QU Yaning, LI Hui, XIANG Dasong, et al. Comparative on the Hypoglycemic and Lipid-lowering Activities in Vitro of Crude Polysaccharides from Fermented Bean Flour by Two Types of Bacteria[J]. Science and Technology of Food Industry, 2024, 45(12): 140−150. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023080053.
Citation: QU Yaning, LI Hui, XIANG Dasong, et al. Comparative on the Hypoglycemic and Lipid-lowering Activities in Vitro of Crude Polysaccharides from Fermented Bean Flour by Two Types of Bacteria[J]. Science and Technology of Food Industry, 2024, 45(12): 140−150. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023080053.

Comparative on the Hypoglycemic and Lipid-lowering Activities in Vitro of Crude Polysaccharides from Fermented Bean Flour by Two Types of Bacteria

More Information
  • Received Date: August 09, 2023
  • Available Online: April 21, 2024
  • Bacillus subtilis and Lactobacillus casei were commonly used in the production of fermented bean products. The effects of fermentation by two types of bacteria on the hypoglycemic and lipid-lowering activities of crude polysaccharides from bean flour were analyzed. In this study, 8 kinds of crude polysaccharide samples from fermented edible beans by the two types of bacteria were prepared. And the composition, water solubility, in vitro hypoglycemic and lipid-lowering activity of crude polysaccharides from before and after bean flour fermentation by the two types of bacteria were compared and analyzed. The results showed that the content of uronic acid in the crude polysaccharide from fermented bean flour increased. The content of uronic acid in the crude polysaccharides from fermented bean flour by Bacillus subtilis (4.05%~22.46%) was significantly higher than that of the crude polysaccharides from fermented bean flour by Lactobacillus casei (2.63%~10.72%) (P<0.05). The water solubility of crude polysaccharides from fermented bean flour by the two types of bacteria was improved. The hypoglycemic and lipid-lowering activities in vitro of crude polysaccharides were increased through the fermentation process by Bacillus subtilis and Lactobacillus casei. The α-amylase inhibition rates of crude polysaccharides from soybean, cowpea and broad bean by Lactobacillus casei fermentation were significantly higher than that of crude polysaccharides by Bacillus subtilis fermentation (P<0.05). The binding capacities of sodium glycodeoxycholate with the crude polysaccharides from cowpea, red bean, mung bean, broad bean, kidney bean, lentil and pea by Bacillus subtilis fermentation were higher than that of crude polysaccharides by Lactobacillus casei fermentation. The binding capacities of sodium taurocholate with the crude polysaccharides from mung bean, broad bean, kidney bean, lentil and pea by the two types of bacteria fermentation were significantly improved (P<0.05). This study provided a theoretical basis for the development of fermented bean foods riched in active polysaccharides with the functions of hypoglycemic and lipid-lowering activities.
  • [1]
    付王威, 吴睿婷, 万敏, 等. 白扁豆非淀粉多糖对Ⅱ型糖尿病大鼠的降血糖降血脂作用[J]. 现代食品科技,2021,37(8):1−7,35. [FU W W, WU R T, WAN M, et al. Hypoglycemic and hypolipidemic effects of non-starch polysaccharide from dolichos lablab L in type II diabetic rats[J]. Modern Food Science and Technology,2021,37(8):1−7,35.]

    FU W W, WU R T, WAN M, et al. Hypoglycemic and hypolipidemic effects of non-starch polysaccharide from dolichos lablab L in type II diabetic rats[J]. Modern Food Science and Technology, 2021, 37(8): 1−7,35.
    [2]
    WU G J, LIU D, WAN Y J, et al. Comparison of hypoglycemic effects of polysaccharides from four legume species[J]. Food Hydrocolloids,2019,90:299−304. doi: 10.1016/j.foodhyd.2018.12.035
    [3]
    HOU D, YOUSAF L, XUE Y, et al. Mung bean (Vigna radiata L.):bioactive polyphenols, polysaccharides, peptides, and health benefits[J]. Nutrients,2019,11(6):1238. doi: 10.3390/nu11061238
    [4]
    崔珏, 李超, 尤健, 等. 白茅根多糖改善糖尿病小鼠糖脂代谢作用的研究[J]. 食品科学,2012,33(19):302−305. [CUI J, LI C, YOU J, et al. Effects of imperata cylindrica polysaccharides on glucose and lipid metabolism in diabetic mice[J]. Food Science,2012,33(19):302−305.]

