SHEN Xiaojing, HUANG Lulu, NIE Fanqiu, et al. Study on Optimization of Extraction Technology and Antioxidant Activity of Polysaccharides from Yunnan Coffea arabica Flowers[J]. Science and Technology of Food Industry, 2022, 43(4): 238−245. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060237.
Citation: SHEN Xiaojing, HUANG Lulu, NIE Fanqiu, et al. Study on Optimization of Extraction Technology and Antioxidant Activity of Polysaccharides from Yunnan Coffea arabica Flowers[J]. Science and Technology of Food Industry, 2022, 43(4): 238−245. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2021060237.

Study on Optimization of Extraction Technology and Antioxidant Activity of Polysaccharides from Yunnan Coffea arabica Flowers

More Information
  • Received Date: June 28, 2021
  • Available Online: December 17, 2021
  • To optimize the extraction technology and study antioxidant activity of polysaccharide from coffee flower (ACP), ultrasonic temperature, ultrasonic time, ratio of fluid-solid, ultrasonic power, sample immersion time and volume percentage of ethanol were investigated by using polysaccharide extraction yield as indicator. Then ultrasonic temperature, ultrasonic time and ultrasonic power were used as mainly influence factors, the extraction technology was optimized by response surface method. Antioxidant activity of ACP was investigated by DPPH· and ABTS+· scavenging effects, and FRAP assays. The results demonstrated that the ultrasonic extraction optimum technological conditions were: Ultrasonic temperature 69.5 ℃, ultrasonic time 93 min, ultrasonic power 175 W, ratio of fluid-solid 10:1 mL/g, sample immersion time 30 min, and volume percentage of ethanol 80%. Under the the yield of polysaccharides was 2.292%. The results indicated that the value of IC50 based on DPPH· scavenging effect of ACP was 3.844 mg·mL−1, the ABTS+· scavenging activity was 0.921 mmol Trolox/g ACP. The FRAP values of ACP by FRAP assay was 0.0565 mmol Fe2+/g ACP, which showed that ACP had weak antioxidant activity. This study would provide a theoretical basis for the comprehensive utilization and development of coffee by-products.
  • [1]
    DE LOS SANTOS-BRIONES C, HERNANDEZ-SOTOMAYOR S M T. Coffee biotechnology[J]. Brazilian J Plant Physiol,2006,18:217−227. doi: 10.1590/S1677-04202006000100015
    [2]
    沈晓静, 字成庭, 辉绍良, 等. 咖啡化学成分及其生物活性研究进展[J]. 热带亚热带植物学报,2021,29(1):112−122. [SHEN X J, ZI C T, HUI S L, et al. Advances on chemical components and biological activities of coffee[J]. Journal of Tropical and Subtropical Botany,2021,29(1):112−122. doi: 10.11926/jtsb.4249
    [3]
    EVA B P, TÍMEA B, NORA P. Phytochemical overview and medicinal importance of Coffea species from the past until now[J]. Asina Pac J Trop Med,2016,9(12):1127−1135. doi: 10.1016/j.apjtm.2016.11.008
    [4]
    SHU Y, LIU J Q, PENG X R, et al. Characterization of diterpenoid glucosides in roasted puer coffee beans[J]. J Agric Food Chem,2014,62(12):2631−2637. doi: 10.1021/jf500788t
    [5]
    WANG X, MENG Q Q, PENG X R, et al. Identification of new diterpene esters from green Arabica coffee beans, and their platelet aggregation accelerating activities[J]. Food Chem,2018,263:251−257. doi: 10.1016/j.foodchem.2018.04.081
    [6]
    WANG X, PENG X R, LU J, et al. New dammarane triterpenoids, caffruones A-D, from the cherries of Coffea arabica[J]. Nat Prod Bioprospect,2018,8(6):413−418. doi: 10.1007/s13659-018-0181-y
    [7]
    WANG X, PENG X R, LU J, et al. Ent-kaurane diterpenoids from the cherries of Coffea arabica[J]. Fitoterapia,2019,132:7−11. doi: 10.1016/j.fitote.2018.08.023
    [8]
    REBOLLO-HERNANZA M, ZHANG Q Z, AGUILERA Y, et al. Phenolic compounds from coffee by-products modulate adipogenesis-related inflammation, mitochondrial dysfunction, and insulin resistance in adipocytes, via insulin/PI3K/AKT signaling pathways[J]. Food Chem Toxicol,2019,132:1−16.
