides[J]. Food Science,2021:1−13. doi: 10.7506/spkx1002-6630-20210108-084
    [6]
    姜瞻梅, 田波, 吴刚, 等. 酶解牛乳酪蛋白制备ACE抑制肽的研究[J]. 中国食品学报,2007(6):39−43. [JIANG Z M, TIAN B, WU G, et al. Studies on the preparation of ACE inhibitory peptides from enzymic hydrolysate of milk casein[J]. Journal of Chinese Institute of Food Science and Technology,2007(6):39−43. doi: 10.3969/j.issn.1009-7848.2007.06.007
    [7]
    CHEN J W, LIU S S, YE R, et al. Angiotensin-I converting enzyme (ACE) inhibitory tripeptides from rice protein hydrolysate: purification and characterization[J]. Journal of Functional Foods,2013,5(4):1684−1692. doi: 10.1016/j.jff.2013.07.013
    [8]
    余虹, 操德群, 何艳丽, 等. 龙须菜蛋白酶解制备ACE抑制肽的工艺优化[J]. 食品与生物技术学报,2019,38(2):133−139. [YU H, CAO D Q, HE Y L, et al. Optimization of enzymatic hydrolysis conditions for production of ACE inhibitory peptides[J]. Journal of Food Science and Biotechnology,2019,38(2):133−139. doi: 10.3969/j.issn.1673-1689.2019.02.019
    [9]
    WANG C, TU M L, WU D, et al. Identification of an ACE-inhibitory peptide from walnut protein and its evaluation of the inhibitory mechanism[J]. International Journal of Molecular Sciences,2018,19(4):1156. doi: 10.3390/ijms19041156
    [10]
    LIU X Q, MIAO X Y, WU D, et al. Purification and identification of ACE-inhibiting peptides from wild pine nut peptide fractions (PNPF)[J]. European Food Research and Technology,2018,244(6):979−988. doi: 10.1007/s00217-017-2987-y
    [11]
    贾蕾, 向极钎, 殷红清, 等. 生物活性硒肽的研究进展[J]. 食品科学,2021(15):346−355. [JIA L, XIANG J Q, YIN H Q, et al. Research progress of bioactive selenium-containing peptides[J]. Food Science,2021(15):346−355. doi: 10.7506/spkx1002-6630-20200428-368
    [12]
    时盼盼, 王芙蓉. 微量元素硒与高血压、冠心病相关性研究进展[J]. 社区医学杂志,2018,16(1):77−79. [SHI P P, WANG F R. Research progress on the correlation between selenium and hypertension and coronary heart disease[J]. Journal of Community Medicine,2018,16(1):77−79.
    [13]
    LIU K L, ZHAO Y, CHEN F S, et al. Purification and identification of Se-containing antioxidative peptides from enzymatic hydrolysates of Se-enriched brown rice protein[J]. Food Chemistry,2015,187:424−430. doi: 10.1016/j.foodchem.2015.04.086
    [14]
    FANG Y, CHEN X, LUO P Z, et al. The correlation between in vitro antioxidant activity and immunomodulatory activity of enzymatic hydrolysates from selenium-enriched rice protein[J]. Journal of Food Science,2017,82(2):517−522. doi: 10.1111/1750-3841.13595
    [15]
    高冬芳, 张逸波, 凌钦婕, 等. 富硒螺旋藻多肽对血管紧张素转化酶的抑制作用[J]. 食品科学,2011,32(7):7−1. [GAO D F, ZHANG Y B, LING Q J, et al. Angiotensin convert enzyme inhibition of peptides derived from water soluble total protein of selenium-enriched Spirulina platensis[J]. Food Science,2011,32(7):7−1.
    [16]
    王韵, 蔡智辉, 张逸波, 等. 富硒螺旋藻蛋白水解多肽的制备及其对ACE活性的抑制作用[J]. 现代食品科技,2013,29(7):1574−1579. [WANG Y, CAI Z H, ZHANG Y B, et al. Preparation of polypeptides by hydrolysis of selenium-enriched Spirulina protein and their inhibitory activity for angiotensin-converting enzyme[J]. Modern Food Science and Technology,2013,29(7):1574−1579.
    [17]
    杜梦珂. 富硒碱性茶蛋白ACE抑制肽的制备、分离纯化及结构鉴定[D]. 上海: 上海师范大学, 2018.

