ZHANG Jiamin, WANG Wei, JI Lili, et al. Research on the Imitative Natural Air-dried Processing of Shallow Fermented Sausage[J]. Science and Technology of Food Industry, 2021, 42(12): 160−167. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306. 2020080166.
Citation: ZHANG Jiamin, WANG Wei, JI Lili, et al. Research on the Imitative Natural Air-dried Processing of Shallow Fermented Sausage[J]. Science and Technology of Food Industry, 2021, 42(12): 160−167. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306. 2020080166.

Research on the Imitative Natural Air-dried Processing of Shallow Fermented Sausage

More Information
  • Received Date: August 17, 2020
  • Available Online: April 14, 2021
  • In this paper, the effects of air-drying temperature, air velocity, and humidity on the drying time, uniformity, and sensory quality of shallow fermented sausage were studied. On the basis of single factor experiment, response surface methodology employing Box-Behnken design was applied to get the optimal air-drying process conditions. Furthermore, the effects of different temperature gradients on the air-drying characteristics and product quality of sausage were investigated. The results showed that, the optimum conditions of constant temperature air-drying were as follows: Temperature 9.0 ℃, the air velocity 1.0 m/s, and the humidity 64%. A suitable temperature gradient could improve the drying efficiency and product quality. The optimal process conditions of the gradient air-drying method were temperature gradient 7~13 ℃ (alternating every 12 hours), air velocity 1.0 m/s, and humidity 64%. Under these conditions, the time to air-dry the shallow fermented sausage to the ideal moisture content was 66 h. The product quality indexes were as follows: Uniformity 0.987, moisture content 37.693%, aw 0.875, pH5.54, and TBA 0.735 mg/kg. The ideal product quality could be obtained at the same time of considering air drying efficiency under this gradient air-drying condition.
  • [1]
    Leistner L. Shelf-stabile products and intermediate moisture foods based on meat. Water activity: Theory and applications to food[M]. New York: Marcel Dekker, 1987: 295−327.
    [2]
    Hu Y Y, Zhang L, Zhang H, et al. Physicochemical properties and flavor profile of fermented dry sausages with a reduction of sodium chloride[J]. LWT-Food Science and Technology,2020,124:109061. doi: 10.1016/j.lwt.2020.109061
    [3]
    Chen Q, Kong B H, Han Q, et al. The role of bacterial fermentation in lipolysis and lipid oxidation in Harbin dry sausages and its flavor development[J]. LWT-Food Science and Technology,2017,77:389−396. doi: 10.1016/j.lwt.2016.11.075
    [4]
    王卫. 栅栏技术及其在食品加工与质量安全控制中的应用[M]. 北京: 科学出版社, 2015: 45−70.
    [5]
    李燕利. 腊肉和香肠贮藏期间品质变化研究[D]. 重庆: 西南大学, 2012.
    [6]
    章建浩, 周光宏. 干腌火腿的风味研究[J]. 食品科学,2003,24(3):158−161. doi: 10.3321/j.issn:1002-6630.2003.03.043
    [7]
    Moy Y S, Lu T J, Chou C C. Volatile components of the enzyme-ripened sufu, a Chinese traditional fermented product of soy bean[J]. Journal of Bioscience & Bioengineering,2012,113(2):196−201.
    [8]
    张佳敏, 王卫, 白婷, 等. 四川传统腊肠区域特性比较及其“浅发酵”特征分析[J/OL]. 食品工业科技: 1−14[2020-08-12]. http://kns.cnki.net/kcms/detail/11.1759.TS.20200716.0917.004.html.
    [9]
    吉莉莉, 王卫, 赵志平, 等. 传统四川腊肠及浅发酵香肠调料特性研究[J]. 中国调味品,2020,45(7):33−38. doi: 10.3969/j.issn.1000-9973.2020.07.009
    [10]
    李杉杉, 肖龙泉, 刘海强, 等. 红曲红色素替代亚硝酸盐在川式香肠中的应用研究[J]. 成都大学学报(自然科学版),2015,34(2):121−125.
    [11]
    Foteini G Pavli, Anthoula A Argyri, Nikos G C Chorianopoulos, et al. Effect of Lactobacillus plantarum L125 strain with probiotic potential on physicochemical, microbiological and sensorial characteristics of dry-fermented sausages[J]. Lwt-Food Science and Technology,2020,118:108810. doi: 10.1016/j.lwt.2019.108810
    [12]
    吉莉莉, 王卫, 陈林, 等. 成都地区传统酱风肉加工及其产品特性和浅发酵特征研究[J]. 食品科技,2020,45(5):106−112.
    [13]
    Wang W, Jürgen S. Chinese and German sausages are similar[J]. Fleisch Wirtschaft International,2015,3:30−35.
    [14]
    王卫, 张旭, 张佳敏, 等. 四川酱香型风干腊肠加工贮藏特性及其“浅发酵”特征研究[J/OL]. 食品工业科技: 1−13[2020-08-12]. http://kns.cnki.net/kcms/detail/11.1759.TS.20200624.1417.004.html.
    [15]
    王卫, 吉莉莉, 陈林, 等. 四川省肉类加工产业发展战略[M]. 成都: 四川科学技术出版社, 2014: 28−29.
    [16]
    康峻, 王卫, 吉莉莉, 等. 浅发酵香肠加工进程理化、微生物及风味特性[J]. 成都大学学报(自然科学版), 2020(3): 234−240.
    [17]
    张佳敏, 唐占敏, 冉渺, 等. 响应面优化重组牛排加工工艺[J]. 食品工业科技,2017,38(4):263−266.
    [18]
    文冉, 吕青涛, 李娜, 等. 基于综合加权评分Box-Behnken响应面法优化半枝莲的提取工艺[J]. 中药材, 2020(5): 1183−1187.
    [19]
    罗欣, 董庆利. 熏煮香肠质构的感官评定与机械测定之间的相关分析研究[J]. 食品科学,2004,25(9):49−55. doi: 10.3321/j.issn:1002-6630.2004.09.007
    [20]
    Gök Veli, Ersel O, Levent A. Effects of packaging method and storage time on the chemical, microbiological, and sensory properties of Turkish pastirma-A dry cured beef product[J]. Meat Science,2008,80(2):335−344. doi: 10.1016/j.meatsci.2007.12.017
    [21]
    魏效玲. 多指标试验设计综合加权评分值的确定[J]. 河北工程大学学报(自然科学版),2003,20(4):68−72.
    [22]
    Komprda T, Smělá D, Pechová P, et al. Effect of starter culture, spice mix and storage time and temperature on biogenic amine content of dry fermented sausages[J]. Meat Science,2004,67(4):607−616. doi: 10.1016/j.meatsci.2004.01.003
    [23]
    杨玲, 陈建, 杨屹立, 等. 甘蓝型油菜籽热风干燥特性及其数学模型[J]. 现代食品科技,2014,30(10):30−35.
    [24]
    R Thomas, A S R Anjaneyulu, N Kondaiah. Development of shelf stable pork sausages using hurdle technology and their quality at ambient temperature (37±1 ℃) storage[J]. Meat Science,2008,79(1):1−12. doi: 10.1016/j.meatsci.2007.07.022
    [25]
    周悦, 李雪峰, 姜国川,等. 响应面分析法对重组牛肉脯色泽的改善[J]. 肉类工业,2013(7):28−30.
    [26]
    徐显睿, 李翠凤, 隋勇军, 等. 响应面法优化乳双歧杆菌Z-1冷冻干燥保护剂配方[J]. 乳业科学与技术,2020(3):6−11.
    [27]
    张乐, 李鹏, 王赵改, 等. 板栗片微波真空干燥动力学模型及品质分析[J]. 现代食品科技, 2020, 36(4): 235−243.
    [28]
    吉莉莉, 魏艳, 何丹, 等. 发酵香肠中分离纯化的三株乳酸菌产酸特性研究[J]. 中国调味品,2020,45(2):36−39. doi: 10.3969/j.issn.1000-9973.2020.02.009
    [29]
    刘斌雄, 李长城, 陈锦权, 等. 牛肉过热蒸汽干燥特性及薄层干燥动力学研究[J]. 食品工业,2018,39(12):36−40.
  • Related Articles