    [9]
    NURIA MARTINEZ-SAEZ, MARÍA DOLORES DEL CASTILLO. Development of sustainable novel foods and beverages based on coffee by-products for chronic diseases[J]. Encyclopedia of Food Security and Sustainability,2019(1):307−315.
    [10]
    TIZIAN K, JONATHAN I K, VERA G, et al. A review of coffee by-products including leaf, flower, cherry, husk, silver skin, and spent grounds as novel foods within the european union[J]. Foods,2020,9:665. doi: 10.3390/foods9050665
    [11]
    CAMPA C, MONDOLOT L, RAKOTONDRAVAO A, et al. A survey of mangiferin and hydroxycinnamic acid ester accumulation in coffee (Coffea) leaves: Biological implications and uses[J]. Annals of Botany,2012,110(3):595−613. doi: 10.1093/aob/mcs119
    [12]
    CHEN X M. A review on coffee leaves: Phytochemicals, bioactivities and applications[J]. Crit Rev Food Sci Nutr,2019,59(6):1008−1025. doi: 10.1080/10408398.2018.1546667
    [13]
    CHEN X M, MA Z, KITTS D D. Effects of processing method and age of leaves on phytochemical profiles and bioactivity of coffee leaves[J]. Food Chemistry,2018,249:143−153. doi: 10.1016/j.foodchem.2017.12.073
    [14]
    付晓萍, 张云鹤, 谷大海, 等. 云南小粒种咖啡果皮粗提取物对人脐静脉内皮细胞抗氧化损伤的研究[J]. 食品科技,2016,41(12):183−188. [FU X P, ZHANG Y H, GU D H, et al. Effect on anti-oxidative injuries of human umbilical vein endothelial cell of crude extracts from Yunnan arabica coffee husk[J]. Food Sci Technol,2016,41(12):183−188.
    [15]
    张云鹤, 付晓萍, 梁文娟, 等. 云南小粒种咖啡果皮粗提物花青素成分及抗氧化活性研究[J]. 食品科技,2016,41(5):219−223. [ZHANG Y H, FU X P, LIANG W J, et al. Antioxidant activity and compsition of anthocyanins of crude extracts from Yunnan arabica coffee husk[J]. Food Sci Technol,2016,41(5):219−223.
    [16]
    ELENA E S, JAIRO RENÉ M, SILVIA CÁRDENAS-VARGAS, et al. GC-MS study of compounds isolated from Coffea arabica flowers by different extraction techniques[J]. J Sep Sci,2013,36(17):2901−2914. doi: 10.1002/jssc.201300458
    [17]
    THI MINH THU N, EUN JIN CHO, SONG Y, et al. Use of coffee flower as a novel resource for the production of bioactive compounds, melanoidins, and bio-sugars[J]. Food Chem,2019,29:125120.
    [18]
    LAURENT C, EDDARKAOUI S, DERISBOURG M, et al. Beneficial effects of caffeine in a transgenic model of Alzheimer’s disease-like taupathology[J]. Neurobiol Aging,2014,35(9):2079−2090. doi: 10.1016/j.neurobiolaging.2014.03.027
    [19]
    SINGH S, SINGH K, PATEL S, et al. Nicotine and caffeine-mediated modulation in the expression of toxicant responsive genes and vesicular monoamine transporter-2 in 1-methyl 4-phenyl-1, 2, 3, 6-tetra- hydropyridine-induced Parkinson’s disease phenotype in mouse[J]. Brain Res,2008,1207:193−206. doi: 10.1016/j.brainres.2008.02.023
    [20]
    SHAO X N, CHEN C, MIAO C S, et al. Expression analysis of microRNAs and their target genes during experimental diabetic renal lesions in rats administered with ginsenoside Rb1 and trigonelline[J]. Die Pharm,2019,74(8):492−498.
    [21]
    ZHOU J Y, ZHOU S W. Protection of trigonelline on experimental diabetic peripheral neuropathy[J]. Evid Based Compl Alternat Med,2012,2012:164219.
    [22]
    FLÁVIA DE ABREU PINHEIRO, LUZIA FERREIRA ELIAS, MILTON DE JESUS FILHO, et al. Arabica and Conilon coffee flowers: Bioactive compounds and antioxidant capacity under different processes[J]. Food Chem,2020,336:127701.