    DU M K. Study on the preparation, purification and identification of ACE inhibitory activity peptides from se-enriched tea protein[D]. Shanghai: Shanghai Normal University, 2018.
    [18]
    张能荣. 辣木的成分和药理[J]. 办公自动化,2018,23(2):17−21. [ZHANG N R. The composition and pharmacology of Moringa[J]. Office Informatization,2018,23(2):17−21. doi: 10.3969/j.issn.1007-001X.2018.02.004
    [19]
    汪泰, 顾文宏, 何军, 等. 辣木新资源食品研究进展[J]. 食品工业科技,2017,38(8):364−368. [WANG T, GU W H, HE J, et al. Advance of Moringa oleifera food as a new resource[J]. Science and Technology of Food Industry,2017,38(8):364−368.
    [20]
    冉隆中. 现代辣木生物学[M]. 昆明: 云南科技出版社, 2015.

    RAN L Z. Biology of modern Moringa oleifera[M]. Kunming: Yunnan Science and Technology Press, 2015.
    [21]
    郭刚军, 胡小静, 徐荣, 等. 辣木叶酶法水解提取蛋白质工艺优化[J]. 食品工业科技,2021,42(5):194−199. [GUO G J, HU X J, XU R, et al. Process optimization of protein extraction from Moringa oleifera leaf by enzymatic hydrolysi[J]. Science and Technology of Food Industry,2021,42(5):194−199.
    [22]
    巩思佳, 康澳, 陈可菁, 等. 辣木叶的营养、功能及应用研究进展[J]. 食品工业科技, 2021: 1−12. DOI: 10.13386/j.issn1002-0306.2020100030.

    GONG S J, KANG A, CHEN K J, Research progress on nutrition, function and application of Moringa Oleifera leaves[J]. Science and Technology of Food Industry, 2021: 1−12. DOI: 10.13386/j.issn1002-0306.2020100030.
    [23]
    郭妍. 辣木叶植物化学物质分析及体外生物活性研究[D]. 昆明: 昆明理工大学, 2018.