    CUI J, LI C, YOU J, et al. Effects of imperata cylindrica polysaccharides on glucose and lipid metabolism in diabetic mice[J]. Food Science, 2012, 33(19): 302−305.
    [5]
    BAI Z Y, MENG J X, HUANG X J, et al. Comparative study on antidiabetic function of six legume crude polysaccharides[J]. International Journal of Biological Macromolecules,2020,154:25−30. doi: 10.1016/j.ijbiomac.2020.03.072
    [6]
    WU G J, BAI Z Y, WAN Y J, et al. Antidiabetic effects of polysaccharide from azuki bean (Vigna angularis) in type 2 diabetic rats via insulin/PI3K/AKT signaling pathway[J]. Food Hydrocolloids,2020,101:105456. doi: 10.1016/j.foodhyd.2019.105456
    [7]
    刘袆帆, 林诺怡, 成坚, 等. 微生物发酵法制备活性多糖的研究概述[J]. 食品与发酵工业,2021,47(3):281−287. [LIU H F, LIN N Y, CHENG J, et al. Isolation, advances in preparation of polysaccharides by microbial fermentation[J]. Food and Fermentation Industries,2021,47(3):281−287.]

    LIU H F, LIN N Y, CHENG J, et al. Isolation, advances in preparation of polysaccharides by microbial fermentation[J]. Food and Fermentation Industries, 2021, 47(3): 281−287.
    [8]
    LIU X, HOU R L, XU K Q, et al. Extraction, characterization and antioxidant activity analysis of the polysaccharide from the solid-state fermentation substrate of Inonotus hispidus[J]. International Journal of Biological Macromolecules,2019,123:468−476. doi: 10.1016/j.ijbiomac.2018.11.069
    [9]
    LIU F R, CHEN Z X, SHAO J J, et al. Effect of fermentation on the peptide content, phenolics and antioxidant activity of defatted wheat germ[J]. Food Bioscience,2017,20:141−148. doi: 10.1016/j.fbio.2017.10.002
    [10]
    杨壮, 刘怡琳, 李隆熙, 等. 固态发酵制备黄精多糖的工艺优化、理化特性及抗氧化活性[J]. 食品与发酵工业, 1−9[2024-04-10] DOI:10.13995/j.cnki.11-1802/ts.035769. [YANG Z, LIU Y L, LI L X, et al. Process optimization, physicochemical properties and antioxidant activity of Polygonatum sibiricum polysaccharide prepared by solid-state fermentation[J]. Food and Fermentation Industries, 1−9[2024-04-10] DOI:10.13995/j.cnki.11-1802/ts.035769.]

    YANG Z, LIU Y L, LI L X, et al. Process optimization, physicochemical properties and antioxidant activity of Polygonatum sibiricum polysaccharide prepared by solid-state fermentation[J]. Food and Fermentation Industries, 1−9[2024-04-10] DOI: 10.13995/j.cnki.11-1802/ts.035769.
    [11]
    TIAN W N, DAI L W, LU S M, et al. Effect of Bacillus sp. DU-106 fermentation on Dendrobium officinale polysaccharide:Structure and immunoregulatory activities[J]. International Journal of Biological Macromolecules,2019,135:1034−1042. doi: 10.1016/j.ijbiomac.2019.05.203
    [12]
    黄文利, 欧阳耀铭, 卢玲, 等. 粗壮脉纹孢菌发酵前后豆渣多糖理化性质和结构特性[J]. 食品工业科技,2022,43(3):26−32. [HUANG W L, OUYANG Y M, LU L, et al. Functional components and structural characteristics of soybean dreg polysaccharides fermented by neurospora crassa[J]. Science and Technology of Food Industry,2022,43(3):26−32.] doi: 10.13386/j.issn1002-0306.2021040038

    HUANG W L, OUYANG Y M, LU L, et al. Functional components and structural characteristics of soybean dreg polysaccharides fermented by neurospora crassa[J]. Science and Technology of Food Industry, 2022, 43(3): 26−32. doi: 10.13386/j.issn1002-0306.2021040038
    [13]
    YANG J J, ZHANG X, DAI J F, et al. Effect of fermentation modification on the physicochemical characteristics and anti-aging related activities of Polygonatum kingianum polysaccharides[J]. International Journal of Biological Macromolecules,2023,235:123661. doi: 10.1016/j.ijbiomac.2023.123661
    [14]
    屈雅宁, 许梦粤, 唐双庆, 等. 枯草芽孢杆菌发酵对豆类粗多糖结构与抗氧化活性的影响[J]. 食品工业科技:2023, 44(17):129−138. [QU Y N, XU M Y, TANG S Q, et al. Effects of the structure and antioxidant activity of legume crude polysaccharides after Bacillus subtilis fermentation[J]. Science and Technology of Food Industry:2023, 44(17):129−138.]