    [23]
    ZHAO S J, HAN Z M, YANG L M, et al. Extraction, characterization and antioxidant activity evaluation of polysaccharides from Smilacina japonica[J]. Int Biol Macromol,2020,151:576−583. doi: 10.1016/j.ijbiomac.2020.02.015
    [24]
    郑婷婷, 张文杰, 严亮, 等. 水-碱连续提取黄皮疣柄牛肝菌粗多糖的理化性质及抗氧化活性研究[J]. 食品工业科技,2020,41(15):84−89. [ZHENG T T, ZHANG W J, YAN L, et al. Physicochemical properties and antioxidant activity of water-alkali continuous extraction of crude polysaccharides from Leccinellum crocipodium (Letellier.) Watliag[J]. Science and Technology of Food Industry,2020,41(15):84−89.
    [25]
    HUI Y, JUNLI H, CHUANG W. Anti-oxidation and anti-aging activity pf polysaccharide from Malus micromalus Makino fruit wine[J]. Int J Biol Macromol,2019,121:1203−1212. doi: 10.1016/j.ijbiomac.2018.10.096
    [26]
    LI J, GU F F, CAI C, et al. Purification, structural characterization, and immunomodulatory activity of the polysaccharides from Ganoderma lucidum[J]. Int J Biol Macromol,2020,143:806−813. doi: 10.1016/j.ijbiomac.2019.09.141
    [27]
    ZHAO L, LI M Y, SUN K C, et al. Hippophae rhamnoides polysaccharides protect IPEC-J2 cells from LPS-induced inflammation apoptosis and barrier dysfunction in vitro via inhibiting TLR4/NF-κB signaling pathway[J]. Int J Biol Macromol,2020,155:1202−1215. doi: 10.1016/j.ijbiomac.2019.11.088
    [28]
    CHEN L, HUANG G L. Antitumor activity of polysaccharides: An overview[J]. Curr Drug Targets,2018,19(1):89−96.
    [29]
    郑婷婷, 张文杰, 严亮, 等. 热水法提取黄皮疣柄牛肝菌多糖工艺研究[J]. 食品研究与开发,2019,40(4):38−42. [ZHENG T T, ZHANG W J, YAN L, et al. Study on extraction technology of polysaccharides of Leccunum crocipdium (Letellier.) Watliag by hot water method[J]. Food Research and Development,2019,40(4):38−42. doi: 10.3969/j.issn.1005-6521.2019.04.007
    [30]
    申希峰, 黄杰涛, 张莲姬. 蒽酮-硫酸法测定榛花多糖含量条件的优化[J]. 食品研究与开发,2017,38(18):150−154. [SHEN X F, HUANG J T, ZHANG L J. Determination of optimal conditions of polysaccharide content of Hazel’s flower by anthrone sulfuric acid method[J]. Food Research and Development,2017,38(18):150−154.
    [31]
    XIAO H, YIN T P, DONG J W, et al. Five new phenolic compounds with antioxidant activities from the medicinal insect Blaps rynchopetera[J]. Molecules,2017,22(8):1301−1308. doi: 10.3390/molecules22081301
    [32]
    YIN T P, CAI L, XING Y, et al. Alkaloids with antioxidant activities from Aconitum handelianum[J]. J Asian Nat Prod Res,2016,18:603−610. doi: 10.1080/10286020.2015.1114473
    [33]
    HU X F, DING Z B, CHEN Y, et al. Comparative study on the antioxidant activities of ten common flower reas from China[J]. Open Chem,2019,17(1):841−848. doi: 10.1515/chem-2019-0091
    [34]
    陈钢, 陈红兰, 苏伟, 等. 响应面分析法优化黄精多糖提取工艺参数[J]. 食品科学,2007,38(18):198−201. [CHEN G, CHEN H L, SU W, et al. Optimization of extraction technique of Polyonatic sibiricum polysaccharides by response surface analysis[J]. Food Science,2007,38(18):198−201.