    GUO Y. Analysis of plant chemical constituents and in vitro bioactivity of Moringa oleifera leaves[D]. Kunming: Kunming University of Science and Technology, 2018.
    [24]
    FALOWO A B, MUKUMBO F E, IDAMOKORO E M, et al. Multi-functional application of Moringa oleifera Lam. in nutrition and animal food products: A review[J]. Food Research International,2018,106:317−334. doi: 10.1016/j.foodres.2017.12.079
    [25]
    康丹丹, 李照莹, 董浩澜, 等. 辣木叶蛋白质酶解产物的制备及其抗菌活性研究[J]. 食品工业科技,2019,40(8):114−119. [KANG D D, LI Z Y, DONG H L, et al. Preparation of enzymatic hydrolysis products from Moringa oleifera leaves protein and its antibacterial activity[J]. Science and Technology of Food Industry,2019,40(8):114−119.
    [26]
    LIU L Z, ZHU Q Y, ZHAO M M, et al. Purification of peptide fraction with antioxidant activity from Moringa oleifera leaf hydrolysate and protective effect of its in vitro gastrointestinal digest on oxidatively damaged erythrocytes[J]. International Journal of Food Science & Technology,2019,54(1):84−91.
    [27]
    TIAN Y C, LIN L Z, ZHAO M M, et al. Xanthine oxidase inhibitory activity and antihyperuricemic effect of Moringa oleifera Lam. leaf hydrolysate rich in phenolics and peptides[J]. Journal of Ethnopharmacology,2021,270:113808. doi: 10.1016/j.jep.2021.113808
    [28]
    祝素莹, 朱瑜, 张银志, 等. 复合蛋白酶水解核桃粕制备血管紧张素转化酶抑制肽工艺优化[J]. 食品研究与开发,2020,41(17):56−63. [ZHU S Y, ZHU Y, ZHANG Y Z, et al. Optimization of complex protease hydrolysis for preparation of angiotensin converting enzyme inhibitory peptides from walnut dregs[J]. Food Research and Development,2020,41(17):56−63.
    [29]
    赵爽, 刘昆仑, 陈复生. 酶法制备富硒糙米抗氧化肽的研究[J]. 河南工业大学学报(自然科学版),2017,38(5):5−10. [ZHAO S, LIU K L, CHEN F S. Preparation of antioxidant peptides from Se-enriched brow rice by enzymatic hydrolysis[J]. Journal of Henan University of Technology (Natural Science Edition),2017,38(5):5−10.
    [30]
    骆琳, 丁青芝, 马海乐. 96孔板法用于高通量血管紧张素转化酶抑制剂体外检测[J]. 分析化学,2012,40(1):129−134. [LUO L, DING Q Z, MA H L. Establishment ofin vitro high-throughput activity detection method for angiotensin converting enzyme inhibitors based on 96 well plates[J]. Chinese Journal of Analytical Chemistry,2012,40(1):129−134.
    [31]
    宋凯强, 刘鹏莉, 郑振佳, 等. 大蒜降压肽的制备及超滤分离[J]. 食品工业科技,2019,40(19):73−80. [SONG K Q, LIU P L, ZHENG Z J, et al. Preparation and ultrafiltration separation of garlic antihypertensive peptide[J]. Science and Technology of Food Industry,2019,40(19):73−80.
    [32]
    曾钰鹏, 易嘉鸣, 李瑶璐, 等. 辣木富硒低糖酸奶的加工工艺研究[J]. 食品与发酵科技,2020,56(5):22−29. [ZENG Y P, YI J M, LI Y L, et al. Study on processing technology of Moringa oleifera selenium-enriched low-sugar yogurt[J]. Food and Fermentation Sciences & Technology,2020,56(5):22−29. doi: 10.3969/j.issn.1674-506X.2020.05.004
    [33]
    SUN Z L, QIN H L, CAO D, et al. Optimization of hydrolysis conditions for the isolation of angiotensin-I converting enzyme (ACE) inhibitory peptides from Rhopilema hispidum[J]. Journal of Ocean University of China,2018,17(6):1458−1464. doi: 10.1007/s11802-018-3666-8
    [34]
    侯成杰, 聂彩清, 王彦茜, 等. α-乳白蛋白源ACE抑制肽快速筛选及验证[J]. 食品科学,2020:1−12. [HOU C J, NIE C Q, WANG Y Q, et al. Accurate screening and verification of α-lactalbumin-derived ACE inhibitory peptides[J]. Food Science,2020:1−12. doi: 10.7506/spkx1002-6630-20201012-094
    [35]
    GU Y Y, MAJUMDER K, WU J P. QSAR-aided in silico approach in evaluation of food proteins as precursors of ACE inhibitory peptides[J]. Food Research International,2011,44(8):2465−2474. doi: 10.1016/j.foodres.2011.01.051
    [36]