    QU Y N, XU M Y, TANG S Q, et al. Effects of the structure and antioxidant activity of legume crude polysaccharides after Bacillus subtilis fermentation[J]. Science and Technology of Food Industry: 2023, 44(17): 129−138.
    [15]
    LI S L, JIN Z Y, HU D J, et al. Effect of solid-state fermentation with Lactobacillus casei on the nutritional value, isoflavones, phenolic acids and antioxidant activity of whole soybean flour[J]. LWT,2020,125:109264−109264. doi: 10.1016/j.lwt.2020.109264
    [16]
    马高兴, 王晗, 杨文建, 等. 不同提取工艺对杏鲍菇多糖结构特征及免疫活性的影响[J]. 食品科学,2022,43(17):42−49. [MA G X, WANG H, YANG W J, et al. Effects of different extraction processes on structural characteristic and immunomodulatory activity of Pleurotus eryngii polysaccharide[J]. Food Science,2022,43(17):42−49.]

    MA G X, WANG H, YANG W J, et al. Effects of different extraction processes on structural characteristic and immunomodulatory activity of Pleurotus eryngii polysaccharide[J]. Food Science, 2022, 43(17): 42−49.
    [17]
    李思涵, 王君巧, 聂少平. 沙苑子多糖的提取纯化与结构解析[J]. 食品科学,2023,44(10):310−316. [LI S H, WANG J Q, NIE S P. Isolation, purification and structural characterization of polysaccharides from Semen astragali complanati[J]. Food Science,2023,44(10):310−316.]

    LI S H, WANG J Q, NIE S P. Isolation, purification and structural characterization of polysaccharides from Semen astragali complanati[J]. Food Science, 2023, 44(10): 310−316.
    [18]
    陈越, 宋振康, 张海悦. 三氯乙酸法脱除龙葵果多糖中蛋白质的工艺优化[J]. 食品与发酵工业,2020,46(24):198−203. [CHEN Y, SONG Z K, ZHANG H Y, et al. Study on optimization of response surface for the removement of protein from polysaccharide of Solanum nigrum fruit by chloroacetic acid method[J]. Food and Fermentation Industries,2020,46(24):198−203.]

    CHEN Y, SONG Z K, ZHANG H Y, et al. Study on optimization of response surface for the removement of protein from polysaccharide of Solanum nigrum fruit by chloroacetic acid method[J]. Food and Fermentation Industries, 2020, 46(24): 198−203.
    [19]
    王勋, 顾玉梅, 米生喜, 等. 胶磨破碎和冷冻破碎对芒果浆品质的影响[J/OL]. 现代食品科技, 1−11[2024-04-11]. https://doi.org/10.13982/j.mfst.1673-9078.2024.5.0588. [WANG X, GU Y M, MI S X, et al. Effects of colloid milling and freezing milling on the quality of mango pulp[J/OL]. Modern Food Science and Technology, 1−11[2024-04-11]. https://doi.org/10.13982/j.mfst.1673-9078.2024.5.0588.]

    WANG X, GU Y M, MI S X, et al. Effects of colloid milling and freezing milling on the quality of mango pulp[J/OL]. Modern Food Science and Technology, 1−11[2024-04-11]. https://doi.org/10.13982/j.mfst.1673-9078.2024.5.0588.
    [20]
    王轶帆, 邓媛元, 张雁, 等. 龙眼多糖与燕麦多糖的结构特征及其益生活性比较[J]. 中国食品学报,2020,20(12):62−71. [WANG Y F, DEN Y Y, ZHANG Y, et al. Comparison of the structural characteristics of longan polysaccharides and oat polysaccharides and their beneficial life properties[J]. Journal of Chinese Institute of Food Science and Technology,2020,20(12):62−71.]

