MA Jing, ZHANG Linlin, CHAI Shatuo, et al. Study on Microbial Diversity in Milk of Yak and Cattle-Yak in Qinghai-Tibet Plateau Based on High-throughput Sequencing Technology[J]. Science and Technology of Food Industry, 2021, 42(9): 122−128. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080045.
Citation: MA Jing, ZHANG Linlin, CHAI Shatuo, et al. Study on Microbial Diversity in Milk of Yak and Cattle-Yak in Qinghai-Tibet Plateau Based on High-throughput Sequencing Technology[J]. Science and Technology of Food Industry, 2021, 42(9): 122−128. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020080045.

Study on Microbial Diversity in Milk of Yak and Cattle-Yak in Qinghai-Tibet Plateau Based on High-throughput Sequencing Technology

More Information
  • Received Date: August 15, 2020
  • Available Online: March 15, 2021
  • This study aimed to explore the composition and diversity of microorganisms in raw milk of yak and cattle-yak. The 16S rDNA V4 region of those two kinds of raw milk was sequencing by high-throughput technology and comparative analysis of bioinformatics.The results showed that a total of 5516 OTUs were obtained with 97% similarity level.The comparison of microbial phylum levels shows that Proteobacteria, Firmicutes and Actinobacteria were the common dominant bacteria phylum for yak milk and cattle-yak milk.The relative abundances of the three Microbes in the yak milk were 29.80%, 35.99% and 8.41%, respectively. The relative abundances of the three microbes in the cattle-yakmilk were 45.36%, 25.79% and 7.39%, respectively. At the genus level, the dominant genus of yak milk was unidentified-Cyanobacteria, and the relative abundance was 9.32%. The dominant genus of cattle-yak milk was Bradyrhizobium, which accounts for 11.53%. At the species level, Bradyrhizobium elkanii and Kosakonia oryzae were the dominant strains in milk of yak and cattle-yak. The two strains accounted for 2.42% and 3.36% in yak milk, respectively.And the two types of bacteria account for 11.53% and 5.53% of the milk in the cattle-yak, respectively. Alpha diversity analysis shows that there are significant differences between different milk richness estimates (P<0.05).And the richness and diversity ofcattle-yak milk was higher.
  • [1]
    Li Z, Jiang M. Metabolomic profiles in yak mammary gland tissue during the lactation cycle[J]. PLoS One,2019,14(7):e0219220. doi: 10.1371/journal.pone.0219220
    [2]
    阎萍, 潘和平. 牦牛乳业的开发与利用[J]. 中国乳业,2004(7):10−12. doi: 10.3969/j.issn.1671-4393.2004.07.003
    [3]
    和占星, 王向东, 黄梅芬, 等. 中甸牦牛、迪庆黄牛和犏牛的乳的主要营养成分比较[J]. 食品与生物技术学报,2015,34(12):1294−1301. doi: 10.3969/j.issn.1673-1689.2015.12.010
    [4]
    Li H, Ma Y, Li Q, et al. The chemical composition and nitrogen distribution of Chinese yak (Maiwa) milk[J]. International Journal of Molecular Sciences,2011,12(8):4885−4895. doi: 10.3390/ijms12084885
    [5]
    李贤, 李齐发, 赵兴波, 等. 牦牛和犏牛Dmc1基因序列分析及睾丸组织转录水平研究[J]. 中国农业科学,2010,43(15):3221−3229. doi: 10.3864/j.issn.0578-1752.2010.15.021
    [6]
    张莉, 张岩, 李键, 等. 牦牛乳与犏牛乳脂肪酸组分比较分析[J]. 黑龙江畜牧兽医,2017(10):187−189.
    [7]
    魏雅萍, 徐惊涛, 童子保, 等. 青海高寒牧区犏牛挤乳量及乳成分分析[J]. 中国牛业科学,2008(5):31−34. doi: 10.3969/j.issn.1001-9111.2008.05.008
    [8]
    文志平, 郭淑珍, 牛小莹, 等. 不同饲料配方对犏牛乳营养成分的影响[J]. 畜牧兽医杂志,2017,36(5):28−30. doi: 10.3969/j.issn.1004-6704.2017.05.009
    [9]
    Jarocki P, ElwiraKomoń-Janczara, Glibowska A, et al. Molecular routes to specific identification of the Lactobacillus casei group at the species, subspecies and strain level[J]. International Journal of Molecular ences,2020,21(8):E2694.
    [10]
    Lisa Q, Orla O, Catherine S, et al. The complex microbiota of raw milk[J]. Fems Microbiology Reviews,2013,37(5):664−698. doi: 10.1111/1574-6976.12030
    [11]