    [35]
    林志娟, 陈永, 尤丽彤, 等. 响应面法优化超声辅助提取太子参多糖工艺研究[J]. 天然产物研究与开发,2013,25:846−850. [LIN Z J, CHEN Y, YOU L T, et al. Optimization of ultrasonic-assisted extraction conditions of polysaccharides from Radix pseudostellariae by response surface methodology[J]. Natural Product Research and Development,2013,25:846−850. doi: 10.3969/j.issn.1001-6880.2013.06.027
    [36]
    康永锋, 薛永刚, 韩巧英, 等. 响应面优化超声辅助提取豌豆总黄酮工艺研究[J]. 食品研究与开发,2018,39(2):56−61. [KANG Y F, XUE Y G, HAN Q Y, et al. Optimization of the ultrasonic extraction technology of flavonoids from Pisum sativum Linn using response surface methodology[J]. Food Research and Development,2018,39(2):56−61. doi: 10.3969/j.issn.1005-6521.2018.02.010
    [37]
    赵巧丽, 庞振才, 张广明, 等. 响应面分析法优化菠萝皮渣多糖提取工艺研究[J]. 食品研究与开发,2018,39(6):34−40. [ZHANG Q L, PANG Z C, ZHANG G M, et al. Optimization of extraction conditions of polysaccharide from pineapple pomace by response surface methodology[J]. Food Research and Development,2018,39(6):34−40. doi: 10.3969/j.issn.1005-6521.2018.06.007
    [38]
    赵宁, 李伟泽, 张倩, 等. 白及多糖提取工艺[J]. 应用化工,2015,44(12):34−40. [ZHAO N, LI W Z, ZHANG Q, et al. Study on extraction technology of Bletilla striata polysaccharide[J]. Applied Chemical Industry,2015,44(12):34−40.
    [39]
    马岚, 王来兵, 杜晓鹂, 等. 响应面法优化蒙药瞿麦中总生物碱提取工艺研究[J]. 化学研究与应用,2019,31(2):232−238. [MA L, WANG L B, DU X L, et al. Optimization of ultrasonic extraction progress of total alkaloid from mongolian medicine Dianthus superbus L. using response surface method[J]. Chemical Research and Application,2019,31(2):232−238. doi: 10.3969/j.issn.1004-1656.2019.02.009
    [40]
    姜坤, 叶焕烽, 叶秦轩, 等. 响应面优化多聚原飞燕草素超声波降解工艺及其抗氧化的研究[J]. 食品工业科技,2021,42(13):221−229. [JIANG K, YE H F, YE Q X, et al. Research on ultrasonic degradation of polymeric prodelphinidin by response surface methodology and its antioxidant activity[J]. Science and Technology of Food Industry,2021,42(13):221−229.
    [41]
    焦雯姝, 关嘉琦, 史佳鹭, 等. 响应面法优化乳酸乳球菌KLDS4.0325 产叶酸的培养基成分及发酵条件[J]. 食品科学, 2020, 41(6): 123-130

    JIAO W S, GUAN J Q, SHI J L, et al. Optimization of medium composition and fermentation conditions for folate production by Lactococcus lactis KLDS4.0325 by response surface methodology[J]. Food Science, 2020, 41(6): 123-130.
    [42]
    王雯, 王睿智, 王彤, 等. 响应面法优化酶解低温榨取汉麻籽油工艺[J]. 食品科学,2019,40(8):242−247. [WANG W, WANG R Z, WANG T, et al. Optimization of enzymatic hydrolysis of cold-pressed hemp seed cake for increased oil yield by response surface methodology[J]. Food Science,2019,40(8):242−247. doi: 10.7506/spkx1002-6630-20180516-240
    [43]
    殷海洋, 刘振春, 张世康, 等. 响应面优化超声波辅助酶法提取油莎豆ACE抑制肽的工艺[J]. 食品工业科技,2021,42(14):182−187. [YIN H Y, LIU Z C, ZHANG S K, et al. Optimization of ultrasonic-assisted enzymatic extraction of ace inhibitory peptides from Cyperus esculentus by response surface method[J]. Science and Technology of Food Industry,2021,42(14):182−187.
    [44]
    CHEN Y, ZHANG H, TIAN X, et al. Antioxidant potential of crocins and ethanol extracts of Gardenia jasminoides ELLIS and Crocus sativus L. : A relationship investigation between antioxidant activity and croc in contents[J]. Food Chem, 2008, 109: 484-492.
    [45]
    LIU S C, LIN J T, WANG C K, et al. Antioxidant properties of various solvent extracts from lychee (Litchi chinenesis Sonn.) flowers[J]. Food Chem, 2009, 114: 577-581.
  • Cited by

    Periodical cited type(2)

    1. 高玮,李若兰,曾婧辉,力娜,宋凯,韩世范,朱瑞芳. 药食同源物质及其非营养素在肺癌防治中的研究进展. 护理研究. 2024(10): 1741-1746 .
    2. 孙佳慧,周援,孙月娥,李春阳,王卫东,张军. 黄芪生物活性成分及在食品中的应用研究进展. 中国食品添加剂. 2023(12): 272-276 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (434) PDF downloads (44) Cited by(3)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return