DONG Shirong, WANG Li, JIANG Bingyan, et al. The Effect of Mercaptoethanol on the Interface Properties of Heat-Induced Aggregation of Soy Protein Isolate[J]. Science and Technology of Food Industry, 2021, 42(11): 30−37. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070331.
Citation: DONG Shirong, WANG Li, JIANG Bingyan, et al. The Effect of Mercaptoethanol on the Interface Properties of Heat-Induced Aggregation of Soy Protein Isolate[J]. Science and Technology of Food Industry, 2021, 42(11): 30−37. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2020070331.

The Effect of Mercaptoethanol on the Interface Properties of Heat-Induced Aggregation of Soy Protein Isolate

More Information
  • Received Date: July 27, 2020
  • Available Online: April 07, 2021
  • In order to investigate the effect of β-mercaptoethanol on the interface properties of soy protein isolate(SPI), the samples (10 mg/mL) were prepared by heating with or without β-mercaptoethanol (2 mmol/L) at pH7.0 and 90 ℃ for 0 and 10 h. The micromorphology and free sulfhydryl group of the samples were observed. Meanwhile, the foaming ability, foam stability, emulsifying activity, emulsifying stability, surface hydrophobicity and turbidity were evaluated. The results showed that irregular aggregations were formed from SPI and SPI with β-mercaptoethanol. The regular spherical particles were formed from SPI by heating, while both regular spherical particles and irregular aggregations were formed from SPI with β-mercaptoethanol by heating. The interface properties of SPI were improved by adding β-mercaptoethanol. Compared with those of SPI, the foaming abilities of SPI with β-mercaptoethanol and the aggregations formed from SPI with β-mercaptoethanol increased by 64.56% and 95.77%, respectively. Moreover, their emulsifying activities increased by 12.94% and 14.61%, respectively. Good emulsifying stability and foam stability of SPI with β-mercaptoethanol and the aggregations formed from SPI with β-mercaptoethanol were found during long time storage. The reason for the good interfacial property was that the higher free sulfhydryl content and surface hydrophobicity of SPI and its aggregations were obtained by the addition of β-mercaptoethanol. The empirical models of Rational function and Linear function of foam stability and emulsion stability for the 4 samples with time were established, which laid a theoretical foundation for the practical application of SPI.
  • [1]
    赵新淮, 徐红华, 姜毓君. 食品蛋白质结构、性质与功能[M]. 北京: 科学出版社, 2009: 321-323.
    [2]
    Dickinson E. Hydrocolloids at interfaces and the influence on the properties of dispersed systems[J]. Food Hydrocolloids,2003,17(1):25−39. doi: 10.1016/S0268-005X(01)00120-5
    [3]
    Juttulapa M, Piryaprasarth S, Takeuchi H, et al. Effect of high-pressure homogenization on stability of emulsions containing zein and pectin[J]. Asian Journal of Pharmaceutical Sciences,2017,12(1):21−27. doi: 10.1016/j.ajps.2016.09.004
    [4]
    Halling P J. Protein-stabilized foams and emulsions[J]. Critical Reviews in Food Science and Nutrition, 1981, 15(2): 155-203.
    [5]
    曹荣锟, 李佳泰, 王金晶, 等. 大米辅料啤酒中蛋白质疏水性与蛋白质泡沫稳定性的分析[J]. 食品与发酵工业,2018,44(9):66−70.
    [6]
    Evans M, Ratclifee I, Williams P A. Emulsion stabilisation using polysaccharide-protein complexes[J]. Current Opinion in Colloid and Interface Science,2013,18(4):272−282. doi: 10.1016/j.cocis.2013.04.004
    [7]
    李军生, 李丽娜, 程海涛. 通过打开蛋白质二硫键制备蛋白质基表面活性剂的方法: 中国, 200810166640.4[P]. 2012-02-18.
    [8]
    李荫展, 李军生, 王靖婷. 过氧化氢氧化二硫键对大豆11S蛋白表面活性的影响[J]. 中国饲料,2020(5):27−33.
    [9]
    牛祥臣, 王洪彩, 马军, 等. 食盐浓度和热处理条件对大豆蛋白凝胶特性影响的研究[J]. 食品研究与开发,2018,39(6):19−22. doi: 10.3969/j.issn.1005-6521.2018.06.004
    [10]
    Tang C H, Wang X Y, Yang X Q, et al. Formation of soluble aggregates from insoluble commercial soy protein isolate by means of ultrasonic treatment and their gelling properties[J]. Journal of Food Engineering,2009,92(4):432−437. doi: 10.1016/j.jfoodeng.2008.12.017
    [11]
    Bevridge T, Toma S, Nakai S. Determination of SH- and SS-groups in some food proteins using Ellman'sreagent[J]. Journal of Food Science,1974,39(1):49−51. doi: 10.1111/j.1365-2621.1974.tb00984.x
    [12]
    耿军凤, 张丽芬, 陈复生. 超声波辅助提取对花生蛋白结构与功能特性的影响[J], 食品研究与开发, 2020, 41(9): 61-69.
    [13]
    Martinez M J, Ruiz-Henestrosa V M P, Sanchez C C, et al. Foaming and surface properties of casein glycomacropeptide-gelatin mixtures as affected by their interactions in the aqueous phase[J]. Food Hydrocolloids,2013,33(1):48−57. doi: 10.1016/j.foodhyd.2013.02.016
    [14]
    Pearce K N, Kinsella J E. Emulsifying properties of proteins: Evaluation of a turbidimetric technique[J]. Journal of Agricultural and Food Chemistry,1978,26(3):716−723. doi: 10.1021/jf60217a041
    [15]
    Hayakawa S, Nakai S. Relationships of hydrophobicity and net charge to the solubility of milk and soy proteins[J]. Journal of Food Science,2010,50(2):486−491.
    [16]
    王碧璇, 李军生, 钟新, 等. 控制性打开二硫键-葡聚糖修饰对大豆分离蛋白表面活性性能及结构的影响[J]. 中国饲料,2019(11):22−27.
    [17]
    董振, 李军生, 阎柳娟, 等. 分子动力学模拟二硫键对大豆11S球蛋白结构及表面活性的影响[J]. 山东化工,2016,45(16):1−4, 8. doi: 10.3969/j.issn.1008-021X.2016.16.001
    [18]
    Foegeding E A, Luck P, Davis J. Factors determining the physical properties ofprotein foams[J]. Food Hydrocolloids,2006,20(2):284−292.
    [19]
    Nakai S, Ho L, Helbig N, et al. Relationship between hydrophobicity and emulsifying properties of some plant proteins[J]. Canadian Institute of Food and Science and Technology Journal,1980,1(13):23−27.
    [20]
    Townsend A, Nakai S. Relationships between hydrophobicity and foaming characteristics of food proteins[J]. Journal of Food Science,2006,48(2):588−594.
  • Related Articles

