CAI Ming, XING Haoyong, XU Jing, et al. Fractionation and Antioxidant of Crude Polysaccharide from Ganoderma lucidum Based on Membrane Technology[J]. Science and Technology of Food Industry, 2021, 42(10): 29−35. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080199.
Citation: CAI Ming, XING Haoyong, XU Jing, et al. Fractionation and Antioxidant of Crude Polysaccharide from Ganoderma lucidum Based on Membrane Technology[J]. Science and Technology of Food Industry, 2021, 42(10): 29−35. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080199.

Fractionation and Antioxidant of Crude Polysaccharide from Ganoderma lucidum Based on Membrane Technology

More Information
  • Received Date: August 19, 2020
  • Available Online: March 15, 2021
  • Effects of membrane technology on the separation of crude polysaccharides from Ganoderma lucidum and its antioxidant activity had been studied. Fruiting body of Ganoderma lucidumwas leached by hot water, 100, 10 and 1 kDa ultrafiltration membrane were used to classify these crude polysaccharides recorded as GLP100, GLP10 and GLP1. Physicochemical properties and antioxidant activity of crude polysaccharides were compared. It had been demonstrated that three polysaccharides all have typical β-glucosidic bond absorption peaks by FTIR analysis. Congo red and circular dichroism analysis showed that the three crude polysaccharides were helix polysaccharides, GLP100 and GLP10 were triple helix polysaccharides. Results of SEM showed that the sizes of the three polysaccharides were different, which further verified that the different membranes could be used to grade the Ganoderma lucidum polysaccharides. All the three crude polysaccharides showed certain antioxidant capacity but some differences by reducing power, OH, 2, 2'-diazobis(3-ethylbenzothiazolin-6-sulfonic acid) diammonium salt cationic radical, 1, 1-diphenyl-2-trinitrobenzene hydrazine free radical scavenging. Among them, the reducing power of GLP100 was very close, and the scavenging ability of OH, ABTS and DPPH free radicals of GLP100 was better than that of the other two polysaccharides, The ABTS radical scavenging ability of GLP1 was better than the other two polysaccharides. Results showed that multistage membrane separation technology could effectively classify the polysaccharides of Ganoderma lucidum.
  • [1]
    Li J, Gu F, Cai C, et al. Purification, structural characterization, and immunomodulatory activity of the polysaccharides from Ganoderma lucidum[J]. International Journal of Biological Macromolecules,2020,143:806−813. doi: 10.1016/j.ijbiomac.2019.09.141
    [2]
    Zhao L, Dong Y, Chen G, et al. Extraction, purification, characterization and antitumor activity of polysaccharides from Ganoderma lucidum[J]. Carbohydrate Polymers,2010,80(3):783−789. doi: 10.1016/j.carbpol.2009.12.029
    [3]
    沐华, 蔡铭, 徐靖, 等. 破壁与去壁灵芝孢子粉的化学成分与抗氧化活性比较[J]. 食品工业科技,2020,41(10):32−37.
    [4]
    Jia J, Zgang X, Hu Y, et al. Evaluation of in vivo antioxidant activities of Ganoderma lucidum polysaccharides in STZ-diabetic rats[J]. Food Chemistry,2009,115(1):32−36. doi: 10.1016/j.foodchem.2008.11.043
    [5]
    Huang S, Ning Z. Extraction of polysaccharide from Ganoderma lucidum and its immune enhancement activity[J]. International Journal of Biological Macromolecules,2010,47(3):336−341. doi: 10.1016/j.ijbiomac.2010.03.019
    [6]
    胡丽萍. 灵芝孢子低聚糖的制备及其改性研究[D]. 广州: 华南理工大学, 2011.
    [7]
    张汇, 聂少平, 艾连中, 等. 灵芝多糖的结构及其表征方法研究进展[J]. 中国食品学报,2020,20(1):290−301.
    [8]
    陈国良, 陈晓清. 灵芝有效成分研究综述[J]. 中国食用菌,1995(4):7−9.
    [9]
    Yang X, Li A, Li X, et al. An overview of classifications, properties of food polysaccharides and their links to applications in improving food textures[J]. Trends in Food Science & Technology,2020,102:1−15.
    [10]
    Zhang K, Liu Y, Zhao X, et al. Anti-inflammatory properties of GLPss58, a sulfated polysaccharide from Ganoderma lucidum[J]. International Journal of Biological Macromolecules,2018,107:486−493. doi: 10.1016/j.ijbiomac.2017.09.015
    [11]
    Chen S, Liu H, Yang X, et al. Degradation of sulphated polysaccharides from Grateloupia livida and antioxidant activity of the degraded components[J]. International Journal of Biological Macromolecules,2020,156:660−668. doi: 10.1016/j.ijbiomac.2020.04.108
