CAI Ming, XING Haoyong, XU Jing, et al. Fractionation and Antioxidant of Crude Polysaccharide from Ganoderma lucidum Based on Membrane Technology[J]. Science and Technology of Food Industry, 2021, 42(10): 29−35. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080199.
Citation: CAI Ming, XING Haoyong, XU Jing, et al. Fractionation and Antioxidant of Crude Polysaccharide from Ganoderma lucidum Based on Membrane Technology[J]. Science and Technology of Food Industry, 2021, 42(10): 29−35. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080199.

Fractionation and Antioxidant of Crude Polysaccharide from Ganoderma lucidum Based on Membrane Technology

More Information
  • Received Date: August 19, 2020
  • Available Online: March 15, 2021
  • Effects of membrane technology on the separation of crude polysaccharides from Ganoderma lucidum and its antioxidant activity had been studied. Fruiting body of Ganoderma lucidumwas leached by hot water, 100, 10 and 1 kDa ultrafiltration membrane were used to classify these crude polysaccharides recorded as GLP100, GLP10 and GLP1. Physicochemical properties and antioxidant activity of crude polysaccharides were compared. It had been demonstrated that three polysaccharides all have typical β-glucosidic bond absorption peaks by FTIR analysis. Congo red and circular dichroism analysis showed that the three crude polysaccharides were helix polysaccharides, GLP100 and GLP10 were triple helix polysaccharides. Results of SEM showed that the sizes of the three polysaccharides were different, which further verified that the different membranes could be used to grade the Ganoderma lucidum polysaccharides. All the three crude polysaccharides showed certain antioxidant capacity but some differences by reducing power, OH, 2, 2'-diazobis(3-ethylbenzothiazolin-6-sulfonic acid) diammonium salt cationic radical, 1, 1-diphenyl-2-trinitrobenzene hydrazine free radical scavenging. Among them, the reducing power of GLP100 was very close, and the scavenging ability of OH, ABTS and DPPH free radicals of GLP100 was better than that of the other two polysaccharides, The ABTS radical scavenging ability of GLP1 was better than the other two polysaccharides. Results showed that multistage membrane separation technology could effectively classify the polysaccharides of Ganoderma lucidum.
  • [1]
    Li J, Gu F, Cai C, et al. Purification, structural characterization, and immunomodulatory activity of the polysaccharides from Ganoderma lucidum[J]. International Journal of Biological Macromolecules,2020,143:806−813. doi: 10.1016/j.ijbiomac.2019.09.141
    [2]
    Zhao L, Dong Y, Chen G, et al. Extraction, purification, characterization and antitumor activity of polysaccharides from Ganoderma lucidum[J]. Carbohydrate Polymers,2010,80(3):783−789. doi: 10.1016/j.carbpol.2009.12.029
    [3]
    沐华, 蔡铭, 徐靖, 等. 破壁与去壁灵芝孢子粉的化学成分与抗氧化活性比较[J]. 食品工业科技,2020,41(10):32−37.
    [4]
    Jia J, Zgang X, Hu Y, et al. Evaluation of in vivo antioxidant activities of Ganoderma lucidum polysaccharides in STZ-diabetic rats[J]. Food Chemistry,2009,115(1):32−36. doi: 10.1016/j.foodchem.2008.11.043
    [5]
    Huang S, Ning Z. Extraction of polysaccharide from Ganoderma lucidum and its immune enhancement activity[J]. International Journal of Biological Macromolecules,2010,47(3):336−341. doi: 10.1016/j.ijbiomac.2010.03.019
    [6]
    胡丽萍. 灵芝孢子低聚糖的制备及其改性研究[D]. 广州: 华南理工大学, 2011.
    [7]
    张汇, 聂少平, 艾连中, 等. 灵芝多糖的结构及其表征方法研究进展[J]. 中国食品学报,2020,20(1):290−301.
    [8]
    陈国良, 陈晓清. 灵芝有效成分研究综述[J]. 中国食用菌,1995(4):7−9.
    [9]
    Yang X, Li A, Li X, et al. An overview of classifications, properties of food polysaccharides and their links to applications in improving food textures[J]. Trends in Food Science & Technology,2020,102:1−15.