    李万财, 尚海忠, 李俊花, 等. 天峻地区牦牛乳中微生物含量的测定[J]. 中国动物检疫,2002(3):36. doi: 10.3969/j.issn.1005-944X.2002.03.034
    [12]
    肜豪峰, 谈重芳, 李宗伟, 等. 青海湖区牦牛乳制品的微生物区系和营养成分的初步研究[J]. 食品工业科技,2008(7):225−227.
    [13]
    丁武蓉. 青藏高原传统发酵牦牛奶中乳酸菌多样性及其益生功能研究[D]. 兰州大学, 2014.
    [14]
    刘怡萱, 许国琪, 曹鹏熙, 等. 基于16S rRNA高通量测序的西藏农、牧区牦牛酸奶菌群多样性分析[J]. 食品科学,2020,41(18):92−97. doi: 10.7506/spkx1002-6630-20190714-180
    [15]
    Singh J. Inhibition of growth of spoilage microorganisms by Streptococcus thermophilus and Lactobacillus acidophilus in cow, buffalo and goat milk[J]. Journal of Food Protection,1983,46(6):497−498. doi: 10.4315/0362-028X-46.6.497
    [16]
    Woo P C, Lau S K, Teng J L, et al. Then and now: Use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical microbiology laboratories[J]. Clinical Microbiology and Infection,2008,14(10):908−934. doi: 10.1111/j.1469-0691.2008.02070.x
    [17]
    Han Z, Sun J, Lv A, et al. Biases from different DNA extraction methods in intestine microbiome research based on 16S rDNA sequencing: A case in the koi carp, Cyprinuscarpio var. Koi[J]. Microbiologyopen,2019,8(1):e00626. doi: 10.1002/mbo3.626
    [18]
    Poirier S, Rué O, Coeuret G, et al. Detection of an amplification bias associated to Leuconostocaceae family with a universal primer routinely used for monitoring microbial community structures within food products[J]. BMC Research Notes,2018,11(1):802. doi: 10.1186/s13104-018-3908-2
    [19]
    Tanca A, Fraumene C, Manghina V, et al. Diversity and functions of the sheep faecalmicrobiota: A multi-omic characterization[J]. Microbial Biotechnology,2017,10(3):541−554. doi: 10.1111/1751-7915.12462
    [20]
    贾宏信, 苏米亚, 陈文亮, 等. 乳制品对代谢综合征预防作用的研究进展[J]. 乳业科学与技术,2020,43(1):45−49.
    [21]
    Morton J M, Auldist M J, Douglas M L, et al. Milk protein concentration, estimated breeding value for fertility, and reproductive performance in lactating dairy cows[J]. Journal of Dairy science,2017,100(7):5850−5862. doi: 10.3168/jds.2016-11273
    [22]
    Albonico F, Barelli C, Albanese D, et al. Raw milk and fecal microbiota of commercial Alpine dairy cows varies with herd, fat content and diet[J]. PLoS One,2020,15(8):e0237262. doi: 10.1371/journal.pone.0237262
    [23]
    吴周林, 左玲, 徐弘扬, 等. 犏牛杂种优势研究进展[J]. 当代畜牧,2018(6):23−25.
    [24]
    王斌星, 许晴, 郭春华, 等. 舍饲牦牛和犏牛生产性能、屠宰性能、养分表观消化率、瘤胃发酵参数和血清生化指标的比较研究[J]. 黑龙江畜牧兽医,2016(23):5−9.
    [25]
    张敏, 张艳, 黄丽丽, 等. 基于16S rDNA高通量测序方法比较新疆西北部地区乳品中微生物的多样性[J]. 食品科学,2017,38(20):27−33. doi: 10.7506/spkx1002-6630-201720005
    [26]
    Manasa J S. Role of the normal gut microbiota[J]. World Journal of Gastroenterology,2015(29):8787−8803.
    [27]
    Chung L K, Bliska J B. Yersinia versus host immunity: How a pathogen evades or triggers a protective response[J]. Current Opinion in Microbiology,2016,29:56−62. doi: 10.1016/j.mib.2015.11.001
    [28]
    Odyniec M, Stenzel T, Awreszuk D, et al. Bioserotypes, virulence markers, and antimicrobial susceptibility of Yersinia enterocolitica Strains isolated from free-living birds[J]. BioMed Research International,2020,2020(3−4):1−6.
    [29]
    Ellie J C, Goldstein, Kerin L, et al. Lactobacillus species: Taxonomic complexity and controversial susceptibilities[J]. Clinical infectious diseases: An official publication of the Infectious Diseases Society of America,2015,60(2):98−107.
    [30]
    Turnbaugh P J, Bäckhed F, Fulton L, et al. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome[J]. Cell Host & Microbe,2008,3(4):213−223.
    [31]
    Bäckhed F, Ding H, Wang T, et al. The gut microbiota as an environmental factor that regulates fat storage[J]. Proceedings of the National Academy of Sciences of the United States of America,2004,101(44):15718−15723. doi: 10.1073/pnas.0407076101
  • Related Articles