    [12]
    蔡铭, 陈思, 骆少磊, 等. 膜分离与醇沉技术纯化猴头菇粗多糖的比较[J]. 食品科学,2019,40(9):83−90. doi: 10.7506/spkx1002-6630-20180508-112
    [13]
    Liu G, Ye J, Li W, et al. Extraction, structural characterization, and immunobiological activity of ABP Ia polysaccharide from Agaricus bisporus[J]. International Journal of Biological Macromolecules,2020,162:975−984. doi: 10.1016/j.ijbiomac.2020.06.204
    [14]
    张丽萍, 张翼伸. 金顶侧耳多糖及其化学修饰产物水溶液构象的圆二色谱测定[J]. 生物化学杂志,1994(5):633−635.
    [15]
    Zeng F, Chen W, He P, et al. Structural characterization of polysaccharides with potential antioxidant and immunomodulatory activities from Chinese water chestnut peels[J]. Carbohydrate Polymers,2020,246:116551. doi: 10.1016/j.carbpol.2020.116551
    [16]
    Rozi P, Abuduwaili A, Ma S, et al. Isolations, characterizations and bioactivities of polysaccharides from the seeds of three species Glycyrrhiza[J]. International Journal of Biological Macromolecules,2020,145:364−371. doi: 10.1016/j.ijbiomac.2019.12.107
    [17]
    Tian H, Liu H, Song W, et al. Structure, antioxidant and immunostimulatory activities of the polysaccharides from Sargassum carpophyllum[J]. Algal Research,2020,49:101853. doi: 10.1016/j.algal.2020.101853
    [18]
    Medlejm K, Cherri B, Nasser G, et al. Optimization of polysaccharides extraction from a wild species of Ornithogalum combining ultrasound and maceration and their anti-oxidant properties[J]. International Journal of Biological Macromolecules,2020,161:958−968. doi: 10.1016/j.ijbiomac.2020.06.021
    [19]
    Chen X, Liang L, Han C. Borate suppresses the scavenging activity of gallic acid and plant polyphenol extracts on DPPH radical: A potential interference to DPPH assay[J]. LWT,2020,131:109769. doi: 10.1016/j.lwt.2020.109769
    [20]
    Kakar M U, Naveed M, Saeed M, et al. A review on structure, extraction, and biological activities of polysaccharides isolated from Cyclocarya paliurus (Batalin) Iljinskaja[J]. International Journal of Biological Macromolecules,2020,156:420−429. doi: 10.1016/j.ijbiomac.2020.04.022
    [21]
    孙培龙, 陶文扬, 何晋浙. 灵芝中三萜类化合物的研究进展[J]. 食药用菌,2016,24(2):76−81.
    [22]
    谭贻, 唐传红, 冯杰, 等. 灵芝三萜生物合成及调控研究进展[J]. 食用菌学报,2019,26(3):125−140.
    [23]
    李娜, 冯杰, 冯娜, 等. 灵芝液态深层发酵三萜类化合物研究进展[J]. 微生物学通报,2020,47(10):3451−3469.
    [24]
    刘艳芳. 赤芝多糖结构和构象表征及其免疫调节构效关系研究[D]. 无锡: 江南大学, 2018.
    [25]
    张冬雪, 王晓玲, 刘高强. 灵芝多糖的结构及构效关系[J]. 食品工业,2015,36(11):258−261.
    [26]
    Sato H, Kawamura I. Solid-state vibrational circular dichroism studies on the conformation of an amino acid molecule in crystalline state[J]. Biochimica et Biophysica Acta (BBA) - Proteins and Proteomics,2020,1868(8):140439. doi: 10.1016/j.bbapap.2020.140439
    [27]
    黄雅婷. 薄盖灵芝多糖的分离纯化、结构鉴定及抗肿瘤活性研究[D]. 广州: 广东药科大学, 2016.
    [28]
    谢梦霞. 灵芝多糖的分离纯化及抗乙肝病毒活性研究[D]. 南京: 南京农业大学, 2016.
    [29]
    冯胜平. 不同栽培品种灵芝抗氧化作用及灵芝多糖分离纯化、免疫活性研究[D]. 成都: 成都中医药大学, 2015.
    [30]
    Xu J, Liu W, Yao W, et al. Carboxymethylation of a polysaccharide extracted from Ganoderma lucidum enhances its antioxidant activities in vitro[J]. Carbohydrate Polymers,2009,78(2):227−234. doi: 10.1016/j.carbpol.2009.03.028
    [31]
    田淑雨, 鹿士峰, 吴杨洋, 等. 超声破碎辅助提取灵芝多糖工艺优化及抗氧化活性研究[J]. 食品研究与开发,2019,40(8):101−107. doi: 10.3969/j.issn.1005-6521.2019.08.018
    [32]
    操丽丽, 周俊, 郑峰, 等. 高压热水提取灵芝多糖及对其抗氧化活性的影响[J]. 食品科学技术学报,2018,36(2):58−62. doi: 10.3969/j.issn.2095-6002.2018.02.008
    [33]
    Pan K, Jiang Q, Liu G, et al. Optimization extraction of Ganoderma lucidum polysaccharides and its immunity and antioxidant activities[J]. International Journal of Biological Macromolecules,2013,55:301−306. doi: 10.1016/j.ijbiomac.2013.01.022
    [34]
    刘宇琪, 郝利民, 鲁吉珂, 等. 灵芝子实体和孢子粉纯化多糖体外抗氧化活性研究[J]. 食品工业科技,2019,40(16):27−31.
  • Cited by

    Periodical cited type(4)

    1. 季佳琪,李明初,李冬霞,谭雅宁,高爽,王颉,牟建楼. 高温蒸煮结合蜗牛酶法改性葡萄皮不溶性膳食纤维工艺优化及体外降血糖作用. 食品工业科技. 2024(16): 249-258 . 本站查看
    2. 林良美,肖少香,张丽红. 响应面优化复合酶法提取红薯皮膳食纤维. 粮食科技与经济. 2024(04): 96-100+115 .
    3. 竹娟,王译晗,陈立莉,曲文鑫,刘荣. 芍药花提取物中黄酮的测定及其体外抗氧化和降脂活性研究. 天然产物研究与开发. 2024(11): 1838-1844+1899 .
    4. 赵习爱,傅婧,任娟蕊. 燕麦萌动对膳食纤维结构和功能的影响. 食品与发酵工业. 2024(24): 229-237 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (253) PDF downloads (23) Cited by(6)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return