    JING P, QIAN B J, HE Y W, et al. Screening milk-derived antihypertensive peptides using quantitative structure activity relationship (QSAR) modelling and in vitro/in vivo studies on their bioactivity[J]. International Dairy Journal,2014,35(1):95−101. doi: 10.1016/j.idairyj.2013.10.009
    [37]
    张杨, 胡磊, 汪少芸, 等. 响应面优化酶解法制备蒲公英籽蛋白抗氧化肽工艺[J]. 食品工业科技,2016,37(5):258−262. [ZHANG Y, HU L, WANG S Y, et al. Optimization of enzymolysis technology for preparation of antioxidant peptides from dandelion seeds-derived proteins by response surface methodology[J]. Science and Technology of Food Industry,2016,37(5):258−262.
    [38]
    殷海洋, 刘振春, 张世康, 等. 响应面优化超声波辅助酶法提取油莎豆ACE抑制肽的工艺[J]. 食品工业科技,2021:1−10. [YIN H Y, LIU Z C, ZHANG S K, et al. Response surface optimization of ultrasonic-assisted enzymatic extraction of ACE inhibitory peptides from cyperus esculentus[J]. Science and Technology of Food Industry,2021:1−10. doi: 10.13386/j.issn1002-0306.2020100130
    [39]
    QU W J, MA H L, PAN Z L, et al. Preparation and antihypertensive activity of peptides from Porphyra yezoensis[J]. Food Chemistry,2010,123(1):14−20. doi: 10.1016/j.foodchem.2010.03.091
    [40]
    马倩, 潘梦莹, 陈秋銮, 等. 奇亚籽蛋白酶解制备抗氧化肽的工艺优化[J]. 食品研究与开发,2021,42(3):122−129. [MA Q, PAN M Y, CHEN Q L, et al. Optimization of enzymatic hydrolysis of chia seed protein to prepare antioxidant peptides[J]. Food Research and Development,2021,42(3):122−129.
    [41]
    毛跟年, 周亚丽, 贺磊, 等. 魔芋ACE抑制肽酶法制备工艺研究[J]. 食品工业,2017,38(1):99−102. [MAO G N, ZHOU Y L, HE L, et al. Enzymatic preparation of konjac ACE inhibitory peptides[J]. The Food Industry,2017,38(1):99−102.
    [42]
    殷金莲, 靳毓. 酶解法制备榛子粕ACE抑制肽工艺研究[J]. 中国油脂,2020,45(1):68−72. [YIN J L, JIN Y. Preparation of ACE inhibitory peptide from hazelnut meal by enzymatic hydrolysis[J]. China Oils and Fats,2020,45(1):68−72. doi: 10.12166/j.zgyz.1003-7969/2020.01.015
    [43]
    安婷婷, 陈丽美, 邓长春, 等. 翡翠贻贝降血压肽酶解制备工艺研究[J]. 安徽农业科学,2020,48(10):137−140. [AN T T, CHEN L M, DENG C C, et al. Study on the enzymatic hydrolysis of antihypertensive peptide from Perna viridis[J]. Journal of Anhui Agricultural Sciences,2020,48(10):137−140. doi: 10.3969/j.issn.0517-6611.2020.10.037
    [44]
    HUANG L, LIU B, MA H, et al. Combined effect of ultrasound and enzymatic treatments on production of ACE inhibitory peptides from wheat germ protein[J]. Journal of Food Processing and Preservation,2014,38(4):1632−1640. doi: 10.1111/jfpp.12125
    [45]
    徐杨林, 严宏孟, 高蕾, 等. 苦杏仁醇溶蛋白酶解抗氧化肽的制备工艺优化[J]. 现代食品科技,2021,37(6):201−210. [XU Y L, YAN H M, GAO L, et al. Optimizing antioxidant peptide preparation using the proteolysis of the prolamins produced by Prunus dulcis var. amara[J]. Modern Food Science and Technology,2021,37(6):201−210.
    [46]
    吴红洋, 姜太玲, 胡惠茗, 等. 响应面法优化酶解花椒籽蛋白制备降血压肽工艺[J]. 食品科学,2014,35(21):180−185. [WU H Y, JIANG T L, HU H M, et al. Response surface methodology for optimization of hydrolysis conditions for preparing antihypertensive peptides Sichuan pepper (Zanthoxylum bungeanum) seed protein[J]. Food Science,2014,35(21):180−185. doi: 10.7506/spkx1002-6630-201421035
    [47]
    SIN H N, YUSOF S, SHEIKH A H N, et al. Optimization of hot water extraction for sapodilla juice using response surface methodology[J]. Journal of Food Engineering,2005,74(3):352−358.
    [48]
    李莉, 张赛, 何强, 等. 响应面法在试验设计与优化中的应用[J]. 实验室研究与探索,2015,34(8):41−45. [LI L, ZHANG S, HE Q, et al. Application of response surface methodology in experiment design and optimization[J]. Research and Exploration in Laboratory,2015,34(8):41−45. doi: 10.3969/j.issn.1006-7167.2015.08.011
    [49]
    代文亮, 程龙, 陶文沂. 响应面法在紫杉醇产生菌发酵前体优化中的应用[J]. 中国生物工程杂志,2007,27(11):66−72. [DAI W L, CHENG L, TAO W Y. Application of response surface methodology in optimization of precursors for taxol production by Fusarium mairei K178[J]. China Biotechnology,2007,27(11):66−72.