    [1]SUN Rui, MENG Xianghui, CHEN Ping. Effect of Lactobacillus plantarum Fermentation on the Quality of Pteridium aquilinum[J]. Science and Technology of Food Industry, 2021, 42(14): 133-137. DOI: 10.13386/j.issn1002-0306.2020120274
    [2]REN Da-yong, YAN Wei, AN Bin, YANG Liu, WANG Guo-chao, FENG Shi-rong. Screening and in Vitro Tolerance Analysis of Lactobacillus plantarum with High Antioxidant Activity in Traditional Fermented Food of Northeast China[J]. Science and Technology of Food Industry, 2019, 40(18): 59-64. DOI: 10.13386/j.issn1002-0306.2019.18.010
    [3]ZHANG Hai-ping, ZHU Yue, WEI Yu-long, LI Teng, YU Ning, ZHU Ning, GAN Zhi-lin, SUN Ai-dong. Optimization of Fermentation Process of Aronia melanocarpa Fruit Juice by Lactobacillus plantarum[J]. Science and Technology of Food Industry, 2018, 39(17): 133-138,151. DOI: 10.13386/j.issn1002-0306.2018.17.023
    [4]QIU Di-hong, HUANG Li-hua, CHEN Zhe-ke, WANG Ni-ni, DAI Yi, ZHONG Yao-hong. Hypocholesterolemic Effect of Yogurt Fermented with Lactobacillus plantarum on Mice[J]. Science and Technology of Food Industry, 2018, 39(15): 313-316. DOI: 10.13386/j.issn1002-0306.2018.15.055
    [5]QIAN Yu, LEI Ai-ling, LIU Xiao-jing, YI Ruo-kun, ZHAO Xin. Inhibitory Effects of Lactobacillus plantarum YS-2 in Dextran Sulfate Sodium-Induced C57BL/6J Mice Colitis[J]. Science and Technology of Food Industry, 2018, 39(15): 302-307,312. DOI: 10.13386/j.issn1002-0306.2018.15.053
    [6]LUO Hong-xia, LI Xiao-hong, TIAN Wen-jing, ZHANG Jun, WANG Jian, LIN Shao-hua. Study on microencapsulation of Lactobacillus plantarum[J]. Science and Technology of Food Industry, 2018, 39(7): 110-114,121. DOI: 10.13386/j.issn1002-0306.2018.07.021
    [7]JIN Da, YU Shang-fu, LI Bai-liang, LU Jing-jing, ZHAN Meng, ZHAO Li, HUO Gui-cheng. Study on antioxidant capabilities and antibiotic resistance of Lactobacillus plantarum[J]. Science and Technology of Food Industry, 2017, (24): 104-108. DOI: 10.13386/j.issn1002-0306.2017.24.021
    [8]LIANG Jin-zhong, WANG Yi-xue, MEI Jian-qiu. Optimal condition for selenium-rich Lactobacillus plantarum cultivation[J]. Science and Technology of Food Industry, 2017, (03): 137-142. DOI: 10.13386/j.issn1002-0306.2017.03.018
    [9]LIAO Meng, YU Guo-hang, WU Zheng-yun, ZHANG Wen-xue. Effects of Chinese wolfberry on the growth and antioxidant ability pickle Lactobacillus plantarum[J]. Science and Technology of Food Industry, 2016, (24): 264-266. DOI: 10.13386/j.issn1002-0306.2016.24.042
    [10]LI Jing, FAN Ming- tao, SUN Hui- Ye. Effect of Lactobacillus Plantarum on the deacification of kiwifruit wine[J]. Science and Technology of Food Industry, 2016, (01): 165-169. DOI: 10.13386/j.issn1002-0306.2016.01.026
  • Cited by