    [1]TIAN Ming, WANG Huan, CHEN Jiamiao, GUO Qinwen, FAN Xin. Management Research on Canadian Food Claim and Natural Health Product Claim and Inspiration[J]. Science and Technology of Food Industry, 2023, 44(10): 430-435. DOI: 10.13386/j.issn1002-0306.2022070275
    [2]CHI Hailin, LI Feifei, ZHANG Liwei, JIANG Yu. Application and Research Progress of Glucosamine in Health Food[J]. Science and Technology of Food Industry, 2023, 44(8): 437-445. DOI: 10.13386/j.issn1002-0306.2022050211
    [3]LI Yaxian, TIAN Huaixiang, YU Haiyan, LU Zhi. Detection of Total Arsenic and Inorganic Arsenic Content in Health Food Raw Materials from Different Habitats[J]. Science and Technology of Food Industry, 2022, 43(12): 10-17. DOI: 10.13386/j.issn1002-0306.2021120117
    [4]DUAN Hao, LV Yanni, YAN Wenjie. Application Progress of Probiotics in Functional Food in China[J]. Science and Technology of Food Industry, 2022, 43(3): 384-394. DOI: 10.13386/j.issn1002-0306.2020100077
    [5]SA Yi, CHEN Xiaoyi. Record of Vitamin Mineral Supplement in China and Its Future Development Trend[J]. Science and Technology of Food Industry, 2021, 42(3): 320-325,337. DOI: 10.13386/j.issn1002-0306.2020040243
    [6]TIAN Ming, ZHAO Jing-bo, ZHANG Zi-yi. Model of Canadian Natural Health Product Management and Its Enlightenment[J]. Science and Technology of Food Industry, 2019, 40(10): 355-359,368. DOI: 10.13386/j.issn1002-0306.2019.10.058
    [7]MA Yu-xun, DUAN Hao, LIU Hong-yu, CHEN Wen. Classification and Management of Health Related Foods in Japan[J]. Science and Technology of Food Industry, 2019, 40(7): 269-272. DOI: 10.13386/j.issn1002-0306.2019.07.046
    [8]ZHANG Jun-yi, LIU Fei, XU Hong. Research Progress of Application of Steam Explosion Technology in Pretreatment of Food Raw Materials[J]. Science and Technology of Food Industry, 2019, 40(4): 331-334. DOI: 10.13386/j.issn1002-0306.2019.04.055
    [9]LIU Qi, DU Yong, YANG Ling, WU Guo-qing. Analysis of the Status in Domestic Registered Weight-reduction Health Foods[J]. Science and Technology of Food Industry, 2019, 40(1): 209-213. DOI: 10.13386/j.issn1002-0306.2019.01.037
    [10]Enlightenment from US food safety emergency response system[J]. Science and Technology of Food Industry, 2012, (20): 49-52. DOI: 10.13386/j.issn1002-0306.2012.20.039
  • Cited by