    [1]YUE Yao, GUO Guixiao, LI Yanqun, HU Xueqiong. A Newly Isolated of Thermophilic Cyanobacterium and the Stability of Its Phycocyanin[J]. Science and Technology of Food Industry, 2022, 43(21): 159-165. DOI: 10.13386/j.issn1002-0306.2022030149
    [2]XIE Fang, XIE Huade, TANG Zhenhua, XIE Yaofeng, GUO Yanxia, HUANG Yuhan, YANG Chengjian. Analysis of Bacterial Diversity in Colostrum and Normal Milk of Buffalo Based on 16S rDNA High-throughput Sequencing[J]. Science and Technology of Food Industry, 2021, 42(13): 125-132. DOI: 10.13386/j.issn1002-0306.2020060273
    [3]Yuanyuan CHEN, Deyang YU, Jianpeng QIN, Lizhen MA. Effects of Exogenous Inhibitors on the Microbial Community Composition Changes of Air-Dried Sausage[J]. Science and Technology of Food Industry, 2021, 42(7): 145-149. DOI: 10.13386/j.issn1002-0306.2020090228
    [4]YUAN Yu, LI Jing, LIN Shao-hua, JIA Hong-liang, PAN Yan, LUO Hong-xia, DENG Mao-cheng. Analysis of Microbial Diversity and Functional Prediction of Douzhir Based on 16S rDNA High-throughput Sequencing Technology[J]. Science and Technology of Food Industry, 2020, 41(2): 95-100. DOI: 10.13386/j.issn1002-0306.2020.02.016
    [5]WANG Xiang-jun, DUAN Shan. 16S rDNA-based Analysis of Bacterial Community in Fish Sauce during Temperature-controlled Fermentation[J]. Science and Technology of Food Industry, 2019, 40(12): 112-119,127. DOI: 10.13386/j.issn1002-0306.2019.12.019
    [6]JIANG Ai-ting, LI Bao-kun, JIN Dan, QIAO Chuan-li, YANG Jie, ZHAO Li-li. Analysis of the diversity and fermentation characteristics of lactic acid bacteria in traditional yogurts from Ta Cheng, Xinjiang[J]. Science and Technology of Food Industry, 2017, (15): 122-128. DOI: 10.13386/j.issn1002-0306.2017.15.024
    [7]DUAN Chao, WAN Cui-xiang. Probiotic activity of a strain of Lactobacillus plantarum isolated from local pickles[J]. Science and Technology of Food Industry, 2015, (24): 201-205. DOI: 10.13386/j.issn1002-0306.2015.24.035
    [8]HAN Rui-fang, DONG Xiao-min, LIU Tian-ming. Identification of bacterial species from raw milk by 16S r DNA sequencing[J]. Science and Technology of Food Industry, 2015, (15): 152-156. DOI: 10.13386/j.issn1002-0306.2015.15.024
    [9]LI Ping, YAN Pei-sheng. Study on stability of the yellow pigment from a new marine actinomycete and 16S rDNA analysis of the strain[J]. Science and Technology of Food Industry, 2013, (22): 275-279. DOI: 10.13386/j.issn1002-0306.2013.22.045
    [10]Application of 16S rDNA fingerprint on the strain identification and traceability isolated from yogurts[J]. Science and Technology of Food Industry, 2013, (14): 182-186. DOI: 10.13386/j.issn1002-0306.2013.14.060
  • Cited by

    Periodical cited type(8)

    1. 史巧,唐蓉,李会民,彭金国,孙兆东,杨发光,王馨蕊,李宏. 高原饲养下荷斯坦牛乳和娟姗牛乳的营养成分和细菌多样性的比较及其相关性分析. 食品工业科技. 2023(07): 124-132 . 本站查看
    2. 李思敏,邢书源,宋佳慷,高乾阳,刘妍,索朗群培,程秀峰,刘振东. 内蒙古发酵乳制品微生物多样性与短链脂肪酸和游离氨基酸的相关性. 食品与发酵工业. 2023(09): 65-72 .
    3. 白乌日力嘎,乌云达来,王莉梅,康连和,李星云,闫小杰. 内蒙古传统发酵沙芥细菌菌群多样性分析. 中国酿造. 2023(08): 117-121 .
    4. 赵利旦,黄丽,韦盘秋,黄加祥,曾庆坤,李玲. 基于宏基因组学分析广西地区生水牛乳中嗜冷菌多样性. 饲料研究. 2023(19): 81-86 .
    5. 柳青,史迪,刘文俊,张和平. 摩洛哥自然发酵驼乳中乳酸菌分离鉴定及特性研究. 食品科学技术学报. 2022(04): 85-95+137 .
    6. 马静,王迅,孙璐,刘书杰. 青海地区不同海拔高度牦牛乳微生物多样性研究. 动物营养学报. 2021(08): 4491-4501 .
    7. 日孜万古力·艾山,努尔古丽·热合曼,麦日艳古·亚生,伊力米热·热夏提. 新疆吐鲁番坎儿井饮用水中微生物多样性分析. 食品与机械. 2021(10): 23-29 .
    8. 孙璐. 青海玉树地区牦牛乳源微生物多样性研究. 青海畜牧兽医杂志. 2021(06): 30-36 .

    Other cited types(7)

Catalog

    Article Metrics

    Article views (244) PDF downloads (18) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return