    Periodical cited type(9)

    1. 白伟娟. 植物蛋白的制备技术及其在食品领域的应用. 食品工业. 2024(06): 252-256 .
    2. 鲁正丽,李云嵌,陈云走,张应菊,孙健,张雪春,方越. 微波辅助提取美藤果蛋白工艺优化及性质研究. 南方农业学报. 2024(04): 1129-1138 .
    3. 李超,吴冉,马航,唐春兰,白宇涵. 双酶法提取大豆蛋白工艺优化. 现代食品. 2024(15): 114-119+123 .
    4. 卢秋玲,李琅,杨敏,魏彦明. 超声处理对文冠果种粕蛋白结构及性质的影响. 食品与发酵工业. 2024(20): 79-87 .
    5. 张永松,丁真真,陈辛杰,宋晶晶,夏娜. 反胶束提取扁桃仁蛋白工艺优化及理化特性比较. 现代食品科技. 2024(08): 252-262 .
    6. 江连洲,王一畅,马依彤,刘军,杨宗瑞,郭增旺. 微波对大豆蛋白氧化聚集体结构及功能特性的影响. 农业工程学报. 2023(09): 261-269 .
    7. 李超,马航,吴冉,唐春兰,赵雪龙. 植物蛋白提取技术研究进展. 现代食品. 2023(11): 12-19 .
    8. 边博,张丽,吐鲁洪·吐尔迪,王学农,禚红竹. 比重式巴旦木壳仁风选装置试验与优化分析. 农机化研究. 2022(11): 191-196 .
    9. 陈丽云,李佳奇,商辉,张文慧. 微波辅助提取蛋白质的研究进展. 当代化工研究. 2022(04): 153-155 .

    Other cited types(6)

Catalog

    Article Metrics

    Article views (449) PDF downloads (43) Cited by(15)

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return