    Periodical cited type(11)

    1. 裘一婧,贾彦博,江海,孙岚,陈美春,陈丽芳,余菁,林舒忆. UPLC-MS/MS测定凉果类酵素食品中的致泻类非法添加物. 发酵科技通讯. 2024(01): 1-7 .
    2. 赵一萌,索晓雄,刘彩霞,尚彩玲,杜晨晖,闫艳,裴香萍. 药用植物蛋白提取方法及生物活性研究进展. 食品安全质量检测学报. 2024(15): 119-126 .
    3. 丘梓慧,陈梓雅,陈爽,王琴,肖更生,彭进明. 超微粉碎果蔬粉的活性成分、物理特性与食品开发研究进展. 现代食品科技. 2024(11): 398-409 .
    4. 周勤文. 酸枣仁蛋白的提取工艺优化分析. 中国食品工业. 2023(02): 95-97+46 .
    5. 孟楠,秦令祥,曹源,高愿军. 超微冷冻前处理协同渗漉法提取食叶草黄酮工艺优化及其抗氧化、降血糖活性研究. 食品安全质量检测学报. 2023(13): 249-257 .
    6. 谭力铭,曹妍,裴海生,郝建雄,李慧颖. 酶法制备酸枣仁ACE抑制肽理化性质研究. 食品工业科技. 2022(02): 84-92 . 本站查看
    7. 任晓婵,常婧瑶,马晓丽,孔保华,辛莹,胡公社,刘骞. 超微粉碎后粒径对大麦全粉品质特性的影响. 食品工业科技. 2022(10): 80-86 . 本站查看
    8. 赵学旭,武蕊,衣春敏,武安琪,马培轩,单良. 沙棘果渣粉的超微冷冻粉碎制备及其理化性质与结构特性. 现代食品科技. 2022(05): 87-95 .
    9. 易佳,刘昆仑. 超微联合超声波优化提取米糠蛋白及其对米糠蛋白溶解性的影响. 食品研究与开发. 2022(19): 117-123 .
    10. 王士佳,张璐,葛善赢,李佳宸,吴学智,张佰清. 两种粉碎机型式对鹰嘴豆芽超微粉食用品质的影响. 食品安全质量检测学报. 2022(20): 6699-6705 .
    11. 刘晖,李光哲,肖凤琴,杨亦柳,韩荣欣,张红印,严铭铭. 酸枣仁蛋白的分离纯化及体外免疫活性. 食品科技. 2022(12): 214-220 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (346) PDF downloads (19) Cited by(17)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return