    [50]
    肖怀秋, 李玉珍, 林亲录, 等. Box-Behnken响应面优化冷榨花生粕酶解制备花生肽工艺[J]. 中国粮油学报,2014,29(10):106−111. [XIAO H Q, LI Y Z, LIN Q L, et al. Optimization of polypeptide preparation parameters from cold-pressed peanut meal by Box-Behnken response surface methodology[J]. Journal of the Chinese Cereals and Oils Association,2014,29(10):106−111.
    [51]
    封张萍, 岳阳, 刘东红, 等. 大米ACE抑制肽制备工艺优化和生物活性研究[J]. 食品科技,2021,46(2):210−217. [FENG Z P, YUE Y, LIU D H, et al. Optimization of preparation and bioactivity of rice ACE inhibitory peptides[J]. Food Science and Technology,2021,46(2):210−217.
    [52]
    WANG Y K, HE H L, CHEN X L, et al. Production of novel angiotensin I-converting enzyme inhibitory peptides by fermentation of marine shrimp Acetes chinensis with Lactobacillus fermentum SM 605[J]. Biotechnologically Relevant Enzymes and Proteins,2008,79(5):785−791.
    [53]
    ARIHARA K, NAKASHIMA Y, MUKAI T, et al. Peptide inhibitors for angiotensin I-converting enzyme from enzymatic hydrolysates of porcine skeletal muscle proteins[J]. Meat Science,2001,57(3):319−324. doi: 10.1016/S0309-1740(00)00108-X
    [54]
    毋瑾超, 汪依凡, 方长富. 贻贝蛋白酶解降血压肽的降压活性及相对分子质量与氨基酸组成[J]. 水产学报,2007(2):165−170. [WU J C, WANG Y F, FANG C F. Antihypertensive function and relative molecular weight as well as component of amino acids of antihypertensive peptide prepared from protein of mytilus coruscus[J]. Journal of Fisheries of China,2007(2):165−170.
    [55]
    王泽奇, 杨双盼, 冉旭. 大鲵肌肉ACE抑制肽的制备及其稳定性[J]. 食品工业,2020,41(4):123−127. [WANG Z Q, YANG S P, RAN X. The preparation ACE inhibitory peptide from by Andrias davidianus by mixture design and its stability[J]. The Food Industry,2020,41(4):123−127.
    [56]
    MATSUI T, MATSUFUJI H, SEKI E, et al. Inhibition of angiotensin I-converting enzyme by Bacillus licheniformis alkaline protease hydrolyzates derived from sardine muscle[J]. Biosci Biotechnol Biochem,1993,57(6):922−925. doi: 10.1271/bbb.57.922
    [57]
    MIYOSHI S, ISHIKAWA H, KANEKO T, et al. Structures and activity of angiotensin-converting enzyme inhibitors in an alpha-zein hydrolysate[J]. Agricultural and Biological Chemistry,1991,55(5):1313−1318.
    [58]
    林凯, 韩雪, 张兰威, 等. ACE抑制肽构效关系及其酶法制备的研究进展[J]. 食品科学,2017,38(3):261−270. [LIN K, HAN X, ZHANG L W, et al. Progress in structure-activity relationship and enzymatic preparation of ACE inhibitory peptides[J]. Food Science,2017,38(3):261−270.
    [59]
    XUE L, YIN R X, HOWELL K, et al. Activity and bioavailability of food protein-derived angiotensin-I-converting enzyme-inhibitory peptides[J]. Comprehensive Reviews in Food Science and Food Safety,2021,20(2):1150−1187. doi: 10.1111/1541-4337.12711
    [60]
    刘波, 孟辉. 微波消解-氢化物发生原子荧光法测定保健食品中的硒含量[J]. 湖北农业科学,2008(2):223−225. [LIU B, MENG H. Determination of selenium in healthy food by hydride generation-atomic fluorescence spectrometry method[J]. Hubei Agricultural Sciences,2008(2):223−225. doi: 10.3969/j.issn.0439-8114.2008.02.032
    [61]
    王真真. 富硒玉米蛋白水解物的制备、醒酒活性及结构研究[D]. 武汉: 华中农业大学, 2013.

    WANG Z Z. Preparation, activity and structures of se-enriched corn protein hydrolysates facilitating alcohol metabolism[D]. Wuhan: Huazhong Agricultural University, 2013.
    [62]
    秦芸, 石沛霖, 刘维维, 等. 富硒大米肽体内抗氧化活性研究[J]. 食品工业科技,2017,38(17):305−309. [QIN Y, SHI P L, LIU W W, et al. Antioxidant activity of the selenium-riched rice peptides in vivo[J]. Science and Technology of Food Industry,2017,38(17):305−309.

Catalog

    Article Metrics

    Article views (477) PDF downloads (34) Cited by()

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return