    WANG Y F, DEN Y Y, ZHANG Y, et al. Comparison of the structural characteristics of longan polysaccharides and oat polysaccharides and their beneficial life properties[J]. Journal of Chinese Institute of Food Science and Technology, 2020, 20(12): 62−71.
    [21]
    CHEN S H, CHEN H X, TIAN J G, et al. Chemical modification, antioxidant and α-amylase inhibitory activities of corn silk polysaccharides[J]. Carbohydrate Polymers,2013,98(1):428−437. doi: 10.1016/j.carbpol.2013.06.011
    [22]
    张子木, 黄秀芳, 张琴, 等. 壶瓶碎米荠多糖硫酸化结构修饰及抗氧化活性研究[J]. 中国粮油学报,2021,36(12):28−33. [ZHANG Z M, HUANG X F, ZHANG Q, et al. Study on sulfated structure modification and antioxidant activity of cardamine hupingshanensis polysaccharide[J]. Journal of the Chinese Cereals and Oils Association,2021,36(12):28−33.]

    ZHANG Z M, HUANG X F, ZHANG Q, et al. Study on sulfated structure modification and antioxidant activity of cardamine hupingshanensis polysaccharide[J]. Journal of the Chinese Cereals and Oils Association, 2021, 36(12): 28−33.
    [23]
    DENG Y J, HUANG L X, ZHANG C H, et al. Novel polysaccharide from chaenomeles speciosa seeds:Structural characterization, α-amylase and α-glucosidase inhibitory activity evaluation[J]. International Journal of Biological Macromolecules,2020,153:755−766. doi: 10.1016/j.ijbiomac.2020.03.057
    [24]
    于美汇, 赵鑫, 尹红力, 等. 碱提醇沉黑木耳多糖体外和体内降血脂功能[J]. 食品科学,2017,38(1):232−237. [YU M H, ZHAO X, YIN H L, et al. In vitro and in vivo hypolipidemic effect of Auricularia auricular polysaccharides[J]. Food Science,2017,38(1):232−237.]

    YU M H, ZHAO X, YIN H L, et al. In vitro and in vivo hypolipidemic effect of Auricularia auricular polysaccharides[J]. Food Science, 2017, 38(1): 232−237.
    [25]
    LONG H R, GU X Y, ZHOU N, et al. Physicochemical characterization and bile acid-binding capacity of water-extract polysaccharides fractionated by stepwise ethanol precipitation from Caulerpa lentillifera[J]. International Journal of Biological Macromolecules,2020,150:654−661. doi: 10.1016/j.ijbiomac.2020.02.121
    [26]
    CHEN R Z, LUO S J, WANG C X, et al. Effects of ultra-high pressure enzyme extraction on characteristics and functional properties of red pitaya (Hylocereus polyrhizus) peel pectic polysaccharides[J]. Food Hydrocolloids,2021,121:107016. doi: 10.1016/j.foodhyd.2021.107016
    [27]
    FILANNINO P, CAVOSKI I, THLIEN N, et al. Lactic acid fermentation of cactus cladodes (Opuntia ficusindica L.) generates flavonoid derivatives with antioxidant and anti-inflammatory properties[J]. PLoS One,2016,11(3):e0152575. doi: 10.1371/journal.pone.0152575
    [28]
    PEI F Y, CAO X B, WANG X M, et al. Structural characteristics and bioactivities of polysaccharides from blue honeysuckle after probiotic fermentation[J]. LWT,2022,165:113764. doi: 10.1016/j.lwt.2022.113764
    [29]
    HUANG F, HONG R Y, ZHANG R F, et al. Physicochemical and biological properties of longan pulp polysaccharides modified by Lactobacillus fermentum fermentation[J]. International Journal of Biological Macromolecules,2019,125:232−237. doi: 10.1016/j.ijbiomac.2018.12.061
    [30]
    JIA M Y, CHEN J J, LIU X Z, et al. Structural characteristics and functional properties of soluble dietary fiber from defatted rice bran obtained through Trichoderma viride fermentation[J]. Food Hydrocolloids,2019,94:468−474. doi: 10.1016/j.foodhyd.2019.03.047
    [31]
    GAN L Z, LI X G, WANG H B, et al. Structural characterization and functional evaluation of a novel exopolysaccharide from the moderate halophile Gracilibacillus sp. SCU50[J]. International Journal of Biological Macromolecules,2020,154:1140−1148. doi: 10.1016/j.ijbiomac.2019.11.143
    [32]
    YANG Y, ZHANG J L, SHEN L H, et al. Inhibition mechanism of diacylated anthocyanins from purple sweet potato (Ipomoea batatas L.) against α-amylase and α-glucosidase[J]. Food Chemistry,2021,359:129934. doi: 10.1016/j.foodchem.2021.129934
    [33]
    陈鹏, 颜军, 梁立, 等. 银耳多糖的降解、磷酸酯化修饰及其抗氧化活性[J]. 食品工业科技,2019,40(9):34−37,43. [GHEN P, YAN J, LIANG L, et al. Degradation, phosphate modification of Tremella fuciformis polysaccharide and its antioxidant activity[J]. Science and Technology of Food Industry,2019,40(9):34−37,43.]