    [10]
    Zhang K, Liu Y, Zhao X, et al. Anti-inflammatory properties of GLPss58, a sulfated polysaccharide from Ganoderma lucidum[J]. International Journal of Biological Macromolecules,2018,107:486−493. doi: 10.1016/j.ijbiomac.2017.09.015
    [11]
    Chen S, Liu H, Yang X, et al. Degradation of sulphated polysaccharides from Grateloupia livida and antioxidant activity of the degraded components[J]. International Journal of Biological Macromolecules,2020,156:660−668. doi: 10.1016/j.ijbiomac.2020.04.108
    [12]
    蔡铭, 陈思, 骆少磊, 等. 膜分离与醇沉技术纯化猴头菇粗多糖的比较[J]. 食品科学,2019,40(9):83−90. doi: 10.7506/spkx1002-6630-20180508-112
    [13]
    Liu G, Ye J, Li W, et al. Extraction, structural characterization, and immunobiological activity of ABP Ia polysaccharide from Agaricus bisporus[J]. International Journal of Biological Macromolecules,2020,162:975−984. doi: 10.1016/j.ijbiomac.2020.06.204
    [14]
    张丽萍, 张翼伸. 金顶侧耳多糖及其化学修饰产物水溶液构象的圆二色谱测定[J]. 生物化学杂志,1994(5):633−635.
    [15]
    Zeng F, Chen W, He P, et al. Structural characterization of polysaccharides with potential antioxidant and immunomodulatory activities from Chinese water chestnut peels[J]. Carbohydrate Polymers,2020,246:116551. doi: 10.1016/j.carbpol.2020.116551
    [16]
    Rozi P, Abuduwaili A, Ma S, et al. Isolations, characterizations and bioactivities of polysaccharides from the seeds of three species Glycyrrhiza[J]. International Journal of Biological Macromolecules,2020,145:364−371. doi: 10.1016/j.ijbiomac.2019.12.107
    [17]
    Tian H, Liu H, Song W, et al. Structure, antioxidant and immunostimulatory activities of the polysaccharides from Sargassum carpophyllum[J]. Algal Research,2020,49:101853. doi: 10.1016/j.algal.2020.101853
    [18]
    Medlejm K, Cherri B, Nasser G, et al. Optimization of polysaccharides extraction from a wild species of Ornithogalum combining ultrasound and maceration and their anti-oxidant properties[J]. International Journal of Biological Macromolecules,2020,161:958−968. doi: 10.1016/j.ijbiomac.2020.06.021
    [19]
    Chen X, Liang L, Han C. Borate suppresses the scavenging activity of gallic acid and plant polyphenol extracts on DPPH radical: A potential interference to DPPH assay[J]. LWT,2020,131:109769. doi: 10.1016/j.lwt.2020.109769
    [20]
    Kakar M U, Naveed M, Saeed M, et al. A review on structure, extraction, and biological activities of polysaccharides isolated from Cyclocarya paliurus (Batalin) Iljinskaja[J]. International Journal of Biological Macromolecules,2020,156:420−429. doi: 10.1016/j.ijbiomac.2020.04.022
    [21]
    孙培龙, 陶文扬, 何晋浙. 灵芝中三萜类化合物的研究进展[J]. 食药用菌,2016,24(2):76−81.
    [22]
    谭贻, 唐传红, 冯杰, 等. 灵芝三萜生物合成及调控研究进展[J]. 食用菌学报,2019,26(3):125−140.
    [23]
    李娜, 冯杰, 冯娜, 等. 灵芝液态深层发酵三萜类化合物研究进展[J]. 微生物学通报,2020,47(10):3451−3469.
    [24]
    刘艳芳. 赤芝多糖结构和构象表征及其免疫调节构效关系研究[D]. 无锡: 江南大学, 2018.
    [25]
    张冬雪, 王晓玲, 刘高强. 灵芝多糖的结构及构效关系[J]. 食品工业,2015,36(11):258−261.