    GHEN P, YAN J, LIANG L, et al. Degradation, phosphate modification of Tremella fuciformis polysaccharide and its antioxidant activity[J]. Science and Technology of Food Industry, 2019, 40(9): 34−37,43.
    [34]
    JI X L, GUO J H, CAO T Z, et al. Review on mechanisms and structure-activity relationship of hypoglycemic effects of polysaccharides from natural resources[J]. Food Science and Human Wellness,2023,12(6):1969−1980. doi: 10.1016/j.fshw.2023.03.017
    [35]
    ZHONG Q W, ZHOU T S, QIU W H, et al. Characterization and hypoglycemic effects of sulfated polysaccharides derived from brown seaweed Undaria pinnatifida[J]. Food Chemistry,2021,341:128148. doi: 10.1016/j.foodchem.2020.128148
    [36]
    纪慧杰, 朱彩平. 石榴皮多糖的提取及组成、体外降脂活性研究[J]. 食品与发酵工业,2023,49(4):161−168. [JI H J, ZHU C P. Study on the extraction and composition of pomegranate peel polysaccharide and hypolipidemic activity in vitro[J]. Food and Fermentation Industries,2023,49(4):161−168.]

    JI H J, ZHU C P. Study on the extraction and composition of pomegranate peel polysaccharide and hypolipidemic activity in vitro[J]. Food and Fermentation Industries, 2023, 49(4): 161−168.
    [37]
    LI Q Y, DOU Z M, DUAN Q F, et al. A comparison study on structure-function relationship of polysaccharides obtained from sea buckthorn berries using different methods:Antioxidant and bile acid-binding capacity[J]. Food Science and Human Wellness,2024,13(1):494−505. doi: 10.26599/FSHW.2022.9250043
    [38]
    HU J L, NIE S P, LI C, et al. In vitro effects of a novel polysaccharide from the seeds of Plantago asiatica L. on intestinal function[J]. International Journal of Biological Macromolecules,2013,54:264−269. doi: 10.1016/j.ijbiomac.2012.12.011
    [39]
    刘荣, 王蕾, 栾淑莹, 等. 水溶性黑木耳多糖体外结合胆酸盐能力的分析[J]. 食品工业科技,2015,36(17):358−361. [LIU R, WANG L, LUAN S Y, et al. In vitro binding of bile salts by water-soluble AAP[J]. Science and Technology of Food Industry,2015,36(17):358−361.]

    LIU R, WANG L, LUAN S Y, et al. In vitro binding of bile salts by water-soluble AAP[J]. Science and Technology of Food Industry, 2015, 36(17): 358−361.
    [40]
    郑娟霞, 陈文宁, 月金玲, 等. 海带多糖降血脂活性研究进展[J]. 食品与机械,2020,36(6):220−225. [ZHENG J X, CHEN W N, YUE J L, et al. Progress in the research on the lipid-lowering activity of polysacchairdes from kelp[J]. Food & Machinery,2020,36(6):220−225.]

    ZHENG J X, CHEN W N, YUE J L, et al. Progress in the research on the lipid-lowering activity of polysacchairdes from kelp[J]. Food & Machinery, 2020, 36(6): 220−225.
    [41]
    QIN H N, HUANG L, TENG J W, et al. Purification, characterization, and bioactivity of Liupao tea polysaccharides before and after fermentation[J]. Food Chemistry,2021,353:129419. doi: 10.1016/j.foodchem.2021.129419
  • Other Related Supplements

  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article Metrics

    Article views (136) PDF downloads (27) Cited by(1)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return