    [26]
    Sato H, Kawamura I. Solid-state vibrational circular dichroism studies on the conformation of an amino acid molecule in crystalline state[J]. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics,2020,1868(8):140439. doi: 10.1016/j.bbapap.2020.140439
    [27]
    黄雅婷. 薄盖灵芝多糖的分离纯化、结构鉴定及抗肿瘤活性研究[D]. 广州: 广东药科大学, 2016.
    [28]
    谢梦霞. 灵芝多糖的分离纯化及抗乙肝病毒活性研究[D]. 南京: 南京农业大学, 2016.
    [29]
    冯胜平. 不同栽培品种灵芝抗氧化作用及灵芝多糖分离纯化、免疫活性研究[D]. 成都: 成都中医药大学, 2015.
    [30]
    Xu J, Liu W, Yao W, et al. Carboxymethylation of a polysaccharide extracted from Ganoderma lucidum enhances its antioxidant activities in vitro[J]. Carbohydrate Polymers,2009,78(2):227−234. doi: 10.1016/j.carbpol.2009.03.028
    [31]
    田淑雨, 鹿士峰, 吴杨洋, 等. 超声破碎辅助提取灵芝多糖工艺优化及抗氧化活性研究[J]. 食品研究与开发,2019,40(8):101−107. doi: 10.3969/j.issn.1005-6521.2019.08.018
    [32]
    操丽丽, 周俊, 郑峰, 等. 高压热水提取灵芝多糖及对其抗氧化活性的影响[J]. 食品科学技术学报,2018,36(2):58−62. doi: 10.3969/j.issn.2095-6002.2018.02.008
    [33]
    Pan K, Jiang Q, Liu G, et al. Optimization extraction of Ganoderma lucidum polysaccharides and its immunity and antioxidant activities[J]. International Journal of Biological Macromolecules,2013,55:301−306. doi: 10.1016/j.ijbiomac.2013.01.022
    [34]
    刘宇琪, 郝利民, 鲁吉珂, 等. 灵芝子实体和孢子粉纯化多糖体外抗氧化活性研究[J]. 食品工业科技,2019,40(16):27−31.
  • Cited by

    Periodical cited type(9)

    1. 张彪,杨晓宽. 纳豆菌发酵板栗渣工艺优化及其多糖的抗氧化性. 食品研究与开发. 2025(03): 160-166 .
    2. 屈雅宁,李慧,向大松,郭瑞,曾长立,王红波. 两种细菌发酵豆粉粗多糖体外降血糖、降血脂活性比较. 食品工业科技. 2024(12): 140-150 . 本站查看
    3. 许梦粤,余金毅,李慧,刘琴,曾长立,王红波. 不同品种纳豆的多种功能活性成分比较. 食品工业科技. 2024(13): 140-149 . 本站查看
    4. 屈雅宁,吴子龙,陈禅友,万何平,王亚珍,曾长立,王红波. 食用豆类多糖提取纯化、结构特征与生物活性研究进展. 中国调味品. 2024(07): 200-207 .
    5. 王芳,刘红,李燕红,龚田. 大黄多糖的提取及其抗氧化和降血糖活性研究. 海峡药学. 2024(07): 8-12 .
    6. 屈雅宁,许梦粤,李慧,王璐,郭瑞,王红波. 干酪乳杆菌发酵豆粉粗多糖结构特征与抗氧化活性. 中国食品学报. 2024(08): 112-121 .
    7. 许梦粤,田鑫,王君可,武傲雪,邹芷怡,吴佳辉,王红波. 菜豆多糖与香菇多糖结构特征以及体外重要生物活性综合对比评价. 食品科学. 2024(23): 2318-2327 .
    8. 李雪艳,罗钰颖,杨华杰,张雄,金浩鑫,杨双玲,饶毅,魏惠珍. 六神曲微生物菌群及功能性成分研究进展. 江西中医药大学学报. 2024(06): 116-120+128 .
    9. 刘凯青,张涵,殷澳,张会佳,侯相竹,冯晨曦,高阳,徐多多. 苦碟子注射液中多糖的提取分离、结构表征及其抗氧化活性的研究. 中国医院药学杂志. 2023(23): 2618-2623 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (253) PDF downloads (23) Cited by(14)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return